A. Спектральный анализ. Спектральный анализ сигналов

Спектральный анализ – метод определения химического состава вещества по его спектру. Этот метод разработан в 1859 г. немецкими учеными Г.Р. Кирхгофом и Р.В. Бунзеном.

Но прежде чем рассматривать этот довольно сложный вопрос, давайте сначала поговорим о том, что такое спектр.
Спектр (лат. spectrum «виде́ние») в физике - распределение значений физической величины (обычно энергии, частоты или массы). Обычно под спектром подразумевается электромагнитный спектр - спектр частот (или то же самое, что энергий квантов) электромагнитного излучения.

В научный обиход термин спектр ввёл Ньютон в 1671-1672 годах для обозначения многоцветной полосы, похожей на радугу, которая получается при прохождении солнечного луча через треугольную стеклянную призму. В своём труде «Оптика» (1704 г.) он опубликовал результаты своих опытов разложения с помощью призмы белого света на отдельные компоненты различной цветности и преломляемости, то есть получил спектры солнечного излучения и объяснил их природу. Он показал, что цвет есть собственное свойство света, а не вносятся призмой, как утверждал Бэкон в XIII веке. Фактически Ньютон заложил основы оптической спектроскопии: в «Оптике» он описал все три используемых поныне метода разложения света -преломление, интерференцию (перераспределение интенсивности света в результате наложения нескольких световых волн) и дифракцию (огибание препятствия волнами).
А вот теперь возвратимся к разговору о том, что такое спектральный анализ.

Это метод, который дает ценные и разнообразные сведения о небесных светилах. Как это делается? Анализируется свет, а из анализа света можно произвести качественный и количественный химический состав светила, его температуру, наличие и напряженность магнитного поля, скорость движения по лучу зрения и т. д.
В основе спектрального анализа лежит понятие о том, что сложный свет при переходе из одной среды в другую (например, из воздуха в стекло) разлагается на составные части. Если пучок этого света пустить на боковую грань трехгранной призмы, то, преломляясь в стекле по-разному, составляющие белый свет лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета расположены всегда в определенном порядке. Если вы забыли этот порядок, то посмотрите на рисунок.

Призма как спектральный прибор

В телескопах для получения спектра используют специальные приборы – спектрографы , устанавливаемые за фокусом объектива телескопа. В прошлом все спектрографы были призменными, но теперь вместо призмы в них используют дифракционную решетку , которая также разлагает белый свет в спектр, его называют дифракционным спектром.
Всем известно, что свет распространяется в виде электромагнитных волн. Каждому цвету соответствует определенная длина электромагнитной волны. Длина волны в спектре уменьшается от красных лучей к фиолетовым примерно от 700 до 400 ммк. За фиолетовыми лучами спектра лежат ультрафиолетовые лучи, не видимые глазом, но действующие на фотопластинку.

Еще более короткую длину волны имеют рентгеновские лучи, применяемые в медицине. Рентгеновское излучение небесных светил атмосфера Земли задерживает. Только недавно оно стало доступно для изучения посредством запусков высотных ракет, поднимающихся выше основного слоя атмосферы. Наблюдения в рентгеновских лучах производят также автоматические приборы, установленные на космических межпланетных станциях.

За красными лучами спектра лежат инфракрасные лучи. Они невидимы, но и они действуют на специальные фотопластинки. Под спектральными наблюдениями понимают обычно наблюдения в интервале от инфракрасных до ультрафиолетовых лучей.

Для изучения спектров применяют приборы, называемые спектроскопом и спектрографом . В спектроскоп спектр рассматривают, в спектрографе его фотографируют. Фотография спектра называется спектрограммой .

Виды спектров

Спектр в виде радужной оболочки (сплошной, или непрерывный) дают твердые раскаленные тела (раскаленный уголь, нить электролампы) и находящиеся под большим давлением громадные массы газа. Линейчатый спектр излучения дают разреженные газы и пары при сильном нагревании или под действием электрического разряда. У каждого газа свой излученный набор ярких линий определенных цветов. Их цвет соответствует определенным длинам волн. Они находятся всегда в одних и тех же местах спектра. Изменения состояния газа или условий его свечения, например, нагрев или ионизация, вызывают определенные изменения в спектре данного газа.

Учеными составлены таблицы с перечнем линий каждого газа и с указанием яркости каждой линии. Например, в спектре натрия особенно ярки две желтые линии. Установлено, что спектр атома или молекулы связан с их строением и отражает определенные изменения, происходящие в них в процессе свечения.

Линейчатый спектр поглощения дают газы и пары, когда за ними находится яркий и более горячий источник, дающий непрерывный спектр. Спектр поглощения состоит из непрерывного спектра, перерезанного темными линиями, которые находятся в тех самых местах, где должны быть расположены яркие линии, присущие данному газу. Например, две темные линии поглощения натрия расположены в желтой части спектра.

Таким образом, спектральный анализ позволяет установить химический состав паров, излучающих свет или поглощающих его; определить, находятся ли они в лаборатории или на небесном светиле. Количество атомов или молекул, лежащих на нашем луче зрения, излучающих или поглощающих, определяется по интенсивности линий. Чем больше атомов, тем ярче линия или тем она темнее в спектре поглощения. Солнце и звезды окружены газовыми атмосферами. Непрерывный спектр их видимой поверхности перерезан темными линиями поглощения, возникающими при прохождении света через атмосферу звезд. Поэтому спектры Солнца и звезд - это спектры поглощения.

Но спектральный анализ позволяет определять химический состав только самосветящихся или поглощающих излучение газов. Химический состав твердого или жидкого тела при помощи спектрального анализа определить нельзя.

Когда тело раскалено докрасна, в его сплошном спектре ярче всего красная часть. При дальнейшем нагревании наибольшая яркость в спектре переходит в желтую, потом в зеленую часть и т. д. Теория излучения света, проверенная на опыте, показывает, что распределение яркости вдоль сплошного спектра зависит от температуры тела. Зная эту зависимость, можно установить температуру Солнца и звезд. Температуру планет и температуру звезд определяют еще при помощи термоэлемента, помещенного в фокусе телескопа. При нагревании термоэлемента в нем возникает электрический ток, характеризующий количество теплоты, приходящее от светила.

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.

В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа:

    Эмиссионный спектральный анализ - физический метод, основанный на изучении эмиссионных спектров паров анализируемого вещества (спектров испускания или излучения), возникающих под влиянием сильных источников возбуждений (электрической дуги, высоковольтной искры); этот метод дает возможность определять элементный состав вещества, т. е. судить о том, какие химические элементы входят в состав данного вещества.

    Пламенная спектрофотометрия, или фотометрия пламени, являющаяся разновидностью эмиссионного спектрального анализа, основана на изучении эмиссионных спектров элементов анализируемого вещества, возникающих под влиянием мягких источников возбуждения. В этом методе анализируемый раствор распыляют в пламени. Этот метод дает возможность судить о содержании в анализируемом образце главным образом щелочных и щелочноземельных металлов, а также некоторых других элементов, например галлия, индия, таллия, свинца, марганца, меди, фосфора.

    Примечание. Кроме эмиссионной фотометрии пламени применяют абсорбнионную, называемую также атомно-абсорбционной спектроскопией или атомно-абсорбционной спектрофотометрией. Она основана на способности свободных атомов металла в газах пламени поглощать световую энергию при характерных для каждого элемента длинах волн. Этим методом можно определять сурьму, висмут, селен, цинк, ртуть и некоторые другие элементы, не определяемые методом эмиссионной фотометрии пламени.

    Абсорбционная спектроскопия основана на изучении спектров поглощения вещества, являющихся его индивидуальной характеристикой. Различают спектрофотометрический метод, основанный на определении спектра поглощения или измерении светопоглощения (как в ультрафиолетовой, так и в видимой и инфракрасной областях спектра) при строго определенной длине волны (монохроматическое излучение), которая соответствует максимуму кривой поглощения данного исследуемого вещества, а также фотоколориметрический метод, основанный на определении спектра поглощения или измерении светопоглощения в видимом участке спектра.

    В отличие от спектрофотометрии в фотоколориметрическом методе применяют «белый» свет или «белый» свет, предварительно пропущенный через широкополосные светофильтры.

    Метод анализа по спектрам комбинационного рассеяния света. В методе использовано явление, открытое одновременно советскими физиками Г. С. Ландсбергом и Л. И. Мандельштамом и индийским физиком Ч. В. Раманом. Это явление связано с поглощением веществом монохроматического излучения и последующим испусканием нового излучения, отличающегося длиной волны от поглощенного.

    Турбидиметрия основана на измерении интенсивности света, поглощаемого неокрашенной суспензией твердого вещества. В турбидиметрии интенсивность света, поглощенного раствором или прошедшего через него, измеряют так же, как в фотоколориметрии окрашенных растворов.

    Нефелометрия основана на измерении интенсивности света, отраженного или рассеянного окрашенной или неокрашенной суспензией твердого вещества (взвешенного в данной среде осадка).

    Люминесцентный, или флуоресцентный метод анализа основан на измерении интенсивности излучаемого веществами видимого света (флуоресценции) при облучении их ультрафиолетовыми лучами.

10)К оптическим методам анализа также относятся рефрактометрический метод, основанный на измерении коэффициента преломления, и полярометрический, основанный на изучении вращения плоскости поляризации.

Тёмные линии на спектральных полосках были замечены давно, но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света. Аналогичные линии он обнаружил у искусственных источников света, а также в спектрах Венеры и Сириуса.

Вскоре выяснялось, что одна из самых отчётливых линий всегда появляется в присутствии натрия. В 1859 году Г. Кирхгоф и Р. Бунзен после серии экспериментов заключили: каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. С этого момента в науке появился спектральный анализ, мощный метод дистанционного определения химического состава.

Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.

Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а в 1861 году - рубидий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы соответственно).

Принцип работы

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10-30 мг), необходимого для анализа на большое число элементов.

Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000-10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Применение

В последнее время, наибольшее распространение получили эмиссионные и масс-спектрометрические методы спектрального анализа, основанные на возбуждении атомов и их ионизации в аргоновой плазме индукционных разрядов, а также в лазерной искре.

Спектральный анализ - чувствительный метод и широко применяется в аналитической химии, астрофизике, металлургии, машиностроении, геологической разведке и других отраслях науки.

В теории обработки сигналов, спектральный анализ также означает анализ распределения энергии сигнала (например, звукового) по частотам, волновым числам и т. п.

Введение ………………………………………………………………………………….2

Механизм излучения……………………………………………………………………..3

Распределение энергии в спектре……………………………………………………….4

Виды спектров…………………………………………………………………………….6

Виды спектральных анализов……………………………………………………………7

Заключение………………………………………………………………………………..9

Литература……………………………………………………………………………….11

Введение

Спектр – это разложение света на составные части, лучи разных цветов.

Метод исследования химического состава различных веществ по их линейчатым спектрам испускания или поглощения называют спектральным анализом. Для спектрального анализа требуется ничтожное количество вещества. Быстрота и чувствительность сделали этот метод незаменимым как в лабораториях, так и в астрофизике. Так как каждый химический элемент таблицы Менделеева излучает характерный только для него линейчатый спектр испускания и поглощения, то это дает возможность исследовать химический состав вещества. Впервые его попробовали сделать физики Кирхгоф и Бунзен в 1859 году, соорудив спектроскоп. Свет пропускался в него через узкую щель, прорезанную с одного края подзорной трубы (эта труба с щелью называется коллиматор). Из коллиматора лучи падали на призму, накрытую ящиком, оклеенным изнутри черной бумагой. Призма отклоняла в сторону лучи, которые шли из щели. Получался спектр. После этого завесили окно шторой и поставили у щели коллиматора зажженную горелку. В пламя свечи вводили поочередно кусочки различных веществ, и смотрели через вторую подзорную трубу на получающийся спектр. Оказывалось, что раскаленные пары каждого элемента давали лучи строго определенного цвета, и призма отклоняла эти лучи на строго определенное место, и ни один цвет поэтому не мог замаскировать другой. Это позволило сделать вывод, что найден радикально новый способ химического анализа – по спектру вещества. В 1861 Кирхгоф доказал на основе этого открытия присутствие в хромосфере Солнца ряда элементов, положив начало астрофизике.

Механизм излучения

Источник света должен потреблять энергию. Свет - это электромагнитные волны с длиной волны 4*10 -7 - 8*10 -7 м. Электромагнитные волны излучаются при ускоренном движении заряженных частиц. Эти заряженные частицы входят в состав атомов. Но, не зная, как устроен атом, ничего достоверного о механизме излучения сказать нельзя. Ясно лишь, что внутри атома нет света так же, как в струне рояля нет звука. Подобно струне, начинающей звучать лишь после удара молоточка, атомы рождают свет только после их возбуждения.

Для того чтобы атом начал излучать, ему необходимо передать энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.

Тепловое излучение. Наиболее простой и распространенный вид излучения - тепловое излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов или (молекул) излучающего тела. Чем выше температура тела, тем быстрее движутся атомы. При столкновении быстрых атомов (молекул) друг с другом часть их кинетической энергии превращается в энергию возбуждения атомов, которые затем излучают свет.

Тепловым источником излучения является Солнце, а также обычная лампа накаливания. Лампа очень удобный, но малоэкономичный источник. Лишь примерно 12% всей энергии, выделяемой в лампе электрическим током, преобразуется в энергию света. Тепловым источником света является пламя. Крупинки сажи раскаляются за счет энергии, выделяющейся при сгорании топлива, и испускают свет.

Электролюминесценция. Энергия, необходимая атомам для излучения света, может заимствоваться и из нетепловых источников. При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Быстрые электроны испытывают соударения с атомами. Часть кинетической энергии электронов идет на возбуждение атомов. Возбужденные атомы отдают энергию в виде световых волн. Благодаря этому разряд в газе сопровождается свечением. Это и есть электролюминесценция.

Катодолюминесценция. Свечение твердых тел, вызванное бомбардировкой их электронами, называют катодолюминисенцией. Благодаря катодолюминесценции светятся экраны электронно-лучевых трубок телевизоров.

Хемилюминесценция. При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света. Источник света остается холодным (он имеет температуру окружающей среды). Это явление называется хемиолюминесценкией.

Фотолюминесценция. Падающий на вещество свет частично отражается, а частично поглощается. Энергия поглощаемого света в большинстве случаев вызывает лишь нагревание тел. Однако некоторые тела сами начинают светиться непосредственно под действием падающего на него излучения. Это и есть фотолюминесценция. Свет возбуждает атомы вещества (увеличивает их внутреннюю энергию), после этого они высвечиваются сами. Например, светящиеся краски, которыми покрывают многие елочные игрушки, излучают свет после их облучения.

Излучаемый при фотолюминесценции свет имеет, как правило, большую длину волны, чем свет, возбуждающий свечение. Это можно наблюдать экспериментально. Если направить на сосуд с флюоресцеитом (органический краситель) световой пучок,

пропущенный через фиолетовый светофильтр, то эта жидкость начинает светиться зелено - желтым светом, т. е. светом большей длины волны, чем у фиолетового света.

Явление фотолюминесценции широко используется в лампах дневного света. Советский физик С. И. Вавилов предложил покрывать внутреннюю поверхность разрядной трубки веществами, способными ярко светиться под действием коротковолнового излучения газового разряда. Лампы дневного света примерно в три-четыре раза экономичнее обычных ламп накаливания.

Перечислены основные виды излучений и источники, их создающие. Самые распространенные источники излучения - тепловые.

Распределение энергии в спектре

На экране за преломляющей призмой монохроматические цвета в спектре располагаются в следующем порядке: красный (имеющий наибольшую среди волн видимого света длину волны (к=7,6(10-7 м и наименьший показатель преломления), оранжевый, желтый, зеленый, голубой, синий и фиолетовый (имеющий наименьшую в видимом спектре длину волны (ф=4(10-7 м и наибольший показатель преломления). Ни один из источников не дает монохроматического света, т. е. света строго определенной длины волны. В этом нас убеждают опыты по разложению света в спектр с помощью призмы, а также опыты по интерференции и дифракции.

Та энергия, которую несет с собой свет от источника, определенным образом распределена по волнам всех длин, входящим в состав светового пучка. Можно также сказать, что энергия распределена по частотам, так как между длиной волны и частотой существует простая связь: v = c.

Плотность потока электромагнитного излучения, или интенсивность /, определяется энергией &W, приходящейся на все частоты. Для характеристики распределения излучения по частотам нужно ввести новую величину: интенсивность, приходящуюся на единичный интервал частот. Эту величину называют спектральной плотностью интенсивности излучения.

Спектральную плотность потока излучения можно найти экспериментально. Для этого надо с помощью призмы получить спектр излучения, например, электрической дуги, и измерить плотность потока излучения, приходящегося на небольшие спектральные интервалы шириной Av.

Полагаться на глаз при оценке распределения энергии нельзя. Глаз обладает избирательной чувствительностью к свету: максимум его чувствительности лежит в желто-зеленой области спектра. Лучше всего воспользоваться свойством черного тела почти полностью поглощать свет всех длин волн. При этом энергия излучения (т. е. света) вызывает нагревание тела. Поэтому достаточно измерить температуру тела и по ней судить о количестве поглощенной в единицу времени энергии.

Обычный термометр имеет слишком малую чувствительность для того, чтобы его можно было с успехом использовать в таких опытах. Нужны более чувствительные приборы для измерения температуры. Можно взять электрический термометр, в котором чувствительный элемент выполнен в виде тонкой металлической пластины. Эту пластину надо покрыть тонким слоем сажи, почти полностью поглощающей свет любой длины волны.

Чувствительную к нагреванию пластину прибора следует поместить в то или иное место спектра. Всему видимому спектру длиной l от красных лучей до фиолетовых соответствует интервал частот от v кр до у ф. Ширине соответствует малый интервал Av. По нагреванию черной пластины прибора можно судить о плотности потока излучения, приходящегося на интервал частот Av. Перемещая пластину вдоль спектра, мы обнаружим, что большая часть энергии приходится на красную часть спектра, а не на желто-зеленую, как кажется на глаз.

По результатам этих опытов можно построить кривую зависимости спектральной плотности интенсивности излучения от частоты. Спектральная плотность интенсивности излучения определяется по температуре пластины, а частоту нетрудно найти, если используемый для разложения света прибор проградуирован, т. е. если известно, какой частоте соответствует данный участок спектра.

Откладывая по оси абсцисс значения частот, соответствующих серединам интервалов Av, а по оси ординат спектральную плотность интенсивности излучения, мы получим ряд точек, через которые можно провести плавную кривую. Эта кривая дает наглядное представление о распределении энергии и видимой части спектра электрической дуги.

Впервые спектральный анализ попытались сделать Кирхгоф и Бунзен еще в 1859 году. Два создали спектроскоп, похожий на трубу неправильной формы. С одной стороны имелось отверстие (коллиматор), в которое попадали исследуемые лучи света. Внутри трубы располагалась призма, она отклоняла лучи и направляла их в сторону другого отверстия трубы. На выходе физики могли видеть свет, разложенный на спектр.

Ученые решили провести эксперимент. Затемнив комнату и завесив окно плотными шторами, они зажгли свечу возле щели коллиматора, а потом брали кусочки разных веществ и вводили их в пламя свечи, наблюдая, изменится ли спектр. И оказалось, что горячие пары каждого вещества давали различные спектры! Так как призма строго разделяла лучи и не давала им наслаиваться друг на друга, то по получившемуся спектру можно было точно идентифицировать вещество.

В дальнейшем Кирхгоф проанализировал спектр Солнца, обнаружив, что в его хромосфере присутствуют определенные химические элементы. Это дало начало астрофизике.

Особенности спектрального анализа

Для проведения спектрального анализа необходимо совсем малое количество вещества. Этот метод крайне чувствителен и очень быстр, что позволяет не только пользоваться им для самых разных нужд, но и делает его порой просто незаменимым. Точно известно, что каждый таблицы Менделеева излучает особенный спектр, только ему одному, поэтому при правильно проведенном спектральном анализе ошибиться практически невозможно.

Типы спектрального анализа

Спектральный анализ бывает атомный и молекулярный. Посредством атомного анализа можно выявить, соответственно, атомный состав вещества, а посредством молекулярного – молекулярный.

Способов измерить спектр существует два: эмиссионный и абсорбционный. Эмиссионный спектральный анализ проводится посредством изучения того, какой спектр излучают выбранные атомы или молекулы. Для этого им нужно придать энергию, то есть, возбудить их. Абсорбционный анализ, напротив, проводится по спектру поглощения электромагнитного изучения, направленного на объекты.

Посредством спектрального анализа можно измерить множество различных характеристик веществ, частиц или даже больших физических тел (например, космических объектов). Именно поэтому спектральный анализ дополнительно делится на различные методы. Чтобы получить требуемый для конкретной задачи результат, нужно правильно выбрать оборудование, длину волн для исследования спектра, а также саму область спектра.

Спектральный анализ - один из самых важных физических методов исследования веществ. Предназначен для определения качественного и количественного состава вещества на основе его спектра.

Химикам издавна было известно, что соединения некоторых химических элементов, если их внести в пламя, окрашивают его в характерные цвета. Так, соли натрия делают пламя желтым, а соединения бора - зеленым. Окраска вещества возникает, когда оно либо излучает волны определенной длины, либо поглощает их из полного спектра падающего на него белого света. Во втором случае цвет, видимый глазом, оказывается соответствующим не этим поглощенным волнам, а другим - дополнительным, дающим при сложении с ними белый свет.

Эти закономерности, установленные еще в начале прошлого века, были обобщены в 1859-1861 гг. немецкими учеными Г. Кирхгофом и Р. Бунзеном, доказавшими, что каждый химический элемент имеет свой характерный спектр. Это позволило создать разновидность элементного анализа - атомный спектральный анализ, с помощью которого можно количественно определять содержание различных элементов в навеске вещества, разлагаемого на атомы или ионы в пламени или в электрической дуге. Еще до создания количественного варианта этого метода он успешно применялся для «элементного анализа» небесных тел. Спектральный анализ уже в прошлом веке помог исследовать состав Солнца и других звезд, а также открыть некоторые элементы, в частности гелий.

При помощи спектрального анализа стало возможным отличать не только различные химические элементы, но и изотопы одного и того же элемента, обычно дающие неодинаковые спектры. Метод применяется для анализа изотопного состава веществ и основан на различном смещении энергетических уровней молекул с различными изотопами.

Рентгеновские лучи, названные по имени открывшего их в 1895 г. немецкого физика В. Рентгена,- одна из самых коротковолновых частей полного спектра электромагнитных волн, расположенная в нем между ультрафиолетовым светом и гамма-излуче-нием. При поглощении рентгеновских лучей атомами возбуждаются глубинные электроны, расположенные вблизи ядра и связанные с ним особенно прочно. Испускание атомами рентгеновских лучей, наоборот, связано с переходами глубинных электронов с возбужденных энергетических уровней на обычные, стационарные.

И те и другие уровни могут обладать только строго определенными энергиями, зависящими от заряда атомного ядра. Значит, разность этих энергий, равная энергии поглощаемого (или излучаемого) кванта, тоже зависит от заряда ядра, и излучение каждого химического элемента в рентгеновской области спектра представляет собой характерный для данного элемента набор волн со строго определенными частотами колебаний.

На использовании этого явления и основан рентгеноспектральный анализ - разновидность элементного анализа. Он широко применяется для анализа руд, минералов, а также сложных неорганических и элементоорганических соединений.

Существуют и другие виды спектроскопии, основанные не на излучении, а на поглощении веществом световых волн. Так называемые молекулярные спектры наблюдаются, как правило, при поглощении растворами веществ видимого, ультрафиолетового или инфракрасного света; разложения молекул при этом не происходит. Если видимый или ультрафиолетовый свет обычно действует на электроны, заставляя их подниматься на новые, возбужденные энергетические уровни (см. Атом), то инфракрасные (тепловые) лучи, несущие меньше энергии, возбуждают лишь колебания связанных между собой атомов. Поэтому информация, которую такие виды спектроскопии дают химикам, различна. Если из инфракрасного (колебательного) спектра узнают о наличии в веществе определенных групп атомов, то спектры в ультрафиолетовой (а для окрашенных веществ - ив видимой) области несут информацию о строении поглощающей свет группировки в целом.

Среди органических соединений основу таких группировок, как правило, составляет система ненасыщенных связей (см. Ненасыщенные углеводороды). Чем больше в молекуле двойных или тройных связей, чередующихся с простыми (иными словами, чем длиннее цепь сопряжения), тем легче возбуждаются электроны.

Методы молекулярной спектроскопии используют не только для определения строения молекул, но и для точного измерения количества известного вещества в растворе. Особенно удобны для этого спектры в ультрафиолетовой или видимой области. Полосы поглощения в этой области обычно наблюдаются при концентрации растворенного вещества порядка сотых и даже тысячных долей процента. Частным случаем такого применения спектроскопии является метод колориметрии, широко применяемый для измерения концентрации окрашенных соединений.

Атомы некоторых веществ способны поглощать также и радиоволны. Такая способность проявляется при помещении вещества в поле мощного постоянного магнита. Многие атомные ядра обладают собственным магнитным моментом - спином, и в магнитном поле ядра с неодинаковой ориентацией спина оказываются энергетически «неравноправными». Те, у которых направление спина совпадает с направлением наложенного магнитного поля, попадают в более выгодное положение, а другие ориентации начинают играть по отношению к ним роль «возбужденных состояний». Это не значит, что ядро, находящееся в выгодном спиновом состоянии, не может перейти в/«возбужденное»; разница энергий спиновых состояний очень невелика, но все же процент ядер, находящихся в невыгодном энергетическом состоянии, сравнительно мал. И он тем меньше, чем мощнее наложенное поле. Ядра как бы колеблются между двумя энергетическими состояниями. А поскольку частота таких колебаний соответствует частоте радиоволн, то возможен и резонанс - поглощение энергии переменного электромагнитного поля с соответствующей частотой, приводящее к резкому увеличению числа ядер, находящихся в возбужденном состоянии.

На этом и основана работа спектрометров ядерного магнитного резонанса (ЯМР), способных обнаруживать наличие в веществе тех атомных ядер, спин которых равен 1/2: водорода 1Н, лития 7Li, фтора 19F, фосфора 31Р, а также изотопов углерода 13С, азота 15N, кислорода 17O и т. д.

Чувствительность таких приборов тем выше, чем мощнее постоянный магнит. Пропорционально напряженности магнитного поля растет и резонансная частота, нужная для возбуждения ядер. Она служит мерой класса прибора. Спектрометры среднего класса работают на частоте 60-90 МГц (при записи протонных спектров); более классные - на частоте 180, 360 и даже 600 МГц.

Спектрометры высокого класса - очень точные и сложные приборы - позволяют не только обнаружить и количественно измерить содержание того или иного элемента, но и различить сигналы атомов, занимающих в молекуле химически «неравноправные» положения. А изучив так называемое спин-спиновое взаимодействие, приводящее к расщеплению сигналов на группы узких линий под влиянием магнитного поля соседних ядер, можно узнать много интересного об атомах, окружающих исследуемое ядро. ЯМР-спектроскопия позволяет получить от 70 до 100% информации, нужной, например, для того, чтобы установить строение сложного органического соединения.

Еще одна разновидность радиоспектроскопии - электронный парамагнитный резонанс (ЭПР) - основана на том, что спином, равным 1/2, обладают не только ядра, но и электроны. Спектроскопия ЭПР - лучший способ исследования частиц, обладающих неспаренными электронами,- свободных радикалов. Подобно спектрам ЯМР, спектры ЭПР дают возможность многое узнать не только о самой «сигналящей» частице, но и о природе окружающих ее атомов. Приборы спектроскопии ЭПР очень чувствительны: для записи спектра обычно бывает вполне достаточно раствора, содержащего несколько стомиллионных долей моля свободных радикалов на 1 л. А прибор с рекордной чувствительностью, недавно созданный группой советских ученых, способен зафиксировать наличие в образце всего 100 радикалов, что соответствует их концентрации примерно 10 -18 моль/л.



Случайные статьи

Вверх