Мир прекрасен

Итак, полностью абстрагируемся и забываем любые классические определения. Ибо спин – это понятие, присущее исключительно квантовому миру. Попробуем разобраться в том, что это такое.

Больше полезной информации для учащихся – у нас в телеграм .

Спин и момент импульса

Спин (от английского spin – вращаться) – собственный момент импульса элементарной частицы.

Теперь вспомним, что такое момент импульса в классической механике.

Момент импульса – это физическая величина, характеризующая вращательное движение, точнее, количество вращательного движения.

В классической механике момент импульса определяется как векторное произведение импульса частицы на ее радиус вектор:

По аналогии с классической механикой спин характеризует вращение частиц. Их представляют в виде волчков, вращающихся вокруг оси. Если частица имеет заряд, то, вращаясь, она создает магнитный момент и явлеятся своего рода магнитом.

Однако данное вращение нельзя трактовать классически. Все частицы помимо спина обладают внешним или орбитальным моментом импульса, характеризующим вращение частицы относительно какой-то точки. Например, когда частица движется по круговой траектории (электрон вокруг ядра).


Спин же является собственным моментом импульса , то есть характеризует внутреннее вращательное состояние частицы вне зависимости от внешнего орбитального момента импульса. При этом спин не зависит от внешних перемещений частицы .

Представить, что же там вращается внутри частицы, невозможно. Однако факт остается фактом – для заряженных частиц с разнонаправленными спинами траектории движения в магнитном поле будут различны.

Спиновое квантовое число

Для характеристики спина в квантовой физике введено спиновое квантовое число.

Спиновое квантовое число – одно из квантовых чисел, присущих частицам. Часто спиновое квантовое число называют просто спином. Однако следует понимать, что спин частицы (в понимании собственного момента импульса) и спиновое квантовое число – это не одно и то же. Спиновое число обозначается буквой J и принимает ряд дискретных значений, а само значение спина пропорционально приведенной постоянной Планка:

Бозоны и фермионы

Разным частицам присущи разные спиновые числа. Так, главное отличие состоит в том, что одни обладают целым спином, а другие – полуцелым. Частицы обладающие целым спином называются бозонами, а полуцелым – фермионами.

Бозоны подчиняются статистике Бозе-Эйнштейна, а фермионы – Ферми-Дирака. В ансамбле частиц, состоящем из бозонов, любое их количество может находиться в одинаковом состоянии. С фермионами все наоборот – наличие двух тождественных фермионов в одной системе частиц невозможно.


Бозоны: фотон, глюон, бозон Хиггса. - в отдельной статье.

Фермионы: электрон, лептон, кварк

Попробуем представить, чем отличаются частицы с разными спиновыми числами на примерах из макромира. Если спин объекта равен нулю, то его можно представить в виде точки. Со всех сторон, как ни вращай этот объект, он будет одинаков. При спине равном 1 поворот объекта на 360 градусов возвращает его в состояние, идентичное первоначальному состоянию.

Например, карандаш, заточенный с одной стороны. Спин равный 2 можно представить в виде карандаша, заточенного с двух сторон - при повороте такого карандаша на 180 градусов мы не заметим никаких изменений. А вот полуцелый спин равный 1/2 представляется объектом, для возвращения которого в первоначальное состояние нужно соверщить оборот в 720 градусов. Примером может служить точка, движущаяся по листу Мебиуса.


Итак, спин - квантовая характеристика элементарных частиц, которая служит для описания их внутреннего вращения, момент импульса частицы, не зависящий от ее внешних перемещений.

Надеемся, что вы осилите эту теорию быстро и сможете при случае применить знания на практике. Ну а если задачка по квантовой механике оказалось непосильно сложной или не можете не забывайте о студенческом сервисе , специалисты которого готовы прийти на выручку. Учитывая, что сам Ричард Фейнман сказал, что "в полной мере квантовую физику не понимает никто", обратиться за помощью к опытным специалистам – вполне естественно!

Положительное число - так называемое спиновое квантовое число , которое обычно называют просто спином (одно из квантовых чисел).

В связи с этим говорят о целом или полуцелом спине частицы.

Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия .

Вектор спина является единственной величиной, характеризующей ориентацию частицы в квантовой механике . Из этого положения следует, что: при нулевом спине у частицы не может существовать никаких векторных и тензорных характеристик; векторные свойства частиц могут описываться только аксиальными векторами ; частицы могут иметь магнитные дипольные моменты и не могут иметь электрических дипольных моментов; частицы могут иметь электрический квадрупольный момент и не могут иметь магнитный квадрупольный момент; отличный от нуля квадрупольный момент возможен лишь у частиц при спине, не меньшем единицы .

Спиновый момент электрона или другой элементарной частицы, однозначно отделённый от орбитального момента, никогда не может быть определён посредством опытов, к которым применимо классическое понятие траектории частицы .

Число компонент волновой функции, описывающей элементарную частицу в квантовой механике, растёт с ростом спина элементарной частицы. Элементарные частицы со спином описываются однокомпонентной волновой функцией (скаляр), со спином 1 2 {\displaystyle {\frac {1}{2}}} описываются двухкомпонентной волновой функцией (спинор), со спином 1 {\displaystyle 1} описываются четырёхкомпонентной волновой функцией (вектор), со спином 2 {\displaystyle 2} описываются шестикомпонентной волновой функцией (тензор) .

Энциклопедичный YouTube

  • 1 / 5

    Хотя термин спин относится только к квантовым свойствам частиц, свойства некоторых циклически действующих макроскопических систем тоже может быть описаны неким числом, которое показывает на сколько частей нужно разделить цикл вращения некого элемента системы, для того, чтобы она вернулась в состояние, неотличимое от начального.

    Самый простой пример спина - это целый спин равный 1:

    если взять вектор (для примера - положить ручку на стол) и повернуть его на 360 градусов , то этот вектор вернется в своё первоначальное состояние (ручка опять будет лежать так же, как и до поворота).

    Также легко представить себе спин равный 0 :

    это точка - она со всех сторон выглядит одинаково , как её ни крути.

    Чуть сложнее с целым спином равным 2 :

    нужно будет придумать объект, который ведёт себя так же, как в предыдущем примере со спином 1, но при повороте на 180 градусов (то есть вдвое меньше полного оборота) - это тоже просто - нужно взять двунаправленный вектор (примером из жизни может служить обычный карандаш, только заточенный с двух сторон или не заточенный вообще - главное чтобы был без надписей и однотонный, Хокинг в качестве примера приводил обычную игральную карту типа короля или дамы ) - и тогда после поворота на 180 градусов он вернется в положение, не отличимое от исходного.

    А вот c полуцелым спином равным 1 / 2 уже придётся выходить в 3 измерения:

    • Если взять лист Мёбиуса и представить, что по нему ползет муравей, тогда, сделав один оборот (пройдя 360 градусов), муравей окажется в той же точке, но с другой стороны листа, а чтобы вернуться в точку, откуда он начал, придётся пройти все 720 градусов .
    • Еще один пример - четырехтактный двигатель внутреннего сгорания. При повороте коленчатого вала на 360 градусов поршень вернется в исходное положение (например, верхнюю мертвую точку), но распределительный вал вращается в 2 раза медленное и совершит полный оборот при повороте коленчатого вала на 720 градусов. То есть при повороте колечатого вала на 2 оборота двигатель внутреннего сгорания вернется в то же состояние. В этом случае третьим измерением будет положение распределительного вала.

    На подобных примерах можно проиллюстрировать сложение спинов:

    • Два заточенных только с одной стороны одинаковых карандаша ("спин" каждого - 1), скрепленные друг с другом, так, что острый конец одного будет рядом с тупым концом другого. Такая система вернется в неотличимое от начального состояния при повороте всего на 180 градусов, то есть "спин" системы стал равным двум.
    • Многоцилиндровый четырехтактный двигатель внутреннего сгорания ("спин" каждого из цилиндров которого равен 1/2). Если все цилиндры работают одинаково, то состояния, при которых поршень находится в начале такта рабочего хода в любом из цилиндров, будут неотличимы. Следовательно, двухцилиндровый двигатель будет возвращаться в состояние, неотличимое от исходного, через каждые 360 градусов (суммарный "спин" - 1), четырехцилиндровый - через 180 градусов ("спин" - 2), восьмицилиндровый - через 90 градусов ("спин" - 4).

    Свойства спина

    Любая частица может обладать двумя видами углового момента : орбитальным угловым моментом и спином.

    В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин - это внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках релятивистской механики . Если представлять частицу (например, электрон) как вращающийся шарик, а спин как момент, связанный с этим вращением, то оказывается, что поперечная скорость движения оболочки частицы должна быть выше скорости света, что недопустимо с позиции релятивизма.

    «В частности было бы совершенно бессмысленным представлять себе собственный момент элементарной частицы, как результат ее вращения „вокруг собственной оси“»

    Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина s → ^ , {\displaystyle {\hat {\vec {s}}},} алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента ℓ → ^ . {\displaystyle {\hat {\vec {\ell }}}.} Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина. Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения (в единицах постоянной Дирака ħ ).

    Спин испытывает квантовые флуктуации. В результате квантовых флуктуаций строго определённое значение может иметь только одна компонента спина, например . При этом компоненты J x , J y {\displaystyle J_{x},J_{y}} флуктуируют вокруг среднего значения. Максимально возможное значение компоненты J z {\displaystyle J_{z}} равно J {\displaystyle J} . В то же время квадрат J 2 {\displaystyle J^{2}} всего вектора спина равен J (J + 1) {\displaystyle J(J+1)} . Таким образом J x 2 + J y 2 = J 2 − J z 2 ⩾ J {\displaystyle J_{x}^{2}+J_{y}^{2}=J^{2}-J_{z}^{2}\geqslant J} . При J = 1 2 {\displaystyle J={\frac {1}{2}}} среднеквадратические значения всех компонент из-за флуктуаций равны J x 2 ^ = J y 2 ^ = J z 2 ^ = 1 4 {\displaystyle {\widehat {J_{x}^{2}}}={\widehat {J_{y}^{2}}}={\widehat {J_{z}^{2}}}={\frac {1}{4}}} .

    Вектор спина меняет своё направление при преобразовании Лоренца. Ось этого поворота перпендикулярна импульсу частицы и относительной скорости систем отсчёта .

    Примеры

    Ниже указаны спины некоторых микрочастиц.

    спин общее название частиц примеры
    0 скалярные частицы π -мезоны , K-мезоны , хиггсовский бозон , атомы и ядра 4 He , чётно-чётные ядра, парапозитроний
    1/2 спинорные частицы электрон , кварки , мюон , тау-лептон , нейтрино , протон , нейтрон , атомы и ядра 3 He
    1 векторные частицы фотон , глюон , W- и Z-бозоны , векторные мезоны , ортопозитроний
    3/2 спин-векторные частицы Ω-гиперон , Δ-резонансы
    2 тензорные частицы гравитон , тензорные мезоны

    На июль 2004 года, максимальным спином среди известных барионов обладает барионный резонанс Δ(2950) со спином 15/2. Спин стабильных ядер не может превышать 9 2 ℏ {\displaystyle {\frac {9}{2}}\hbar } .

    История

    Математически теория спина оказалась очень прозрачной, и в дальнейшем по аналогии с ней была построена теория изоспина .

    Спин и магнитный момент

    Несмотря на то, что спин не связан с реальным вращением частицы, он тем не менее порождает определённый магнитный момент , а значит, приводит к дополнительному (по сравнению с классической электродинамикой) взаимодействию с магнитным полем . Отношение величины магнитного момента к величине спина называется гиромагнитным отношением , и, в отличие от орбитального углового момента, оно не равно магнетону ( μ 0 {\displaystyle \mu _{0}} ):

    μ → ^ = g ⋅ μ 0 s → ^ . {\displaystyle {\hat {\vec {\mu }}}=g\cdot \mu _{0}{\hat {\vec {s}}}.}

    Введённый здесь множитель g называется g -фактором частицы; значения этого g -фактора для различных элементарных частиц активно исследуются в физике элементарных частиц .

    Спин и статистика

    Вследствие того, что все элементарные частицы одного и того же сорта тождественны , волновая функция системы из нескольких одинаковых частиц должна быть либо симметричной (то есть не изменяется), либо антисимметричной (домножается на −1) относительно перестановки местами двух любых частиц. В первом случае говорят, что частицы подчиняются статистике Бозе - Эйнштейна и называются бозонами . Во втором случае частицы описываются статистикой Ферми - Дирака и называются фермионами .

    Оказывается, именно значение спина частицы говорит о том, каковы будут эти симметрийные свойства. Сформулированная Вольфгангом Паули в 1940 году теорема о связи спина со статистикой утверждает, что частицы с целым спином (s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином (s = 1/2, 3/2, …) - фермионами .

    Определение 1

    Спин электрона (и других микрочастиц) -- это квантовая величина, у которой нет классического аналога. Это внутреннее свойство электрона, которое можно уподобить заряду или массе. Понятие спина было предложено американскими физиками Д. Уленбеком и С. Гаудсмитом для того, чтобы объяснить существование тонкой структуры спектральных линий. Ученые предположили, что электрон имеет собственный механический момент импульса , который не связан с движением электронам в пространстве который был назван спином.

    Если считать, что электрон имеет спин (собственный механический момент импульса (${\overrightarrow{L}}_s$)), то значит должен иметь собственный магнитный момент (${\overrightarrow{p}}_{ms}$). В соответствии с общими выводами квантовой физики спин квантуется как:

    где $s$ -- спиновое квантовое число. Проводя аналогию с механическим моментом импульса, проекция спина ($L_{sz}$) квантуется таким образом, что число ориентаций вектора ${\overrightarrow{L}}_s$ равно $2s+1.$ В опытах Штерна и Герлаха ученые наблюдали две ориентации, то $2s+1=2$, следовательно, $s=\frac{1}{2}$.

    При этом проекция спина на направление внешнего магнитного поля определена формулой:

    где $m_s=\pm \frac{1}{2}$-магнитное спиновое квантовое число.

    Получилось, что экспериментальные данные привели к необходимости введения дополнительной внутренней степени свободы. Для полного описания состояния электрона в атоме необходимы: главное, орбитальное, магнитное и спиновое квантовые числа.

    Позднее Дирак показал, что наличие спина следует из полученного им релятивистского волнового уравнения.

    Атомы первой валентной группы периодической системы имеют валентный электрон, находящийся в состоянии с $l=0$. При этом момент импульса всего атома равен спину валентного электрона. Поэтому когда обнаружили для подобных атомов, пространственное квантование момента импульса атома в магнитном поле это стало доказательством существования спина только двух ориентаций во внешнем поле.

    Спиновое квантовое число, отличаясь от других квантовых чисел, является дробным. Количественную величину спина электрона можно найти в соответствии с формулой (1):

    Для электрона имеем:

    Иногда говорят, что спин электрона ориентирован по направлению или против направления напряженности магнитного поля. Такое высказывание является неточным. Так как при этом на самом деле имеется в виду направление его составляющей $L_{sz}.$

    где ${\mu }_B$ -- магнетон Бора.

    Найдем отношение проекций $L_{sz}$ и $p_{ms_z}$, применяя формулы (4) и (5), имеем:

    Выражение (6) называют спиновым гиромагнитным отношением. Оно в два раза превышает орбитальное гиромагнитное отношение. В векторной записи гиромагнитное отношение записывают как:

    Опыты Эйнштейна и де Гааза определили спиновое гиромагнитное отношение для ферромагнетиков . Это дало возможность определить спиновую природу магнитных свойств ферромагнетиков и получить теорию ферромагнетизма.

    Пример 1

    Задание: Найдите численные значения: 1) собственного механического момента импульса (спина) электрона, 2) проекции спина электрона на направление внешнего магнитного поля.

    Решение:

      В качестве основания для решения задачи используем выражение:

      где $s=\frac{1}{2}$. Зная величину $\hbar =1,05\cdot {10}^{-34}Дж\cdot с$, проведем вычисления:

      В качестве основы для решения задачи используем формулу:

      где $m_s=\pm \frac{1}{2}$-магнитное спиновое квантовое число. Следовательно, можно провести вычисления:

    Ответ: $L_s=9,09\cdot {10}^{-35}{\rm Дж}\cdot {\rm с},\ L_{sz}=\pm 5,25\cdot {10}^{-35}Дж\cdot с.$

    Пример 2

    Задание: Каков спиновый магнитный момент электрона ($p_{ms}$) и его проекция ($p_{ms_z}$) на направление внешнего поля?

    Решение:

    Спиновый магнитный момент электрона может быть определен из гиромагнитного соотношения как:

    Собственный механический момента импульса (спина) электрона можно найти как:

    где $s=\frac{1}{2}$.

    Подставим выражение для спина электрона в формулу (2.1), имеем:

    Используем известные для электрона величины:

    поведем вычисление магнитного момента:

    Из опытов Штерна и Герлаха получено, что $p_{ms_z}$ (проекция собственного магнитного момента электрона) равна:

    Вычислим $p_{ms_z}$ для электрона:

    Ответ: $p_{ms}=1,6\cdot {10}^{-23}A\cdot м^2,\ p_{ms_z}=9,27\cdot {10}^{-24}A\cdot м^2.$

    В связи с этим говорят о целом или полуцелом спине частицы.

    Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантово-механического явления, не имеющего аналогии в классической механике, обменного взаимодействия .

    Вектор спина является единственной величиной, характеризующей ориентацию частицы в квантовой механике . Из этого положения следует, что: при нулевом спине у частицы не может существовать никаких векторных и тензорных характеристик; векторные свойства частиц могут описываться только аксиальными векторами ; частицы могут иметь магнитные дипольные моменты и не могут иметь электрических дипольных моментов; частицы могут иметь электрический квадрупольный момент и не могут иметь магнитный квадрупольный момент; отличный от нуля квадрупольный момент возможен лишь у частиц при спине, не меньшем единицы .

    Спиновый момент электрона или другой элементарной частицы, однозначно отделённый от орбитального момента, никогда не может быть определён посредством опытов, к которым применимо классическое понятие траектории частицы .

    Число компонент волновой функции, описывающей элементарную частицу в квантовой механике, растёт с ростом спина элементарной частицы. Элементарные частицы со спином описываются однокомпонентной волновой функцией (скаляр), со спином 1 2 {\displaystyle {\frac {1}{2}}} описываются двухкомпонентной волновой функцией (спинор), со спином 1 {\displaystyle 1} описываются четырёхкомпонентной волновой функцией (вектор), со спином 2 {\displaystyle 2} описываются шестикомпонентной волновой функцией (тензор) .

    Что такое спин - на примерах

    Хотя термин «спин» относится только к квантовым свойствам частиц, свойства некоторых циклически действующих макроскопических систем тоже могут быть описаны неким числом, которое показывает, на сколько частей нужно разделить цикл вращения некоего элемента системы, чтобы она вернулась в состояние, неотличимое от начального.

    Легко представить себе спин, равный 0 : это точка - она со всех сторон выглядит одинаково , как её ни крути.

    Примером спина, равного 1 , может служить большинство обычных предметов без какой-либо симметрии: если такой предмет повернуть на 360 градусов , то этот предмет вернётся в своё первоначальное состояние. Для примера - можно положить ручку на стол, и после поворота на 360° ручка опять будет лежать так же, как и до поворота.

    В качестве примера спина, равного 2 можно взять любой предмет с одной осью центральной симметрии: если его повернуть на 180 градусов, он будет неотличим от исходного положения, и получается за один полный оборот он становится неотличим от исходного положения 2 раза. Примером из жизни может служить обычный карандаш, только заточенный с двух сторон или не заточенный вообще - главное чтобы был без надписей и однотонный - и тогда после поворота на 180° он вернется в положение, не отличимое от исходного. Хокинг в качестве примера приводил обычную игральную карту типа короля или дамы

    А вот с полуцелым спином, равным 1 / 2 немножко сложнее: это получается, что в исходное положение система возвращается после 2-х полных оборотов, то есть после поворота на 720 градусов. Примеры:

    • Если взять ленту Мёбиуса и представить, что по ней ползет муравей, тогда, сделав один оборот (пройдя 360 градусов), муравей окажется в той же точке, но с другой стороны листа, а чтобы вернуться в точку, откуда он начал, придётся пройти все 720 градусов .
    • четырехтактный двигатель внутреннего сгорания. При повороте коленчатого вала на 360 градусов поршень вернётся в исходное положение (например, верхнюю мёртвую точку), но распределительный вал вращается в 2 раза медленнее и совершит полный оборот при повороте коленчатого вала на 720 градусов. То есть при повороте коленчатого вала на 2 оборота двигатель внутреннего сгорания вернётся в то же состояние. В этом случае третьим измерением будет положение распределительного вала.

    На подобных примерах можно проиллюстрировать сложение спинов:

    • Два заточенных только с одной стороны одинаковых карандаша («спин» каждого - 1), скреплённые боковыми сторонами друг с другом так, что острый конец одного будет рядом с тупым концом другого (↓). Такая система вернётся в неотличимое от начального состояния при повороте всего на 180 градусов, то есть «спин» системы стал равным двум.
    • Многоцилиндровый четырёхтактный двигатель внутреннего сгорания («спин» каждого из цилиндров которого равен 1/2). Если все цилиндры работают одинаково, то состояния, при которых поршень находится в начале такта рабочего хода в любом из цилиндров, будут неотличимы. Следовательно, двухцилиндровый двигатель будет возвращаться в состояние, неотличимое от исходного, через каждые 360 градусов (суммарный «спин» - 1), четырёхцилиндровый - через 180 градусов («спин» - 2), восьмицилиндровый - через 90 градусов («спин» - 4).

    Свойства спина

    Любая частица может обладать двумя видами углового момента : орбитальным угловым моментом и спином.

    В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин - это внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках релятивистской механики . Если представлять частицу (например, электрон) как вращающийся шарик, а спин как момент, связанный с этим вращением, то оказывается, что поперечная скорость движения оболочки частицы должна быть выше скорости света, что недопустимо с позиции релятивизма.

    Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина s → ^ , {\displaystyle {\hat {\vec {s}}},} алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента ℓ → ^ . {\displaystyle {\hat {\vec {\ell }}}.} Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина. Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения (в единицах постоянной Дирака ħ ).

    Спин испытывает квантовые флуктуации. В результате квантовых флуктуаций строго определённое значение может иметь только одна компонента спина, например . При этом компоненты J x , J y {\displaystyle J_{x},J_{y}} флуктуируют вокруг среднего значения. Максимально возможное значение компоненты J z {\displaystyle J_{z}} равно J {\displaystyle J} . В то же время квадрат J 2 {\displaystyle J^{2}} всего вектора спина равен J (J + 1) {\displaystyle J(J+1)} . Таким образом J x 2 + J y 2 = J 2 − J z 2 ⩾ J {\displaystyle J_{x}^{2}+J_{y}^{2}=J^{2}-J_{z}^{2}\geqslant J} . При J = 1 2 {\displaystyle J={\frac {1}{2}}} среднеквадратические значения всех компонент из-за флуктуаций равны J x 2 ^ = J y 2 ^ = J z 2 ^ = 1 4 {\displaystyle {\widehat {J_{x}^{2}}}={\widehat {J_{y}^{2}}}={\widehat {J_{z}^{2}}}={\frac {1}{4}}} .

    Вектор спина меняет своё направление при преобразовании Лоренца . Ось этого поворота перпендикулярна импульсу частицы и относительной скорости систем отсчёта .

    Примеры

    Ниже указаны спины некоторых микрочастиц.

    спин общее название частиц примеры
    0 скалярные частицы π -мезоны , K-мезоны , хиггсовский бозон , атомы и ядра 4 He , чётно-чётные ядра, парапозитроний
    1/2 спинорные частицы электрон , кварки , мюон , тау-лептон , нейтрино , протон , нейтрон , атомы и ядра 3 He
    1 векторные частицы фотон , глюон , W- и Z-бозоны , векторные мезоны , ортопозитроний
    3/2 спин-векторные частицы Ω-гиперон , Δ-резонансы
    2 тензорные частицы гравитон , тензорные мезоны

    На июль 2004 года максимальным спином среди известных барионов обладает барионный резонанс Δ(2950) со спином 15/2. Спин стабильных ядер не может превышать 9 2 ℏ {\displaystyle {\frac {9}{2}}\hbar } .

    История

    Сам термин "спин" в науку ввели С. Гаудсмит и Д. Уленбек в 1925 г. .

    Математически теория спина оказалась очень прозрачной, и в дальнейшем по аналогии с ней была построена теория изоспина .

    Спин и магнитный момент

    Несмотря на то, что спин не связан с реальным вращением частицы, он тем не менее порождает определённый магнитный момент , а значит, приводит к дополнительному (по сравнению с классической электродинамикой) взаимодействию с магнитным полем . Отношение величины магнитного момента к величине спина называется гиромагнитным отношением , и, в отличие от орбитального углового момента, оно не равно магнетону ( μ 0 {\displaystyle \mu _{0}} ):

    μ → ^ = g ⋅ μ 0 s → ^ . {\displaystyle {\hat {\vec {\mu }}}=g\cdot \mu _{0}{\hat {\vec {s}}}.}

    Введённый здесь множитель g называется g -фактором частицы; значения этого g -фактора для различных элементарных частиц активно исследуются в физике элементарных частиц .

    Спин и статистика

    Вследствие того, что все элементарные частицы одного и того же сорта тождественны , волновая функция системы из нескольких одинаковых частиц должна быть либо симметричной (то есть не изменяется), либо антисимметричной (домножается на −1) относительно перестановки местами двух любых частиц . В первом случае говорят, что частицы подчиняются статистике Бозе - Эйнштейна и называются бозонами . Во втором случае частицы описываются статистикой Ферми - Дирака и называются фермионами .

    Оказывается, именно значение спина частицы говорит о том, каковы будут эти симметрийные свойства. Сформулированная Вольфгангом Паули в 1940 году теорема о связи спина со статистикой утверждает, что частицы с целым спином (s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином (s = 1/2, 3/2, …) - фермионами .

    Обобщение спина

    Введение спина явилось удачным применением новой физической идеи: постулирование того, что существует пространство состояний, никак не связанных с перемещением частицы в обычном

    1/2, для фотона 1, для p - и К-мезонов 0.

    Спином наз. также собств. момент кол-ва движения , мол. системы; в этом случае спин системы определяется как векторная сумма спинов отдельных частиц: S s = S. Так, спин ядра равен целому или полуцелому числу (обозначается обычно I) в зависимости от того, включает ли ядро четное или нечетное число и . Напр., для 1 Н I = 1/2, для 10 В I = 3, для 11 В I = 3/2, для 17 О I = 5/2, для 16 О I = 0. Для Не в основном состоя нии полный электронный спин S = 0, в первом S = 1. В совр. теоретич. физике, гл. обр. в теории , спином часто называют полный момент кол-ва движения частицы, равный сумме орбитального и собств. моментов.

    Концепция спина введена в 1925 Дж. Уленбеком и С. Гаудсмитом, к-рые для интерпретации эксперим. данных о расщеплении пучка в магн. поле предположили, что можно рассматривать Как вращающийся вокруг своей оси волчок с проекцией на направление поля, равной В том же году В. Паули ввел понятие спина в математич. аппарат нерелятивистской и сформулировал принцип запрета, утверждающий, что две тождеств. частицы с полуцелым спином не могут одновременно находиться в системе в одном и том же (см. ). Согласно подходу В. Паули, существуют s 2 и s z , к-рые обладают собств. значениями ђ 2 s(s + 1) и ђs z соотв. и действуют нат. наз. спиновые части волновой ф-ции a и b (спин-функции) так же, как орбитального момента кол-ва движения I 2 и I z действуют на пространств. часть волновой ф-ции Y (r), где r-радиус-вектор частицы. s 2 и s z подчиняются тем же правилам коммутации, что и I 2 и I z .

    Спиновый . В Брейта-Паули Н ВР входят два члена, линейно зависящие от компонент векторного потенциала А, определяющего внеш. магн. поле:


    Для однородного поля А = 1/2 В x r , знак x означает векторное произведение, и


    Где -магнетон . Векторная величина наз. магн. моментом частицы с зарядом е и массой т (в данном случае-электрона), векторная же величина получила назв. спинового магн. момента. Отношение коэффициентов перед s и l наз. g-фактор ом частицы. Для 1 Н (спин I = 1/2) g-фактор равен 5,5854, для ядра 13 С с тем же спином I = 1/2 g-фактор равен 1,4042; возможны и отрицат. g-факторы, напр.: для ядра 29 Si g-фактор равен - 1,1094 (спин равен 1/2). Экспериментально определяемая величина g-фактора составляет 2,002319.

    Как для одного , так и для системы или др. частиц спином S ориентируется относительно направления однородного поля. Проекция спина S z на направление поля принимает 2S + 1 значение: - S, - S + 1, ... , S. Число разл. проекций спина наз. системы со спином S.

    Магн. поле, действующее на или ядро в , м.б. не только внешним, оно может создаваться и др. либо возникать при вращении системы заряженных частиц как целого. Так, взаимод. магн. поля, создаваемого i, с ядром v приводит к появлению в гамильтониане члена вида:

    где n v - единичный в направлении радиуса-вектора ядра R v , Z v и М v -заряд и масса ядра. Члены вида I v ·I i отвечают , члены вида I v ·s i - . Для атомных и мол. систем наряду с указанными возникают и члены, пропорциональные (s i ·s j), (I v ·I m ) и т.п. Эти члены обусловливают расщепление вырожденных энергетич. уровней, а также приводят к разл. сдвигам уровней, что определяет тонкую структуру и сверхтонкую структуру (см. , ).

    Экспериментальные проявления спина. Наличие отличного от нуля спина электронной подсистемы приводит к тому, что у в однородном магн. поле наблюдается расщеп-ление уровней энергии, причем на величину этого расщепления влияет хим. (см. ). Наличие ненулевых спинов также приводит к расщеплению уровней, причем это расщепление зависит от экранирования внеш. поля ближайшим к данному ядру окружением (см. ). Спин-орбитальное взаимод. приводит к сильным расщеплениям уровней электронных состояний, достигающим величин порядка неск. десятых эВ и даже неск. единиц эВ. Особенно сильно оно проявляется у тяжелых элементов, когда становится невозможным говорить о том или ином спине или , а можно говорить лишь о полном моменте импульса системы. Более слабыми, но тем не менее отчетливо устанавливаемыми при исследовании спектров являются спин-вращательные и .

    Для конденсир. сред наличие спинов частиц проявляется в магн. св-вах этих сред. При определенной т-ре возможно возникновение упорядоченного состояния спинов частиц ( , ), находящихся, напр., в узлах кристаллич. решетки, а следовательно, и связанных со спинами магн. моментов, что ведет к появлению у системы сильного парамагнетизма (ферромагнетизма, антиферромагнетизма). Нарушение упорядоченности спинов частиц проявляется в виде спиновых волн (см. ). Взаимод. собственных магн. моментов с упругими колебаниями среды наз. спин-фонон-ным взаимод. (см. ); оно определяет спин-решеточную и спин-фононное поглощение звука.



Случайные статьи

Вверх