Реферат: Сенсорные системы человека. Сенсорные системы человека (анализаторы)

Сенсорной системой(анализатором) - называют часть нервной системы, состоящую из воспринимающих элементов - сенсорных рецепторов, нервных путей, передающих информацию от рецепторов в мозг и частей мозга, которые перерабатывают и анализируют эту информацию

В сенсорную систему входят 3 части

1. Рецепторы - органы чувств

2. Проводниковый отдел, связывающий рецепторы с мозгом

3. Отдел коры головного мозга, которая воспринимает и обрабатывает информацию.

Рецепторы - периферическое звено, предназначенное для восприятия раздражителей внешней или внутренней среды.

Сенсорные системы имеют общий план строения и для сенсорных систем характерна

Многослойность - наличие нескольких слоев нервных клеток, первый из которых связан с рецепторами, а последний с нейронами моторных областей коры большого мозга. Нейроны специализированы для переработки разных видов сенсорной информации.

Многоканальность - наличие множества параллельных каналов обработки и передачи информации, что обеспечивает детальность анализа сигналов и большую надежность.

Разное число элементов в соседних слоях , что формирует, так называемые, «сенсорные воронки»(суживающиеся или расширяющиеся) Они могут обеспечить устранение избыточности информации или, наоборот, дробный и сложный анализ признаков сигнала

Дифференциация сенсорной системы по вертикали и по горизонтали. Дифференциация по вертикали означает формирование отделов сенсорной системы, состоящих из нескольких нейронных слоев(обонятельные луковицы, кохлеарные ядра, коленчатые тела).

Дифференциация по горизонтали представляет наличие разных по свойствам рецепторов и нейронов в пределах одного слоя. Например палочки и колбочки в сетчатке глаза по-разному перерабатывают информацию.

Основной задачей сенсорной системы является восприятие и анализ свойств раздражителей, на основе которых возникают ощущения, восприятия, представления. Это составляет формы чувственного, субъективного отражения внешнего мира

Функции сенсорных систем

  1. Обнаружение сигналов. Каждая сенсорная система в процессе эволюции приспособилась к восприятию адекватных, присущих для данной системы раздражителей. Сенсорная система, например глаз, может получать разные - адекватные и неадекватные раздражения(свет или удар по глазу). Сенсорные системы воспринимают силу - глаз воспринимает 1 световой фотон(10 в -18 Вт). Удар по глазу(10 в -4 Вт). Электрический ток(10 в -11 Вт)
  2. Различение сигналов.
  3. Передача или преобразование сигналов . Любая сенсорная система работает, как преобразователь. Она преобразует одну форму энергию действующего раздражителя в энергию нервного раздражения. Сенсорная система не должна исказить сигнала раздражителя.
  • Может носить пространственный характер
  • Временные преобразования
  • ограничение избыточности информации(включение тормозных элементов, которые затормаживают соседние рецепторы)
  • Выделение существенных признаков сигнала
  1. Кодирование информации - в форме нервных импульсов
  2. Детектирование сигналов, т. е. выделение признаков раздражителя, имеющего поведенческое значение
  3. Обеспечивают опознание образов
  4. Адаптируются к действию раздражителей
  5. Взаимодействие сенсорных систем, которые формируют схему окружающего мира и одновременно позволяют нам соотносить нас самих с этой схемой, для нашего приспособления. Все живые организмы не могут существовать без восприятия информации из окружающей среды. Чем точнее организм получает такую информацию, тем будут выше его шансы в борьбе за существование

Сенсорные системы способны реагировать на неадекватные раздражители. Если попробовать клеммы батарейки, то это вызывает вкусовое ощущение - кислое, это действие электрического тока. Такая реакция сенсорной системы на адекватные и неадекватные раздражители, поставили перед физиологией вопрос - на сколько мы можем доверять нашим органам чувств.

Иоган Мюллер сформулировал в 1840 году закон специфической энергии органов чувств.

Качество ощущений не зависит от характера раздражителя, а определяется всецело заложенной в чувствительной системе специфической энергией, которая освобождается при действии раздражителя.

При таком подходе мы можем знать только, что заложено в нас самих, а не что в окружающем мире. Последующие исследования показали, что возбуждения в любой сенсорной системе возникают на основе одного источника энергии - АТФ.

Ученик Мюллера Гельмгольц создал теорию символов , в соответствии с которой он рассматривал ощущения, как символы и предметы окружающего мира. Теория символов отрицала возможность познания окружающего мира.

Эти 2 направления были названы физиологическим идеализмом. Что же собой представляет ощущение? Ощущение это субъективный образ объективного мира. Ощущения - это образы внешнего мира. Они существуют в нас и порождаются действием вещей на наши органы чувств. У каждого из нас этот образ будет являться субъективным, т.е. он зависит от степени нашего развития, опыта и каждый человек воспринимает окружающие предметы и явления по своему. Они будут являться объективными, т.е. это значит, то они существуют, независимо от нашего сознания. Раз имеется субъективность восприятия, то как решить, кто же наиболее правильно воспринимает? Где же будет истина? Критерием истины является практическая деятельность. Идет последовательное познание. На каждом этапе получается новая информация. Ребенок пробует игрушки на вкус, разбирает их на детали. Именно на основе этого глубоко опыта мы приобретаем более глубокие знания о мире.

Классификация рецепторов.

  1. Первичные и вторичные. Первичные рецепторы представляют собой рецепторное окончание, которое образовано самим первым чувствительным нейроном(Тельце Пачини, тельце Мейснера, диск Меркеля, Тельце Руффини). Этот нейрон лежит в спинальном ганглии. Вторичные рецепторы воспринимают информацию. За счет специализированных нервных клеток, которые затем передают возбуждение на нервное волокно. Чувствительные клетки органов вкуса, слуха, равновесия.
  2. Дистантные и контактные. Часть рецепторов воспринимает возбуждение при непосредственном контакте - контактные , а другие могут воспринимать раздражение на некотором расстоянии - дистантные
  3. Экстерорецепторы, интерорецепторы. Экстерорецепторы - воспринимают раздражение из внешней среды - зрение, вкус и др. и они обеспечивают на приспособление к окружающей среде. Интерорецепторы - рецепторы внутренних органов. Они отражают состояние внутренних органов и внутренней среды организма.
  4. Соматические - поверхностные и глубокие. Поверхностные - кожи, слизистых оболочек. Глубокие - рецепторы мышц, сухожилий, суставов
  5. Висцеральные
  6. Рецепторы ЦНС
  7. Рецепторы специальных чувств - зрительные, слуховые, вестибулярные, обонятельные, вкусовые

По характеру восприятия информации

  1. Механорецепторы(кожа, мышцы, сухожилия, суставы, внутренние органы)
  2. Терморецепторы(кожа, гипоталамус)
  3. Хеморецепторы(дуга аорты, каротидный синус, продолговатый мозг, язык, нос, гипоталамус)
  4. Фоторецептоыр(глаз)
  5. Болевые(ноцицептивные) рецепторы(кожа, внутренние органы, слизистые оболочки)

Механизмы возбуждения рецепторов

В случае первичных рецепторов, действие раздражителя воспринимается окончанием чувствительного нейрона. Действующий раздражитель может вызывать гиперполяризацию или деполяризацию поверхностной мембраны рецепторы в основном за счет изменения натриевой проницаемости. Повышение проницаемости к ионам натрия приводит к деполяризации мембраны и на мембране рецептора возникает рецепторный потенциал. Он существует до тех пор, пока действует раздражитель.

Рецепторный потенциал не подчиняется закону «Все или ничего», его амплитуда зависит от силы раздражителя. У него нет периода рефрактерности. Это позволяет суммироваться рецепторным потенциалам при действии последующих раздражителей. Он распространяется мелено, с угасанием. Когда рецепторный потенциал достигает критической пороговой величины, он вызывает появление потенциала действия в ближайшем перехвате Ранвье. В перехвате Ранвье возникает потенциал действия, который подчиняется закону «Все или ничего» Этот потенциал будет распространяющимся.

Во вторичном рецепторе действие раздражителя воспринимается рецепторной клеткой. В этой клетке возникает рецепторный потенциал, следствием которого будет являться выделение медиатора из клетки в синапс, который действует на постсинаптическую мембрану чувствительного волокна и взаимодействие медиатора с рецепторами приводит к образованию другого, локального потенциала, который называют генераторным . Он по своим свойства идентичен рецепторным. Его амплитуда определяется количеством выделившегося медиатора. Медиаторы - ацетилхолин, глутамат.

Потенциалы действия возникают периодически, т.к. для них характерен период рефрактерности, когда мембрана утрачивает свойство возбудимости. Потенциалы действия возникают дискретно и рецептор в сенсорной системе работает, как аналогово-дискретный преобразователь. В рецепторах наблюдается приспособление - адаптация к действию раздражителей. Есть быстроадаптирующиеся, есть медленно адаптирующиеся. При адаптация снижается амплитуда рецепторного потенциала и число нервных импульсов, которые идут по чувствительному волокну. Рецепторы кодируют информацию. Оно возможно по частоте потенциалов, по группировки импульсов в отдельные залпы и интервалами между залпами. Кодирование возможно по числу активированных рецепторов в рецептивном поле.

Порог раздражения и порог развлечения.

Порог раздражения - минимальная сила раздражителя, которая вызывает ощущение.

Порог развлечении - минимальная сила изменения раздражителя, при которой возникает новое ощущение.

Волосковые клетки возбуждаются при смещении волосков на 10 в -11 метра - 0,1 амстрема.

В 1934 году Вебер сформулировал закон, устанавливающий зависимость между первоначальной силой раздражения и интенсивностью ощущения. Он показал, что изменение силы раздражителя, етсь величина постоянная

∆I / Io = К Io=50 ∆I=52,11 Io=100 ∆I=104,2

Фехнер определили, что ощущение прямопропорционально логарифму раздражения

S=a*logR+b S-ощущение R- раздражение

S=KI в Aстепени I - сила раздражения, К и А - константы

Для тактильных рецепторов S=9,4*I d 0,52

В сенсорных системах есть рецепторы саморегуляции чувствительности рецепторов.

Влияние симпатической системы - симпатическая система повышает чувствительность рецепторов к действию раздражителей. Это полезно в ситуации опасности. Повышает возбудимость рецепторов - ретикулярная формация. В составе чувствительных нервов обнаружены эфферентные волокна, которые могут изменять чувствительность рецепторов. Такие нервные волокна есть в слуховом органе.

Сенсорная система слуха

У большинства людей, живущих в современной остановке слух прогрессивно падает. Это происходит с возрастом. Этому способствует загрязнение звуками окружающей среды - автотранспорт, дискотека и др. Изменения в слуховом аппарате становятся не обратимыми. Уши человека содержат 2 чувствительных органа. Слух и равновесие. Звуковые волны распространяются в форме сжатий и разряжений в упругих средах и при этом распространение звуков в плотных средах идет лучше, чем в газах. Звук обладает 3мя важными свойствами - высотой или частотой, мощностью, или интенсивностью и тембром. Высота звука зависит от частоты колебаний и ухо человека воспринимает с частотой от 16 до 20000 Гц. С максимальной чувствительностью от 1000 о 4000 Гц.

Основная частота звука гортани мужчины - 100 Гц. Женщины - 150 Гц. При разговоре возникают дополнительные высокочастотные звуки в форме шипения, свиста, которые исчезают при разговоре по телефону и это делает речь понятнее.

Мощность звука определяется амплитудой колебаний. Мощность звука выражают в Дб. Мощность представляет собой логарифмическую зависимость. Шепотная речь - 30 Дб, нормальная речь - 60-70 Дб. Звук транспорта - 80, шум мотора самолета - 160. Мощность звука 120 Дб вызывает дискомфорт, а 140 приводят к болезненным ощущениям.

Тембр определяется вторичными колебаниями на звуковых волнах. Упорядоченные колебания - создают музыкальные звуки. А беспорядочные колебания вызывают просто шум. Одна и та же нот звучит по разному на разных инструментах из за разных дополнительных колебаний.

Ухо человека имеет 3 составные части - наружное, среднее и внутренне ухо. Наружное ухо представлено ушной раковиной, которое действует как звука улавливающая воронка. Ухо человека менее совершенно улавливает звуки, чем у кролика, лошади, которые умеют управлять своими ушами. В основе ушной раковины - хрящ, за исключением мочки уха. Хрящевая ткань придает эластичность и форму уху. Если хрящ повреждается, то он восстанавливается разрастаясь. Наружный слуховой проход S образной формы - внутрь, вперед и вниз, длина 2,5 см. Слуховой проход покрыт кожей с малой чувствительностью наружной части и высокой чувствительностью внутренней. В наружной части слухового прохода имеются волосы, которые предупреждают попадание в слуховой проход частиц. Железы слухового прохода вырабатывают желтую смазку, которая тоже предохраняет слуховой проход. В конце прохода - барабанная перепонка, которая состоит из фиброзных волокон, покрытых снаружи кожей, а внутри - слизистой. Барабанная перепонка отделяет среднее от наружного уха. Она колеблется с частотой воспринимаемого звука.

Среднее ухо представлено барабанной полостью, объем которой равен примерно 5-6 капель воды и барабанная полость заполнена водухом, выстлана слизистой оболочкой и содержит 3 слуховые косточки: молоточек, наковальня и стремечко.среднее ухо сообщается с носоглоткой с помощью евстахиевой трубы. В состоянии покоя просвет евстахиевой трубы закрыт, что выравнивает давление. Воспалительные процессы, приводящие к воспалению этой трубы вызывают ощущение заложенности. Среднее ухо отделено от внутреннего овальным и круглым отверстием. Колебания барабанной перепонки через систему рычагов передаются стремечком на овальное окно, причем наружное ухо осуществляет передачу звуков воздушным способом.

Имеется различие площади барабанной перепонки и овального окна(площадь барабанной перепонки равна 70мм в кв. а у овального окна- 3.2мм в кв). При передаче колебания с перепонки на овальное окно амплитуда уменьшается а сила колебаний увеличивается в 20-22 раза. В частотах до 3000 Гц передается 60% Е на внутреннее ухо. В среднем ухе имеется 2 мышцы изменяющие колебания: мышца напрягающая барабанную перепонку(прикрепляется к центральной части барабанной перепонки и к рукоятке молоточка)- при увеличении силы сокращения уменьшается амплитуда; мышца стремечка- ее сокращения ограничивают колебания стремечка. Эти мышцы предупреждают травмы барабанной перепонки. Кроме воздушной передачи звуков есть и костная передача, но это сила звука не в состоянии вызвать колебания костей черепа.

Внутрее ухо

внутреннее ухо представляет собой лабиринт, состоящий из взаимосвязанных трубочек и расширений. Во внутреннем ухе располагается орган равновесия. Лабиринт имеет костную основу, а внутри располагается перепончатый лабиринт и там находится эндолимфа. К слуховой части относится улитка, она образует 2.5 оборота вокруг центральной оси и делится на 3 лестницы: вестибулярная, барабанная и перепончатая. Вестибулярный канал начинается мембраной овального окна, а заканчивается круглым окном. На вершине улитки эти 2 канала сообщаются с помощью геликокрема. А оба этих канала заполнены перилимфой. В среднем перепончатом канале располагается звуковоспринимающий аппарат — кортиев орган. Основная мембрана построена из эластических волокон, которые начинаются у основания(0.04мм) и до вершины (0.5мм). К вершине плотность волокон уменьшается в 500 раз. На основной мембране располагается кортиев орган. Он построен из 20-25 тысяч специальных волосковых клеток, расположенных на поддерживающих клетках. Волосковые клетки лежат в 3-4 ряда(наружный ряд) и в один ряд(внутренний). На вершине волосковых клеток имеются стереоцили или киноцили- самые большие стереоцили. К волосковым клеткам подходят чувствительные волокна 8 пары ЧМН от спирального ганглия. При этом 90% выделенных чувствительных волокон оказываются на внутренних волосковых клетках. На одну внутреннюю волосковую клетку конвергирует до 10 волокон. А в составе нервных волокон есть и эфферентные(оливо-улиточный пучок). Они образуют тормозные синапсы на чувствительных волокнах от спирального ганглия и иннервирует наружные волосковые клетки. Раздражение кортиевого органа связано с передачей колебаний косточек на овальное окно. Низкочастотные колебания распространяются от овального окна до вершины улитки (вовлекается вся основная мембрана).при низких частотах наблюдается возбуждение волосковых клеток лежащих на вершине улитки. Изучением распространения волн в улитке занимался Бекаши. Он обнаружил, что с увеличением частоты вовлекается меньший по протяженности столб жидкости. Высокочастотные звуки не могут вовлечь весь столб жидкости, поэтому чем больше частота, тем меньше колеблется перилимфа. Колебания основной мембраны могут возникать при передаче звуков через перепончатый канал. При колебании основной мембраны происходит смещение волосковых клеток вверх, что вызывает деполяризацию, а если вниз- волоски отклоняются внутрь, что приводит к гиперполяризации клеток. При деполяризации волосковых клеток открываются Са-каналы и Са способствует потенциалу действия, который несет информацию о звуке. Наружные слуховые клетки имеют эфферентную иннервацию и передача возбуждения идет с помощью Асh на наружных волосковых клетках. Эти клетки могут изменять свою длину: они укорачиваются при гиперполяризации и удлиняются при поляризации. Изменение длины наружных волосковых клеток влияет на колебательный процесс, что улучшает восприятие звука внутренними волосковыми клетками. Изменение потенциала волосковых клеток связано с ионным составом эндо- и перилимфы. Перилимфа напоминает ликвор, а эндолимфа имеет высокую концентрацию К(150 ммоль). Поэтому эндолимфа приобретает положительный заряд к перилифме.(+80мВ). Волосковые клетки содержат много К; они имеют мембранный потенциал и отрицательно заряженный внутри и положительный снаружи(МП=-70мВ), а разница потенциалов дает возможность проникновения К из эндолимфы внутрь волосковых клеток. Изменение положения одного волоска открывает 200-300 К- каналов и возникает деполяризация. Закрытие сопровождается гиперполяризацией. В кортиевом органе идет частотное кодирование за счет возбуждения разных участков основной мембраны. При этом было показано что звуки низкой частоты могут кодироваться числом нервных импульсов таким же количеством как и звуком. Такое кодирование возможно при восприятии звука до 500Гц. Кодирование информации звука достигается увеличением числа залпов волокон на более интенсивный звук и за счет числа активирующихся нервных волокон. Чувствительные волокна спирального ганглия оканичиваются в дорсальных и вентральных ядрах улитки продолговатого мозга. От этих ядер сигнал поступает в ядра оливы как своей так и противоположной стороны. От ее нейронов идут восходящие пути в составе латеральной петли которые подходят к нижним бугоркам четверохолмия и медиальному коленчатому телу зрительного бугра. От последнего сигнал идет в верхнюю височную извилину(извилина Гешля). Это соответствует 41 и 42 полям(первичная зона) и 22 поле(вторичная зона). В ЦНС существует топотоническая организация нейронов, то есть воспринимаются звуки с разной частотой и разной интенсивностью. Корковый центр имеет значение для восприятия, последовательности звука и пространственной локализации. При поражении 22 поля нарушается определение слов (рецептивная оппозия).

Ядра верхней оливы делят на медиальные и латеральные части. А латеральные ядра определяют неодинаковую интенсивность звуков, поступающих к обеим ушам. Медиальное ядро верхней оливы улавливает временные различия поступления звуковых сигналов. Обнаружено что сигналы от обоих ушей поступают в различные дендритные системы одного и того же воспринимающего нейрона. Нарушение слухового восприятия может проявляться звоном в ушах при раздражении внутреннего уха или слухового нерва и двумя типами глухоты: проводниковой и нервной. Первая связана с поражениями наружного и среднего уха(серная пробка).Вторая связана с дефектами внутреннего уха и поражениями слухового нерва. У пожилых людей утрачивается способность воспринимать высокочастотные голоса. За счет двух ушей можно определять пространственную локализацию звука. Это оказывается возможным, если звук отклоняется от средины положения на 3 градуса. При восприятии звуков возможно развитие адаптации за счет ретикулярной формации и эфферентных волокон(воздействием на наружные волосковые клетки.

Зрительная система.

Зрение - многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза, затем идёт возбуждение фоторецепторов, передача и преобразование в нейронных слоях зрительной системы и заканчивается принятием высшими корковыми отделами решения о зрительном образе.

Строение и функции оптического аппарата глаза. Глаз имеет шарообразную форму, что важно для поворота глаза. Свет проходит через несколько прозрачных сред - роговицу, хрусталик и стекловидное тело, имеющие определённые преломляющие силы, выражающихся в диоптриях. Диоптрия равна преломляющей силе линзы с фокусным расстоянием 100 см. Преломляющая сила глаза при рассматривании далёких предметов - 59D, близких - 70,5D. На сетчатке образуется уменьшенное перевёрнутое изображение.

Аккомодация - приспособление глаза к ясному видению предметов на разных расстояниях. Хрусталик играет главную роль в аккомодации. При рассмотрении близких предметов ресничные мышцы сокращаются, циннова связка расслабляется, хрусталик становится более выпуклым в силу его эластичности. При рассмотрении дальних - мышцы расслаблены, связки натянуты и растягивают хрусталик, делая его более уплощённым. Ресничные мышцы иннервируются парасимпатическими волокнами глазодвигательного нерва. В норме дальняя точка ясного видения - в бесконечности, ближайшая - 10 см от глаза. Хрусталик с возрастом теряет эластичность, поэтому ближайшая точка ясного видения отодвигается и развивается старческая дальнозоркость.

Аномалии рефракции глаза.

Близорукость (миопия). Если продольная ось глаза слишком длинная или увеличивается преломляющая сила хрусталика, то изображение фокусируется перед сетчаткой. Человек плохо видит вдаль. Назначаются очки с вогнутыми стёклами.

Дальнозоркость (гиперметропия). Развивается при уменьшении преломляющих сред глаза или при укорочении продольной оси глаза. В результате изображение фокусируется за сетчаткой и чел плохо видит близкорасположенные предметы. Назначаются очки с выпуклыми линзами.

Астигматизм - неодинаковое преломление лучей в разных направлениях, обусловленное не строго сферической поверхностью роговой оболочки. Компенсируются очками с поверхностью, приближающейся к цилиндрической.

Зрачок и зрачковый рефлекс. Зрачок - отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. Зрачок повышает чёткость изображения на сетчатке, увеличивая глубину резкости глаза и за счёт устранения сферической аберрации. Если прикрыть глаз от света, а затем открыть его, то зрачок быстро сужается - зрачковый рефлекс. На ярком свету размер - 1,8 мм, при среднем - 2,4, в темноте - 7,5. Увеличение приводит к ухудшению качества изображения, но повышает чувствительность. Рефлекс имеет адаптационное значение. Расширяет зрачок симпатика, сужает - парасимпатика. У здоровых размеры обоих зрачков одинаковы.

Структура и функции сетчатки. Сетчатка - внутренняя светочувствительная оболочка глаза. Слои:

Пигментный - ряд отростчатых эпителиальных клеток чёрного цвета. Функции: экранирование (препятствует рассеиванию и отражению света, повышая чёткость), регенерация зрительного пигмента, фагоцитоз обломков палочек и колбочек, питание фоторецепторов. Контакт между рецепторами и пигментным слоем слабая, поэтому именно здесь происходит отслойка сетчатки.

Фоторецепторы. Колбы отвечают за цветовое зрение, их - 6-7 млн. Палки за сумеречное, их - 110-123 млн. Они расположены неравномерно. В центральной ямке - только колбы, здесь - наибольшая острота зрения. Палки чувствительнее колб.

Строение фоторецептора. Состоит из наружной воспринимающей части - наружного сегмента, с зрительным пигментом; соединительной ножки; ядерной части с пресинаптическим окончанием. Наружная часть состоит из дисков - двумембранная структура. Наружные сегменты постоянно обновляются. Пресинаптическое окончание содержит глутамат.

Зрительные пигменты. В палках - родопсин с поглощением в области 500 нм. В колбах - йодопсин с поглощениями 420 нм (синий), 531 нм (зелёный), 558 (красный). Молекула состоит из белка опсина и хромофорной части - ретиналя. Только цис-изомер воспринимает свет.

Физиология фоторецепции. При поглощении кванта света цис-ретиналь превращается в транс-ретиналь. Это вызывает пространственные изменения в белковой части пигмента. Пигмент обесцвечивается и переходит в метародопсин II, способный взаимодействовать с примембранным белком трансдуцином. Трансдуцин активируется и связывается с ГТФ, активируя фосфодиэстеразу. ФДЭ разрушает цГМФ. В результате концентрация цГМФ падает, что приводит к закрытию ионных каналов, при этом понижается концентрация натрия, приводя к гиперполяризации и возникновению рецепторного потенциала, распостраняющимся по клетке до пресинаптического окончания и вызывая уменьшение выделения глутамата.

Восстановление исходного темнового состояния рецептора. При утрате метародопсином способности взаимодействовать с трандуцином и активируется гуанилатциклаза, синтезирующая цГМФ. Гуанилатциклаза активируется падением концентрации кальция, выбрасываемого из клетки белком-обменником. В результате концентрация цГМФ повышается и она вновь связывается с ионным каналом, открывая его. При открытии в клетку идут натрий и кальций, деполяризуя мембрану рецептора, переводя его в темновое состояние, что вновь ускоряет выход медиатора.

Нейроны сетчатки.

Фоторецепторы синаптически связаны с биполярными нейронами. При действии света на медиатор уменьшается выделение медиатора, что приводит к гиперполяризации биполярного нейрона. От биполярного сигнал передаётся на ганглиозный. Импульсы от многих фоторецепторов конвергируют к одному ганглиозному нейрону. Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, сигналы которых меняют синаптическую передачу межде рецепторами и биполярными (горизонтальные) и между биполярными и ганглиозными (амакриновые). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками. В системе есть и эфферентные волокна, действующие на синапсы между биполярными и ганглиозными клетками, регулируя возбуждение меж ними.

Нервные пути.

1ый нейрон - биполярный.

2ой - ганглиозный. Их отростки идут в составе зрительного нерва, делают частичный перекрёст (необходимо для обеспечения каждого полушария информацией от каждого глаза) и идут в мозг в составе зрительного тракта, попадая в латеральное коленчатое тело таламуса (3ий нейрон). Из таламуса - в проекционную зону коры 17ое поле. Здесь 4ый нейрон.

Зрительные функции.

Абсолютная чувствительность. Для возникновения зрительного ощущения необходимо, чтобы световой раздражитель имел минимальную (пороговую) энергию. Палка может быть возбуждена одним квантом света. Палки и колбы мало различаются по возбудимости, но число рецепторов, посылающих сигналы на одну ганглиозную клетку различно в центре и на периферии.

Зрительная алаптация.

Приспособление зрительной сенсорной системы к условиям яркрй освещённости - световая адаптация. Обратное явление - темновая адаптация. Повышение чувствительности в темноте - поэтапное, обусловленное темновым восстановлением зрительных пигментов. Сначала восстанавливается йодопсин колб. Это мало влияет на чувствительность. Затем восстанавливается родопсин палок, что очень сильно повышает чувствительность. Для адаптации так же важны процессы изменения связей между элементами сетчатки: ослабление горизонтального торможения, приводящее к увеличению числа клеток, посылающее сигналы на ганглиозный нейрон. Влияние ЦНС тоже играет роль. При освещении одного глаза понижает чувствительность другого.

Дифференциальная зрительная чувствительность. По закону Вебера человек различит разницу в освещении, если оно будет сильнее на 1-1,5%.

Яркостной контраст происходит из-за взаимного латерального торможения зрительных нейронов. Серая полоска на светлом фоне кажется темнее серой на тёмном, так как клетки возбуждённые светлым фоном тормозят клетки, возбуждённые серой полоской.

Слепящая яркость света . Слишком яркий свет вызывает неприятное ощущение ослепления. Верхняя граница слепящей яркости зависит от адаптации глаза. Чем дольше была темновая адаптация, тем меньшая яркость вызывает ослепление.

Инерция зрения. Зрительное ощущение появляется и пропадает не сразу. От раздражения до восприятия проходит 0,03-0,1 с. Быстро следующие одно за другим раздражения сливаются в одно ощущение. Минимальная частота следования световых стимулов, при которой происходит слияние отдельных ощущений, называется критической частотой слития мельканий. На этом основано кино. Ощущения, продолжающиеся после прекращения раздражения - последовательные образы (образ лампы в темноте после её выключения).

Цветовое зрение.

Весь видимый спектр от фиолетового (400нм) до красного (700нм).

Теории. Трёхкомпонентная теория Гельмгольца. Цветовое ощущение обеспечиваемое тремя типами колб, чувствительных к одной части спектра (красной, зелёной или синей).

Теория Геринга. В колбах есть вещества чувствительные к бело-чёрному, красно-зелёному и жёлто-синему излучениям.

Последовательные цветовые образы. Если смотреть на окрашенный предмет, а затем на белый фон, то фон приобретёт дополнительный цвет. Причина - цветовая адаптация.

Цветовая слепота. Дальтонизм - расстройство, при котором невозможно различие цветов. При протанопии не различается красный цвет. При дейтеранопии - зелёный. При тританопии - синий. Диагностируется полихроматическими таблицами.

Полная потеря цветовосприятия - ахромазия, при которой всё видится в оттенках серого.

Восприятие пространства.

Острота зрения - максимальная способность глаза различать отдельные детали объектов. Нормальный глаз различает две точки, видимые под углом 1минута. Максимальная острота в области жёлтого пятна. Определяется специальными таблицами.

Зрительная сенсорная система. Орган слуха и равновесия. Анализаторы обоняния и вкуса. Кожная сенсорная система.

Организм человека как единое целое - единство функций и форм. Регуляция жизнеобеспечения организма, механизмы поддержания гомеостаза.

Тема для самостоятельного изучения: Строение глаза. Строение уха. Строение языка и расположение зон чувствительности на нем. Строение носа. Тактильная чувствительность.

Органы чувств (анализаторы)

Человек воспринимает окружающий его мир посредством органов чувств (анализаторов): осязания, зрения, слуха, вкуса и обоняния. В каждом из них имеются специфические рецепторы, воспринимающие определенный вид раздражения.

Анализатор (орган чувств) - состоит из 3 отделов: периферического, проводникового и центрального.Периферическое (воспринимающее) звено анализатора - рецепторы. В них происходит преобразование сигналов внешнего мира (свет, звук, температура, запах и др.) в нервные импульсы. В зависимости от способа взаимодействия рецептора с раздражителем различают контактные (рецепторы кожи, вкусовые) и дистантные (зрительные, слуховые, обонятельные) рецепторы.Проводниковое звено анализатора - нервные волокна. Они проводят возбуждение от рецептора до коры больших полушарий.Центральное (обрабатывающее) звено анализатора - участок коры больших полушарий. Нарушение функций одной из частей вызывает нарушение функций всего анализатора.

Различают зрительный, слуховой, обонятельный, вкусовой и кожный анализаторы, а также двигательный анализатор и вестибулярный анализатор. Каждый рецептор приспособлен к своему определенному раздражителю и не воспринимает другие. Рецепторы способны приспосабливаться к силе раздражителя, посредством снижения или повышения чувствительности. Эта способность называется адаптацией.

Зрительный анализатор. Рецепторы возбуждаются от квантов света. Органом зрения является глаз. Он состоит из глазного яблока и вспомогательного аппарата.Вспомогательный аппарат представлен веками, ресницами, слезными железами и мышцами глазного яблока.Веки образованы складками кожи, выстланными изнутри слизистой оболочкой (конъюнктивой).Ресницы защищают глаз от частичек пыли.Слезные железы расположены в наружном верхнем углу глаза и продуцируют слезы, которые омывают переднюю часть глазного яблока и через носослезный канал попадают в полость носа.Мышцы глазного яблока приводят его в движение и ориентируют в сторону рассматриваемого предмета.

Глазное яблоко расположено в глазнице и имеет шаровидную форму. Оно содержит три оболочки:фиброзную (наружную),сосудистую (среднюю) и сетчатую (внутреннюю), а также внутреннее ядро, состоящее из хрусталика, стекловидного тела и водянистой влаги передней и задней камер глаза.

Задний отдел фиброзной оболочки - плотная непрозрачная соединительнотканная белочная оболочка (склера) , передний - прозрачная выпуклая роговица. Сосудистая оболочка богата сосудами и пигментами. В ней выделяют собственно сосудистую оболочку (задняя часть),ресничное тело и радужную оболочку. Основную массу ресничного тела составляет ресничная мышца, изменяющая своим сокращением кривизну хрусталика. Радужная оболочка (радужка ) имеет вид кольца, окраска которого зависит от количества и характера пигмента, в ней содержащегося. В центре радужки находится отверстие -зрачок. Он может сужаться и расширяться благодаря сокращению мышц, расположенных в радужной оболочке.

В сетчатке различают две части: заднюю - зрительную, воспринимающую световые раздражения, и переднюю - слепую, не содержащую светочувствительных элементов. Зрительная часть сетчатки содержит светочувствительные рецепторы. Имеется два вида зрительных рецепторов: палочки (130 млн) и колбочки (7 млн).Палочки возбуждаются слабым сумеречным светом и не способны различать цвет.Колбочки возбуждаются ярким светом и способны различать цвет. В палочках имеется красный пигмент - родопсин , а в колбочках - иодопсин . Прямо напротив зрачка имеется желтое пятно - место наилучшего видения, в состав которого входят только колбочки. Поэтому наиболее четко мы видим предметы, когда изображение падает на желтое пятно. По направлению к периферии сетчатки число колбочек уменьшается, количество палочек нарастает. По периферии располагаются только палочки. Место на сетчатке, откуда выходит зрительный нерв, лишено рецепторов и называется слепое пятно .

Большая часть полости глазного яблока заполнена прозрачной студенистой массой, образующей стекловидное тело, которое поддерживает форму глазного яблока.Хрусталик представляет собой двояковыпуклую линзу. Его задняя часть прилегает к стекловидному телу, а передняя - обращена к радужной оболочке. При сокращении мышцы ресничного тела, связанной с хрусталиком, меняется его кривизна и лучи света преломляются так, чтобы изображение объекта зрения попало на желтое пятно сетчатки. Способность хрусталика изменять свою кривизну в зависимости от удаленности предметов называют аккомодацией. При нарушении аккомодации могут возникнуть близорукость (изображение фокусируется перед сетчаткой) и дальнозоркость (изображение фокусируется за сетчаткой). При близорукости человек видит нечетко дальние предмета, при дальнозоркости - ближние. С возрастом происходит уплотнение хрусталика, ухудшение аккомодации, развивается дальнозоркость.

На сетчатке изображение получается перевернутым и уменьшенным. Благодаря переработке в коре информации, получаемой от сетчатки и рецепторов других органов чувств, мы воспринимаем предметы в их естественном положении.

Слуховой анализатор. Рецепторы возбуждаются от звуковых колебаний воздуха. Органом слуха является ухо. Оно состоит из наружного, среднего и внутреннего уха.Наружное ухо состоит из ушной раковины и слухового прохода.Ушные раковины служат для улавливания и определения направления звука.Наружный слуховой проход начинается наружным слуховым отверстием и заканчивается слепо барабанной перепонкой , которая отделяет наружное ухо от среднего. Он выстлан кожей и имеет железы, выделяющие ушную серу.

Среднее ухо состоит из барабанной полости, слуховых косточек и слуховой (евстахиевой) трубы.Барабанная полость заполнена воздухом и соединена с носоглоткой узким проходом -слуховой трубой , через которое поддерживается одинаковое давление в среднем ухе и окружающем человека пространстве. Слуховые косточки -молоточек, наковальня и стремечко - соединены между собой подвижно. По ним колебания от барабанной перепонки передаются во внутреннее ухо.

Внутреннее ухо состоит из костного лабиринта и расположенного в нем перепончатого лабиринта.Костный лабиринт содержит три отдела: преддверие, улитку и полукружные каналы. Улитка относится к органу слуха, преддверие и полукружные каналы - к органу равновесия (вестибулярному аппарату).Улитка - костный канал, закрученный в виде спирали. Ее полость разделена тонкой перепончатой перегородкой - основной мембраной, на которой располагаются рецепторные клетки. Вибрация жидкости улитки раздражает слуховые рецепторы.

Ухо человека воспринимает звуки с частотой от 16 до 20 000 Гц. Звуковые волны через наружный слуховой проход достигают барабанной перепонки и вызывают ее колебания. Эти колебания усиливаются (почти в 50 раз) системой слуховых косточек и передаются жидкости в улитке, где воспринимаются слуховыми рецепторами. Нервный импульс передается от слуховых рецепторов через слуховой нерв в слуховую зону коры больших полушарий.

Вестибулярный анализатор. Вестибулярный аппарат расположен во внутреннем ухе и представлен преддверием и полукружными каналами.Преддверие состоит из двух мешочков.Три полукружных канала расположены в трех взаимно противоположных направлениях соответствующих трем измерениям пространства. Внутри мешочков и каналов имеются рецепторы, которые способны воспринимать давление жидкости. Полукружные каналы воспринимают информацию о положении тела в пространстве. Мешочки воспринимают замедление и ускорение, изменение силы тяжести.

Возбуждение рецепторов вестибулярного аппарата сопровождается рядом рефлекторных реакций: изменением тонуса мышц, сокращением мышц, способствующих выпрямлению тела и сохранению позы. Импульсы от рецепторов вестибулярного аппарата по вестибулярному нерву поступают в центральную нервную систему. Вестибулярный анализатор функционально связан с мозжечком, который регулирует его деятельность.

Вкусовой анализатор. Вкусовые рецепторы раздражаются химическими веществами, растворенными в воде. Органом восприятия являются вкусовые почки - микроскопические образования в слизистой оболочке полости рта (на языке, мягком небе, задней стенки глотки и надгортаннике). Рецепторы, специфичные к восприятию сладкого, расположены на кончике языка, горького - на корне, кислого и соленого - по бокам языка. С помощью вкусовых рецепторов происходит опробование пищи, определяется ее пригодность или непригодность для организма, при их раздражении происходит выделение слюны и желудочного и поджелудочного соков. Нервный импульс передается от вкусовых почек через вкусовой нерв во вкусовую зону коры больших полушарий.

Обонятельный анализатор. Рецепторы обоняния раздражаются газообразными химическими веществами. Органом восприятия являются воспринимающие клетки в слизистой оболочке носа. Нервный импульс передается от обонятельных рецепторов через обонятельный нерв в обонятельную зону коры больших полушарий.

Кожный анализатор. Кожа содержит рецепторы , воспринимающие тактильные (прикосновение, давление), температурные (тепловые и холодовые) и болевые раздражения. Органом восприятия являются воспринимающие клетки в слизистых оболочках и коже. Нервный импульс передается от осязательных рецепторов через нервы в кору больших полушарий. С помощью осязательных рецепторов человек получает представление о форме, плотности, температуре тел. Тактильных рецепторов больше всего на кончиках пальцев, ладонях, подошвах ног, языке.

Двигательный анализатор. Рецепторы возбуждаются при сокращении и расслаблении мышечных волокон. Органом восприятия являются воспринимающие клетки в мышцах, связках, на суставных поверхностях костей.

Сенсорная организация личности - это уровень развития отдельных систем чувствительности и возможность их объединения. Сенсорные системы человека - это его органы чувств, как бы приемники его ощущений, в которых происходит преобразование ощущения в восприятие.

Главная особенность сенсорной организации человека - это то, что она складывается в результате всего его жизненного пути . Чувствительность человека дана ему при рождении, но развитие ее зависит от обстоятельств, желания и усилий самого человека.Ощущение – низшийпсихический процесс отражения отдельных свойств предметов или явлений внутреннего и внешнего мира при непосредственном контакте.

Очевидно, что в сенсорных системах человека происходит первичный познавательный процесс и уже на его основе возникают более сложные по своей структуре познавательные процессы: восприятия, представления, память, мышление. Как бы прост ни был первичный познавательный процесс, но именно он является основой психической деятельности, лишь через "входы" сенсорных систем проникает в наше сознание окружающий мир. Физиологическим механизмом ощущений является деятельность нервных аппаратов - анализаторов , состоящих из 3 частей:

· рецептор - воспринимающая часть анализатора (осуществляет преобразование внешней энергии в нервный процесс)

· центральный отдел анализатора - афферентные или чувствительные нервы

· корковые отделы анализатора , в которых происходит переработка нервных импульсов.

Каждый вид ощущения характеризуется не только специфичностью, но и имеет общие свойства с другими видами: качество, интенсивность, длительность, пространственная локализация. Минимальная величина раздражителя, при которой появляется ощущение - абсолютный порог ощущения . Величина этого порога характеризует абсолютную чувствительность , которая численно равна величине, обратно пропорциональной абсолютному порогу ощущений. А чувствительность к изменению раздражителя называется относительной или разностной чувствительностью . Минимальное различие между двумя раздражителями, которое вызывает чуть заметное различие ощущений, называется разностным порогом .

Классификация ощущений

Широко распространенной является классификация по модальности ощущений (специфичности органов чувств) – это разделение ощущений на зрительные, слуховые, вестибулярные, осязательные, обонятельные, вкусовые, двигательные, висцеральные. Существуют интермодальные ощущения – синестезии. Основная и самая значительная группа ощущений доводит до человека информацию из внешнего мира, и связывает его с внешней средой. Это экстерорецептивные - контактные и дистантные ощущения, они возникают при наличии или отсутствии непосредственного контакта рецептора с раздражителем. Зрение, слух, обоняние относятся к дистантным ощущениям. Эти виды ощущений обеспечивают ориентировку в ближайшей среде. Вкусовые, болевые, тактильные ощущения - контактные. По расположению рецепторов на поверхности тела, в мышцах и сухожилиях или внутри организма различают соответственно:

– экстероцептивные ощущения (возникающие при воздействии внешних раздражителей на рецепторы, расположенные на поверхности тела, снаружи) зрительная, слуховая, тактильная;

– проприоцептивные (кинестетические) ощущения (отражающие движение и относительное положение частей тела при помощи рецепторов, расположенных в мышцах, сухожилиях, суставных сумках);

– интероцептивные (органические) ощущения – возникающие при отражении обменных процессов в организме с помощью специализированных рецепторов, голод и жажда.

Для того, чтобы ощущение возникло, необходимо, чтобы стимул достиг определённой величины, которая называется порогом восприятия .
Относительный порог - величина, которую должен достичь стимул, чтобы мы почувствовали это изменение.
Абсолютные пороги – это верхние и нижние границы разрешающей способности органа. Методы исследования порогов:

Метод границ

заключается в постепенном увеличении раздражителя с допороговых, затем обратная процедура

Метод установки

испытуемый самостоятельно различает величину раздражителя

Все сенсорные системы построены по единому принципу и состоят из трех отделов: периферического, проводникового и центрального.

Периферический отдел представлен органом чувства. В его состав входят рецепторы - окончания чувствительных нервных волокон или специализированные клетки. Они обеспечивают преобразование энергии раздражителя в нервные импульсы.

Рецепторы различаются по месту расположения (внутренние и наружные), строению и особенностям восприятия энергии раздражителя (одни воспринимают механические, другие - химические, третьи - световые стимулы).

Помимо рецепторов органы чувств включают в себя вспомогательные структуры, выполняющие защитную, опорную и некоторые другие функции. Например, вспомогательный аппарат глаза представлен глазодвигательными мышцами, веками и слезными железами.

Проводниковый отдел сенсорной системы состоит из чувствительных нервных волокон, образующих в большинстве случаев специализированный нерв. Он доставляет информацию от рецепторов в центральный отдел сенсорной системы.

И наконец, центральный отдел расположен в коре больших полушарий головного мозга. Здесь находятся высшие сенсорные центры, обеспечивающие окончательный анализ поступившей информации и формирование соответствующих ощущений.

Таким образом, сенсорная система - это совокупность специализированных структур нервной системы, которые осуществляют процессы приема и обработки информации из внешней и внутренней среды, а также формируют ощущения.

Различают зрительную, слуховую, вестибулярную, вкусовую, обонятельную и другие сенсорные системы.

Зрительная сенсорная система

Ее периферическая часть представлена органом зрения (глазом), проводниковая - зрительным нервом, а центральная - зрительной зоной, расположенной в затылочной доле коры больших полушарий.

Световые лучи от рассматриваемых предметов действуют на светочувствительные клетки глаза и вызывают в них возбуждение. Оно передается по зрительному нерву в кору больших полушарий. Здесь в затылочных долях возникают зрительные ощущения формы, окраски, величины, расположения и направления движения предметов.

Слуховая сенсорная система играет очень важную роль. Ее деятельность лежит в основе обучения речи. Она представлена ухом - органом слуха (периферический отдел), слуховым нервом (проводниковый отдел) и слуховой зоной, расположенной в височной доле коры больших полушарий (центральный отдел).

Вестибулярная сенсорная система обеспечивает пространственную ориентацию человека. С ее помощью мы получаем информацию об ускорениях и замедлениях, возникающих при движении. Она представлена органом равновесия, вестибулярным нервом и соответствующей зоной в височных долях коры больших полушарий.

Ощущение положения тела в пространстве особенно необходимо летчикам, аквалангистам, акробатам и др. При повреждении органа равновесия человек не может уверенно стоять и ходить.

Вкусовая сенсорная система осуществляет анализ действующих на орган вкуса (язык) растворимых химических раздражителей. С ее помощью определяется пригодность пищи.

Наш язык покрыт слизистой оболочкой, складки которой содержат вкусовые почки (рис.). Внутри каждой почки расположены рецепторные клетки с микроворсинками.

Рецепторы связаны с нервными волокнами, которые входят в мозг в составе черепных нервов. По ним импульсы достигают задней части центральной извилины коры головного мозга, где и формируются вкусовые ощущения.

Различают четыре основных вкусовых ощущения: горькое, сладкое, кислое и соленое. Кончик языка проявляет наиболее высокую чувствительность к сладкому, края - соленому и кислому, а корень - к горьким веществам.

Обонятельная сенсорная система осуществляет восприятие и анализ химических раздражителей, находящихся во внешней среде.

Периферический отдел обонятельной сенсорной системы представлен эпителием носовой полости, в котором имеются рецепторные клетки с микроворсинками. Аксоны этих чувствительных клеток образуют обонятельный нерв, который направляется в полость черепа (рис.).

По нему возбуждение проводится к обонятельным центрам коры больших полушарий, где и осуществляется распознавание запахов.

Существенную роль в познании внешнего мира у человека играет осязание. Оно обеспечивает способность воспринимать и различать форму, размер и характер поверхности предмета. Рецепторы, участвующие в процессах восприятия раздражителей, действующих на кожу, весьма разнообразны. Они реагируют не только на прикосновения, но также на тепло, холод и болевые воздействия. Больше всего тактильных рецепторов на губах и ладонной поверхности пальцев рук, меньше всего - на туловище. Возбуждение от рецепторов по чувствительным нейронам передается в зону кожной чувствительности коры больших полушарий, где возникают соответствующие ощущения.

Для обеспечения нормальной жизнедеятельности организма* необходимы постоянство его внутренней среды, связь с непре­рывно меняющейся окружающей внешней средой и приспособ­ление к ней. Информацию о состоянии внешней и внутренней сред организм получает с помощью , которые анализируют (различают) эту информацию, обеспечивают фор­мирование ощущений и представлений, а также специфических форм приспособительного .

Представление о сенсорных системах было сформулировано И. П. Павловым в учении об анализаторах в 1909 г. при исследова­нии им . Анализатор - совокуп­ность центральных и периферических образований, воспринима­ющих и анализирующих изменения внешней и внутренней сред организма. Понятие «сенсорная система», появившееся позже, за­менило понятие «анализатор», включив механизмы регуляции раз­личных его отделов с помощью прямых и обратных связей. Наряду с этим по-прежнему бытует понятие «орган чувств» как перифе­рическое образование, воспринимающее и частично анализиру­ющее факторы окружающей среды. Главной частью являются , снабженные вспомогательными структура­ми, обеспечивающими оптимальное восприятие.

При непосредственном воздействии различных фак­торов окружающей среды с участием в организ­ме возникают ощущения, которые представляют собой отражения свойств предметов объективного мира. Особенностью ощущений является их модальность, т.е. совокупность ощущений, обеспечива­емых какой-либо одной сенсорной системой. Внутри каждой модаль­ности в соответствии с видом (качеством) сенсорного можно выделить разные качества, или валентности. Модальностя­ми являются, например, зрение, слух, вкус. Качественные типы модальности (валентности) для зрения - это различные цвета, для вкуса - ощущение кислого, сладкого, соленого, горького.

Деятельность сенсорных систем обычно связывают с возник-‘ новением пяти чувств - зрения, слуха, вкуса, обоняния и осяза­ния, с помощью которых осуществляется связь организма с внеш­ней средой. Однако в реальной действительности их значительно больше.

В основу классификации сенсорных систем могут быть положе­ны различные признаки: природа действующего раздражителя, характер возникающих ощущений, уровень чувствительности ре­цепторов, скорость адаптации и многое другое.

Наиболее существенной является классификация сенсорных систем, в основе которой лежит их назначение (роль). В связи с этим выделяют несколько видов сенсорных систем.

Внешние сенсорные системы воспринимают и анализируют из­менения внешней среды. Сюда следует включить зрительную, слу­ховую, обонятельную, вкусовую, тактильную и температурную сенсорные системы, которых воспринимается субъек­тивно в виде ощущений.

Внутренние (висцеральные) сенсорные системы воспринимают и анализируют изменения внутренней среды организма, показа­телей гомеостазиса. Колебания показателей внутренней среды в пределах физиологической нормы у здорового человека обычно не воспринимается субъективно в виде ощущений. Так, мы не можем субъективно определить величину артериального давления, особенно если оно нормальное, состояние сфинктеров и пр. Од­нако информация, идущая из внутренней среды, играет важную роль в регуляции функций внутренних органов, обеспечивая при­способление организма к различным условиям его жизнедеятель­ности. Значение этих сенсорных систем изучается в рамках курса физиологии (приспособительная регуляция деятельности внутрен­них органов). Но в то же время изменение некоторых констант внутренней среды организма может восприниматься субъективно в виде ощущений (жажда, голод, половое влечение), формирую­щихся на основе биологических . Для удовлетворе­ния этих потребностей включаются поведенческие реакции. На­пример, при возникновении чувства жажды вследствие возбужде­ния осмо- или волюморецепторов формируется , на­правленное на поиск и прием воды.

Сенсорные системы положения тела воспринимают и анализи­руют изменения положения тела в пространстве и частей тела друг относительно друга. К ним следует отнести вестибулярную и дви­гательную (кинестетическую) сенсорные системы. Поскольку мы оцениваем положение нашего тела или его частей друг относи­тельно друга, эта импульсация доходит до нашего сознания. Об этом свидетельствует, в частности, опыт Д. Маклоски, который ученый поставил на самом себе. Первичные афферентные волок­на от мышечных рецепторов раздражались пороговыми электри­ческими . Увеличение частоты импульсации этих не­рвных волокон вызывало у испытуемого субъективные ощущения изменения положения соответствующей конечности, хотя ее по­ложение в действительности не изменялось.

Ноцицептивную сенсорную систему следует выделить отдельно в связи с ее особым значением для организма - она несет информацию о повреждающих действиях. Болевые ощущения могут возникать при раздражении как экстеро-, так и интерорецепторов.

Взаимодействие сенсорных систем осуществляется на спинальном, ретикулярном, таламическом и корковом уровне. Особенно широка интеграция сигналов в . В коре мозга происходит интеграция сигналов высшего порядка. В результате множественных связей с другими сенсорными и неспецифическими системами многие корковые приобретают способность отвечать на сложные комбинации сигналов разной модальности. В особенности это свойственно нервным клеткам ассоциативных областей коры больших полушарий, которые обладают высокой пластичностью, что обеспечивает перестройку их свойств в процессе непрерывного обучения опознанию новых раздражителей. Межсенсорное (кросс-модальное) взаимодействие на корковом уровне создает условия для формирования «схемы мира» (или «карты мира») и непрерывной увязки, координации с ней собственной «схемы тела» данного организма.

С помощью сенсорных сис­тем организм познает свойства предметов и явлений окружающей среды, полезные и негативные стороны их воздействия на орга­низм. Поэтому нарушения функции внешних сенсорных систем, особенно зрительного и слухового, чрезвычайно сильно затруд­няют познание внешнего мира (очень беден окружающий мир для слепого или глухого). Однако только аналитические процессы в ЦНС не могут создать реального представления об окружающей среде. Способность сенсорных систем взаимодействовать между собой обеспечивает образное и целостное представление о пред­метах внешнего мира. Например, качество дольки лимона мы оце­ниваем с помощью зрительной, обонятельной, тактильной и вку­совой сенсорных систем. При этом формируется представление как об отдельных качествах - цвете, консистенции, вкусе, так и о свойствах объекта в целом, т.е. создается определенный целостный образ воспринимаемого объекта. Взаимодействие сенсор­ных систем при оценке явлений и предметов лежит также в основе компенсации нарушенных функций при утрате одной из сенсор­ных систем. Например, у слепых повышается чувствительность слу­ховой сенсорной системы. Такие люди могут определить местопо­ложение крупных предметов и обойти их, если нет посторонних шумов за счет отражения звуковых волн от находящегося впереди предмета. Американские исследователи наблюдали за слепым че­ловеком, который достаточно точно определял местоположение большой картонной пластинки. Когда испытуемому залепили уши воском, он не смог определить местоположение картона.

Взаимодействия сенсорных систем могут проявляться в виде влияния возбуждения одной системы на состояние возбудимости другой по доминантному принципу. Так, прослушивание музыки может вызвать обезболивание при стоматологических процедурах (аудиоаналгезия). Шум ухудшает зрительное восприятие, яркий свет повышает восприятие громкости звука. Процесс взаимодействия сенсорных систем может проявляться на различных уровнях. Осо­бенно большую роль в этом играют ретикулярная формация , кора большого мозга. Многие нейроны коры обладают споcобностью отвечать на сложные комбинации сигналов разной мо­дальности (мультисенсорная конвергенция), что очень важно для познания окружающей среды и оценки новых раздражителей



Случайные статьи

Вверх