Антигенная функция. Антигены. Свойства антигенов, строение и основные функции. Антигены: определение, основные свойства. Антигены бактериальной клетки. Практическое использование антигенов бактерий

Особые вещества, генетически нам чужеродные, которые провоцируют иммунный ответ организма через активацию специфических В- и/или Т-лимфоцитов, называются антигенами. Свойства антигенов подразумевают их взаимодействие с антителами. Практически любая молекулярная структура может вызвать данную реакцию, например: белки, углеводы, липиды и т. д.

Чаще всего ими становятся бактерии и вирусы, которые каждую секунду нашей жизни пытаются попасть внутрь клеток, чтобы передать и размножить свою ДНК.

Структура

Чужеродные структуры обычно представляют собой высокомолекулярные полипептиды или полисахариды, но другие молекулы, такие как липиды или нуклеиновые кислоты, могут также выполнять их функции. Более мелкие образования становятся этим веществом, если они соединяются с более крупным протеином.

Антигены сочетаются с антителом. Комбинация очень похожа на аналогию замка и ключа. Каждая молекула Y-образного антитела имеет по крайней мере две области связывания, которые могут прикрепляться к определенному участку на антигене. Антитело способно соединиться с одинаковыми частями двух разных клеток одновременно, что может привести к агрегации соседних элементов.

Строение антигенов состоит из двух частей: информационной и несущей. Первая определяет специфичность гена. За нее отвечают определенные участки белка, называемые эпитопами (антигенными детерминантами). Это фрагменты молекул, которые провоцируют иммунитет на ответные действия, заставляя его защищаться и производить антитела со схожими характеристиками.

Несущая часть помогает веществу проникнуть внутрь организма.

Химическое происхождение

  • Протеины. Антигены обычно представляют собой большие органические молекулы, которые являются белками или крупными полисахаридами. Они отлично справляются со своими обязанностями из-за своей высокой молекулярной массы и структурной сложности.
  • Липиды. Считаются неполноценными из-за их относительной простоты и отсутствия структурной стабильности. Однако, когда они присоединяются к протеинам или полисахаридам, то могут действовать как полные вещества.
  • Нуклеиновые кислоты. Плохо подходят на роль антигенов. Свойства антигенов отсутствуют в них из-за относительной простоты, молекулярной гибкости и быстрого распада. Антитела к ним могут вырабатываться путем их искусственной стабилизации и связывания с иммуногенным носителем.
  • Углеводы (полисахариды). Сами по себе слишком малы, чтобы функционировать самостоятельно, но в случае антигенов эритроцитарной группы крови, белковые или липидные носители могут вносить свой вклад в необходимый размер, а полисахариды, присутствующие в виде боковых цепочек, придают иммунологическую специфичность.

Основные характеристики

Чтобы называться антигеном, вещество обязано обладать определенными свойствами.

Прежде всего, оно должно быть чужеродным тому организму, куда стремится попасть. Например, если реципиент трансплантата получает донорский орган с несколькими основными различиями HLA (человеческого лейкоцитарного антигена), орган воспринимается как чужеродный и впоследствии отторгается реципиентом.

Вторая функция антигенов - это иммунногенность. То есть чужеродное вещество должно при проникновении внутрь восприниматься иммунной системой как агрессор, вызывать ответную реакцию и заставлять ее вырабатывать специфические антитела, способные уничтожить захватчика.

За это качество отвечают многие факторы: структура, вес молекулы, ее скорость и т. д. Важную роль играет то, насколько инородной является она для индивидуума.

Третьим качеством является антигенность — умение вызывать реакцию у определенных антител и сцепляться с ними. За это отвечают эпитопы, и именно от них зависит тип, к которому относится враждебный микроорганизм. Данное свойство дает возможность связываться с Т-лимфоцитами и другими атакующими клетками, но не может вызвать сам иммунный ответ.

Например, частицы с более низкой молекулярной массой (гаптены) способны соединяться с антителом, но для этого они должны быть прикреплены к макромолекуле в качестве носителя для запуска самой реакции.

Когда несущие антиген клетки (такие как эритроциты), от донора переливаются реципиенту, они могут быть иммуногенными так же, как внешние поверхности бактерий (капсула или клеточная стенка), а также поверхностные структуры других микроорганизмов.

Коллоидное состояние и растворимость — это обязательные свойства антигенов.

Полные и неполные антигены

В зависимости от того, насколько хорошо выполняют свои функции, эти вещества бывают двух типов: полные (состоящие из белка) и неполные (гаптены).

Полный антиген способен обладать иммуногенностью и антигенностью одновременно, индуцировать образование антител и вступать с ними в конкретные и наблюдаемые реакции.

Гаптены - вещества, которые не могут из-за своего крошечного размера влиять на иммунитет и поэтому должны сливаться с крупными молекулами, чтобы те могли их доставить к «месту преступления». В этом случае они становятся полноценными, а за специфичность отвечает гаптенная часть. Определяются реакциями in vitro (исследованиями, произведенными в лабораторных условиях).

Такие вещества известны как чужеродные или несамостоятельные, а те, что присутствуют на собственных клетках организма, называются авто- или само-антигенами.

Специфичность

  • Видовая — присутствует у живых организмов, относящихся к одному виду и имеющих общие эпитопы.
  • Типовая — бывает у совершенно непохожих существ. Например, это идентичность между стафилококком и соединительными тканями человека или красными кровяными тельцами и чумной палочкой.
  • Патологическая — возможна при необратимых изменениях на клеточном уровне (например, от радиации или лекарственных препаратов).
  • Стадиоспецифическая — вырабатывается только на каком-то этапе существования (у плода при внутриутробном развитии).

Аутоантигены начинают вырабатываться при сбоях, когда иммунная система признает определенные участки своего же организма как чужеродные и пытается разрушить их при помощи синтеза с антителами. Природа таких реакций до сих пор точно не установлена, но приводит к таким страшным неизлечимым заболеваниям, как васкулит, СКВ, рассеянный склероз и многим другим. В постановке диагноза данных случаев необходимы in vitro исследования, которые находят разбушевавшиеся антитела.

Группы крови

На поверхности всех кровяных телец расположено огромное количество различных антигенов. Все они объединены благодаря специальным системами. Всего их насчитывается более 40.

Эритроцитарная группа отвечает за совместимость крови при переливании. В нее входит, например, серологическая система ABO. Все группы крови обладают общим антигеном - Н, который является предшественником образования веществ А и В.

В 1952 году из Мумбаи сообщили об очень редком примере, в котором антигены A, В и H отсутствовали на красных кровяных тельцах. Это группа крови была названа «бомбейской» или «пятой». Такие люди могут принять кровь только от своей собственной группы.

Еще одной системой является резус-фактор. Некоторые антигены Rh представляют структурные компоненты мембраны эритроцита (RBC). Если они отсутствуют, то оболочка деформируется и приводит к гемолитической анемии. Кроме того, резус очень важен при беременности и его несовместимость у матери и ребенка может приводить к большим проблемам.

Когда антигены не являются частью структуры мембраны (например, А, B и H), их отсутствие не влияет на целостность эритроцитов.

Взаимодействие с антителами

Возможно только при условии, что молекулы обоих достаточно близки для того, чтобы некоторые из отдельных атомов поместились в комплементарные углубления.

Эпитопом является соответствующая область антигенов. Свойства антигенов позволяют большинству из них иметь несколько детерминантов; если два из них или более идентичны, то такое вещество считается мультивалентным.

Другой способ измерения взаимодействия - авидность связывания, которая отражает общую стабильность комплекса антител и антигенов. Она определяется как общая сила связывания всех ее мест.

Антигенпредставляющие клетки (АПК)

Те, которые могут поглотить антиген и доставить его в необходимое место. Существует три типа данных представителей в нашем организме.

  • Макрофаги. Обычно находятся в состоянии покоя. Их фагоцитарные возможности значительно увеличиваются, когда они стимулируются для перехода в активную форму. Присутствуют наряду с лимфоцитами практически во всех лимфоидных тканях.
  • Характеризуются длительными цитоплазматическими процессами. Их основная роль действовать в качестве ловцов антигенов. Они имеют не фагоцитарную природу и находятся в лимфоузлах, тимусе, селезенке и коже.

  • B-лимфоциты. Выделяют на своей поверхности молекулы внутримембранного иммуноглобулина (Ig), которые функционируют как рецепторы клеточных антигенов. Свойства антигенов позволяют им связывать только один тип чужеродного вещества. Это делает их гораздо более эффективными, чем макрофаги, которые должны поглощать любой посторонний материал, попадающийся им на пути.

Потомки В-клеток (плазматических клеток) вырабатывают антитела.

Антигеном называют вещество или формы вещества, способные, при попадании внутрь организма, вызвать (индуцировать) иммунный ответ. Такие вещества в медицинской литературе часто называют иммуногенами. Процедура введения антигена в организм называется иммунизацией .

Антигены (иммуногены) – это крупные молекулы с большой молекулярной массой. Но бывают и исключения, когда иммунная система отвечает и на не слишком большие молекулы. Может получиться антиген при связывании маленьких молекул (например, молекулы ароматических веществ) с большой молекулой (макромолекулой), которая будет носителем, а маленькую молекулу в этом случае называют гаптеном . Случаи аллергических реакций немедленного или замедленного типа связывают часто именно с гаптенами.

В роли антигена могут выступать разнообразные объекты, содержащие в себе соответствующие вещества. Это могут быть пищевые, пыльцевые, инсектицидные, бытовые объекты, латекс, красители, ксенобиотики, различные виды имплантатов, опухолевые клетки и много других объектов. По своей химической природе антигенами являются белки, полисахариды, фосфолипиды и их комбинации.

Антигены несут признаки чужеродной информации. Но что именно и каким образом распознает иммунная система организма? Иммунная система обладает разнообразным арсеналом клеточных структур для распознавания и дестабилизации антигенов . Важную роль в деле идентификации антигена играют Т- и В-лимфоциты, они наделены специальными рецепторами (анализаторами) для узнавания антигена. И с помощью этих рецепторов лимфоциты анализируют молекулы наружных мембран клеток и межклеточных тканей чужеродного объекта. Зарождаясь в органах иммунной системы , лимфоциты наделяются рецепторами, которые изначально «заточены» на определение любого вида антигена, поступающего в организм, даже потенциально неизвестного иммунной системе.

В-лимфоцит находит антиген, поглощает и начинает процесс расщепления антигена, превращая его в антигенпрезентирующий комплекс (набор веществ «удобоваримый» для Т-лимфоцита), подготавливая его к презентации для Т-лимфоцита (без такой подготовительной работы Т-лимфоцит не в состоянии распознать антиген). Т-лимфоцит распознает подходящий для него подготовленный антиген и начинает делиться, то есть формировать клон себе подобного Т-лимфоцита. Число таких клонов может достигать нескольких миллионов, и каждый имеет специфические рецепторы для того же антигена. Клоны необходимы для того, чтобы на все молекулы антигена хватило клеток Т-лимфоцитов. Элиминируя молекулы антигена Т-лимфоциты привлекают к работе и другие фагоциты, чтобы с их помощью вывести из организма антигены. Весь процесс называется гуморальным иммунным ответом .

Существует интересная особенность иммунной системы строить иммунный ответ на антигены с помощью Т-лимфоцитов и В-лимфоцитов или с помощью только В-лимфоцитов. В этом смысле все антигены подразделяют на тимусозависимые, когда участвуют Т- и В-лимфоциты, и тимусонезависимые, когда участвуют только В-лимфоциты. Тимусонезависимые антигены обозначают как ТН-антигены.

Антитела - это ответ иммунной системы на наличие в организме антигена. Антитела представляют собой молекулы иммуноглобулинов, особых растворимых белков. За выработку антител отвечают В-лимфоциты. Иммуноглобулины связывают молекулы антигенов, нейтрализуя их. Далее путем фагоцитоза молекулы элиминируют (выводят) из организма. Антитела, то есть иммуноглобулины, имеют уникальную возможность связывать молекулы антигена в том виде, в котором эти молекулы попадают в организм (без предварительной обработки молекулы, как в случаях с Т-лимфоцитами), поэтому иммуноглобулины называют антигенраспознающими и антигенсвязывающими молекулами. В таких случаях тратится меньше времени на ответную иммунную реакцию организма. Такие иммуноглобулины (антитела) участвуют в иммунном ответе, когда речь идет о нахождении в организме тимусонезависимых антигенов (ТН-антигенов).

Вот такая довольно замысловатая схема работы иммунной системы при попадании антигена в организм позволяет человеку бороться с вредоносными микроорганизмами и веществами, обеспечивая себе дальнейшую жизнь.


    Экзогенные, эндогенные;

    Полноценные и неполноценные (гаптены, полугаптены);

    Тимус-зависимые и тимус-независимые;

    Суперантигены;

    Гетерогенные;

    Аутоантигены;

    Опухолевые;

    Бактериальные (группоспецифические, видоспецифические, типоспецифические, О-, К-, Н-антигены и другие);

    Вирусные;

    Грибковые;

    Протективные;

    Изоантигены;

    Антигены главного комплекса гистосовместимости.

Экзогенные антигены – попадают в организм из окружающей среды, подвергаются эндоцитозу и расщеплению в Аг-представляющих клетках (макрофагах, дендритных клетках тимуса, фолликулярных отросчатых клетках лимфатических узлов и селезёнки, М-клетках лимфатических фолликулов пищеварительного тракта, клетках Лангерганса кожи). Затем Аг-детерминанта (эпитоп) в комплексе с молекулой класса II МНС, встраивается в плазматическую мембрану Аг-представляющей клетки и предъявляется CD 4 + Т-лимфоцитам (Т-хелперам);

Эндогенные антигены – продукты собственных клеток организма. Чаще всего это аномальные белки опухолевых клеток и вирусные белки, синтезируемые вирусинфицированными клетками хозяина. Их антигенные детерминанты (эпитопы) предъявляются в комплексе с молекулой класса I МНС CD 8 + Т-лимфоцитам (Т-киллерам).

Полноценные Аг – обладают способностью индуцировать образование антител и взаимодействовать с ними;

Неполноценные Аг (гаптены) – низкомолекулярные вещества, которые не обладают способностью индуцировать образование антител и, но взаимодействуют с готовыми специфичными антителами. Гаптены приобретают свойства полноценных антигенов при связывании с высокомолекулярными веществами, например белками (шлепперами). К гаптенам относятся лекарственные препараты, например, антибиотики, которые способны запускать иммунный ответ при связывании с белками организма (альбумином), а также с белками на поверхности клеток (эритроцитов, лейкоцитов). В результате образуются антитела, способные взаимодействовать с гаптеном. При повторном введении в организм гаптена возникает вторичный иммунный ответ, нередко в виде аллергической реакции, например анафилаксии;

Полугаптены – неорганические вещества – йод, бром, хром, никель, нитрогруппа, азот и т.д. – связываясь с белками, например, кожи, способны вызвать аллергический контактный дерматит (ГЗТ), развивающийся при повторных соприкосновениях кожи с хромированными, никелированными предметами, нанесении на кожу йода и т.д.

Тимус-зависимые антигены – это антигены, которые для индукции иммунного ответа требуют участия Т-лимфоцитов, этих антигенов большинство;

Тимус-независимые – антигены, которые способны стимулировать синтез антител без помощи Т-клеток, например, ЛПС бактериальных клеточных стенок, высокомолекулярные синтетические полимеры.

Суперантигены (бактериальные энтеротоксины (стафилококковый, холерный), некоторые вирусы (ротавирусы) и др. – особая группа антигенов, которые в значительно меньших дозах, чем другие антигены, вызывают поликлональную активацию и пролиферацию большого числа Т-лимфоцитов (более 20%, тогда как обычные антигены стимулируют 0,01% Т-лимфоцитов). При этом вырабатывается много ИЛ-2 и других цитокинов, вызывающих воспаление и повреждение тканей.

Гетерогенные Аг – это перекрёстно реагирующие Аг, общие антигены у различных видов микробов, животных и человека. Это явление называется антигенной мимикрией. Например, гемолитические стрептококки группы А содержат перекрестно реагирующие антигены (в частности, М-белок), общие с антигенами эндокарда и клубочков почек человека. Такие бактериальные антигены вызывают образование антител, перекрестно реагирующих с клетками человека, что приводи к развитию ревматизма и постстрептококкового гломерулонефрита. У возбудителя сифилиса имеются антигены фосфолипиды сходные с фосфолипидами сердца человека и животных, поэтому кардиолипиновый антиген сердца быка используется для выявления антител к бледной трепонеме в серодиагностике сифилиса (реакция Вассермана). Антиген Форсмана – выявлен в эритроцитах барана, кошек, собак, почках морских свинок, сальмонеллах.

Аутоантигены – это эндогенные антигены, вызывающие выработку аутоантител. Различают:

- естественные первичные (нормальная ткань хрусталика глаза, нервная ткань и др.), что связано с нарушением аутотолерантности,

Приобретенные вторичные – продукты повреждения тканей микробами, вирусами, ожоговые, лучевые, холодовые, которые возникают из собственных тканей в результате изменения тканей при ожогах, отморожениях, при действии радиоактивного излучения.

Опухолевые (онкоантигены, Т-антигены ( tumor - опухоль ) - в результате злокачественной трансформации нормальных клеток в опухолевые в них начинают экспрессироваться (проявляться) специфические аномальные антигены, отсутствующие в составе нормальных клеток. Выявление иммунологическими методами опухолевых антигенов даст возможность ранней диагностики онкологических заболеваний.

Бактериальные антигены:

    группоспецифические – общие антигены у разных видов одного рода или семейства,

    видоспецифические – антигены характерные представителям одного вида,

    типоспецифические – определяют серологические варианты (серовары, серотипы) внутри одного вида,

    Н-антигены (жгутиковый) – белок флагеллин, входящий в состав бактериальных жгутиков, термолабилен;

    О-антигены (соматический) – представляет собой ЛПС Гр- бактерий, термостабильны. Эпитопы соматического антигена представлены гексозами (галакторза, рамноза и др.) и аминосахарами (N-ацетилглюкозамин, N-ацетилгалактозамин). У Гр+ бактерий соматический антиген представлен глицерилтейхоевой и рибитолтейхоевой кислотами.

    К-антигены (капсульные антигены) – находятся в капсуле и связаны с поверхностным слоем липополисахарида клеточной стенки. Содержат кислые полисахариды, в состав которых входят галактуроновая, глюкуроновая и идуроновая кислоты. Капсульные антигены используют для приготовления вакцин против менингококков, пневмококков, клебсиелл. Однако введение больших доз полисахаридных антигенов может вызвать толерантность. У –кишечной палочки К-антиген подразделяют на фракции А (термостабильная), В, L (термолабильные). Разновидностью К-антигена является поверхностный Vi-антиген (у сальмонелл), который обусловливает вирулентность микроба и персистенцию возбудителя у бактерионосителей.

    Антигенами бактерий являются также их токсины, рибосомы, ферменты.

Вирусные – а) суперкапсидные (белковые и гликопротеидные, например гемагглютинин и нейраминидаза вируса гриппа), б) капсидные (белковые), в) серцевинные (нуклеопротеидные).

Грибковые – дрожжеподобные грибы Candida albicans содержат полисахарид клеточной стенки – маннан, цитоплазматические и ядерные белки. Среди них выявлено 80 антигенов. Эти антигены вызывают немедленные (антитела Ig m, Ig G, Ig A, Ig E классов) и замедленные (Т-клеточные) реакции и сенсибилизацию без клинических проявлений. Антигены грибов обладают иммуностимулирующим и иммунодепрессивным действием.

Протективные – это антигенные детерминанты (эпитопы) микроорганизмов, которые вызывают наиболее сильный иммунный ответ, что обеспечивает иммунитет к соответствующему возбудителю при повторной инфекции. Впервые были обнаружены в экссудате пораженной ткани при сибирской язве. Наиболее иммуногенные, протективные пептиды вирусов используются для создания синтетических вакцин.

Изоантигены – антигены, по которым индивидуумы одного вида отличаются друг от друга (например, антигены эритроцитов – система АВО групп крови, Rh-фактор, антигены лейкоцитов – главного комплекса гистосовместимости).

Антигены главного комплекса гистосовместимости – гликопротеины клеточных мембран, которые играют важную роль в иммунном ответе, реакции отторжения трансплантата, определяют предрасположенность к некоторым заболеваниям. Спектр молекул главного комплекса гистосовместимости уникален для каждого организма и определяет его биологическую индивидуальность, что позволяет отличать «своё» (гистосовместимое) от «чужого» (несовместимого). Главный комплекс гистосовместимости обозначается как МНС (Major Histocompability Complex). Антигены МНС у разных видов животных обозначают по разному: у мышей - Н2-система, у собаки – DLA, у кролика - RLA, у свиньи – SLA. У человека антигены главного комплекса гистосовместимости обозначают HLA (Human leucocyte antigenes), так как для клинических и экспериментальных целей в качестве антигенов главного комплекса гистосовместимости определяют лейкоцитарные антигены. Человеческие лейкоцитарные антигены кодируются генами локализованными в 6-ой хромосоме. По химической структуре и функциональному назначению HLA подразделяют на два класса.

Антигены l класса МНС представлены на поверхности всех ядросодержащих клеток. Они регулируют взаимодействие мжду Т-киллерами и клетками мишенями. Основная биологическая роль нтигенов l класса заключается в том, что они являются маркерами “своего”. Клетки, несущие антигены l класса не атакуются собственными Т-киллерами в связи с тем, что в эмбриогенезе аутореактивные Т-киллеры, распознающие антигены l класса на собственных клетках, уничтожаются. Антигены l класса взаимодействуют с молекулой CD 8 на мембране Т-киллера.

Антигены ll класса МНС располагаются преимущественно на мембране иммунокомпетентных клеток (макрофагах, моноцитах, В- и активированных Т-лимфоцитах. Антигены ll класса взаимодействуют с молекулой CD 4 мембраны Т-хелпера, что вызываеь выделение лимфокинов, стимулирующих пролиферацию и созревание Т-киллеров и плазматических клеток.

Определение HLA-антигенов необходимо в следующих ситуациях:

    При типировании тканей с целью подбора донора реципиенту;

    Для установления связи наличия определенных антигенов МНС и предрасположенности к тому или иному заболеванию. Наиболее выраженная корреляция выявлена между наличием HLA-В27 и болезнью Бехтерева (анкилозирующий спондилоартрит): 95% больных имеют этот антиген.

    При оценке иммунного статуса (выявление несущих HLA-DR антигены а) активированных Т-лимфоцитов и б) мононуклеаров, участвующих в распознавании антигенов.

10.1. Антигены

10.1.1. Общие сведения

Жизнедеятельность каждого макроорганизма проходит в непосредственном контакте с чужеродными для него клетками, доклеточными формами жизни и отдельными биоорганическими молекулами. Будучи чужеродными, эти объекты таят в себе огромную опасность, так как могут нарушить гомеостаз, повлиять на течение биологических процессов в макроорганизме и даже повлечь его гибель. Контакт с чужеродными биологическими объектами представляет собой ранний сигнал опасности для иммунной системы, они являются основным раздражителем и объектом системы приобретенного иммунитета. Такие объекты получили название антигенов (от греч. anti - против, genos - создавать).

Современное определение термина «антиген» - это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознается его иммунной системой и вызывает иммунные реакции, направленные на его устранение. Учение об антигенах является ключевым для понимания основ молекулярно-генетических механизмов иммунной защиты макроорганизма, так как антиген является движущей силой иммунного ответа, а также принципов иммунотерапии и иммунопрофилактики.

Антигены имеют разнообразное происхождение. Они являются продуктом природного биологического синтеза любого чужеродного организма, могут образовываться в собственном организме при структурных изменениях уже синтезированных молекул в ходе биодеградации, нарушении их нормального биосинтеза или генетической мутации клеток. Кроме того, антигены могут быть по-

лучены искусственно в результате научной работы или путем направленного химического синтеза. Однако в любом случае молекулу антигена будет отличать генетическая чужеродность по отношению к макроорганизму, в который она попала. Теоретически антигеном может быть молекула любого органического соединения.

Антигены могут попадать в макроорганизм самыми разными путями: через кожные покровы или слизистые оболочки, непосредственно во внутреннюю среду организма, минуя покровы или образовываясь внутри него. При попадании в макроорганизм антигены распознаются иммунокомпетентными клетками и вызывают каскад разнообразных иммунных реакций, направленных на их инактивацию, разрушение и удаление.

10.1.2. Свойства антигенов

Характерными свойствами антигенов являются антигенность, иммуногенность и специфичность.

Антигенность - это потенциальная способность молекулы антигена активировать компоненты иммунной системы и специфически взаимодействовать с факторами иммунитета (антитела, клон эффекторных лимфоцитов). При этом компоненты иммунной системы взаимодействуют не со всей молекулой антигена, а только с ее небольшим участком, который получил название антигенной детерминанты, или эпитопа.

Различают линейные, или секвенциальные, антигенные детерминанты, например первичная аминокислотная последовательность пептидной цепи, и поверхностные, или конформационные, расположенные на поверхности молекулы антигена и возникшие в результате вторичной или более высокой конформации. На концевых участках молекулы антигена расположены концевые эпитопы, а в центре молекулы - центральные. Существуют также глубинные, или скрытые, антигенные детерминанты, которые проявляются при разрушении биополимера.

Размер антигенной детерминанты невелик. Он определяется характеристиками рецепторной части фактора иммунитета и структурой эпитопа. Например, антигенсвязывающий участок молекулы иммуноглобулина способен распознать линейную антигенную детерминанту, состоящую из 5 аминокислотных остатков. Для образования конформационной детерминанты требуется 6-12 аминокислотных остатков. Рецепторному аппарату Т-киллера для

определения чужеродности требуется нанопептид, включенный в состав MHC I класса, Т-хелперу - олигопептид размером 12- 25 аминокислотньгх остатков в комплексе с MHC II класса.

Молекулы большинства антигенов имеют довольно большие размеры. В их структуре определяется множество антигенных детерминант, которые распознаются разными по специфичности антителами и клонами лимфоцитов. Поэтому антигенность вещества зависит от наличия и числа антигенных детерминант в структуре его молекулы.

Структура и состав эпитопа имеют критическое значение. Замена хотя бы одного структурного компонента молекулы приводит к образованию принципиально новой антигенной детерминанты. Денатурация приводит к потере имеющихся антигенных детерминант или появлению новых, а также специфичности.

Чужеродность является обязательным условием для реализации антигенности. Понятие «чужеродность» относительное, так как иммунокомпетентные клетки не способны напрямую анализировать чужеродный генетический код, а лишь продукты, синтезированные с чужеродной генетической матрицы. В норме иммунная система невосприимчива к собственным биополимерам, если он не приобрел черты чужеродности. Кроме того, при некоторых патологических состояниях в результате нарушения регуляции иммунного ответа (см. аутоантигены, аутоантитела, аутоиммунитет, аутоиммунные болезни) собственные биополимеры могут восприниматься иммунной системой как чужие.

Чужеродность находится в прямой зависимости от эволюционного расстояния между организмом и источником антигенов. Чем дальше в таксономическом плане организмы отстоят друг от друга, тем большей чужеродностью и, следовательно, иммуногенностью обладают их антигены. Чужеродность заметно проявляется даже между особями одного вида, так как замена хотя бы одной аминокислоты эффективно распознается антителами в серологических реакциях.

Вместе с тем антигенные детерминанты даже генетически неродственных существ или веществ могут иметь определенное подобие и способны специфически взаимодействовать с одними и теми же факторами иммунитета. Такие антигены получили название перекрестно реагирующих. Обнаружено также сходство антигенных детерминант стрептококка, сарколеммы миокарда и базальной

мембраны почек, Treponema pallidum и липидной вытяжки из миокарда крупного рогатого скота, возбудителя чумы и эритроцитов человека 0(I) группы крови. Явление, когда один организм маскируется антигенами другого для защиты от факторов иммунитета, получило название антигенной мимикрии.

10.1.2.1. Иммуногенность

Иммуногенность - потенциальная способность антигена вызывать по отношению к себе в макроорганизме специфический продуктивный ответ. Иммуногенность зависит от трех групп факторов: молекулярных особенностей антигена, кинетики антигена в организме, реактивности макроорганизма.

К первой группе факторов отнесены природа, химический состав, молекулярная масса, структура и некоторые другие характеристики.

Природа антигена в значительной степени определяет иммуногенность. Наиболее выраженной иммуногенностью обладают белки и полисахариды, наименьшей - нуклеиновые кислоты и липиды. В то же время их сополимеры - липополисахариды, гликопротеиды, липопротеиды - способны в достаточной мере активировать иммунную систему.

Иммуногенность в определенной мере зависит от химического состава молекулы антигена. Для белковых антигенов важно разнообразие их аминокислотного состава. Монотонные полипептиды, построенные из одной аминокислоты, практически не активируют иммунную систему. Наличие в структуре молекулы белка ароматических аминокислот, таких, как тирозин, триптофан, существенно повышает иммуногенность.

Важна оптическая изомерия структурных компонентов молекулы антигена. Пептиды, построенные из L-аминокислот, высокоиммуногенны. Полипептидная цепочка, построенная из правовращающих изомеров аминокислот, напротив, может проявлять ограниченную иммуногенность при введении в малых дозах.

В спектре иммуногенности существует определенная иерархия антигенных детерминант: эпитопы различаются по способности индуцировать иммунный ответ. При иммунизации некоторым антигеном будут преобладать реакции к отдельным антигенным детерминантам. Это явление получило название иммунодоминантности. По современным представлениям она обусловлена различиями в сродстве эпитопов к рецепторам антигенпрезентирующих клеток.

Большое значение имеют размер и молекулярная масса антигена. Небольшие полипептидные молекулы с массой менее 5 кД, как правило, низкоиммуногенны. Олигопептид, способный индуцировать иммунный ответ, должен состоять из 6-12 аминокислотных остатков и иметь молекулярную массу около 450 Д. С увеличением размера пептида возрастает его иммуногенность, однако эта зависимость на практике не всегда выполняется. Так, при равной молекулярной массе (около 70 кД) альбумин является более сильным антигеном, чем гемоглобин.

Опытным путем было доказано, что высокодисперсные коллоидные растворы антигена плохо индуцируют иммунный ответ. Гораздо большей иммуногенностью обладают агрегаты молекул и корпускулярные антигены - цельные клетки (эритроциты, бактерии и т.д.). Это связано с тем, что корпускулярные и высокоагрегированные антигены лучше фагоцитируются, чем отдельные молекулы.

Оказалась также существенной стерическая стабильность молекулы антигена. При денатурации белков до желатина вместе с конформационной жесткостью теряется иммуногенность. Поэтому растворы желатина широко используются для парентерального введения.

Важным условием иммуногенности является растворимость антигена. Например, высокомолекулярные соединения кератин, меланин, натуральный шелк и др. нерастворимы в воде, не образуют коллоидных растворов в нормальном состоянии и не являются иммуногенами. Благодаря этому свойству конский волос, шелк, кетгут и др. прменяют в клинической практике для сшивания органов и тканей.

Вторая группа факторов связана с динамикой поступления антигена в организм и его выведения. Так, хорошо известна зависимость иммуногенности антигена от места и способа его введения, что обусловлено особенностями строения иммунной системы в местах интервенции антигена.

Сила иммунного ответа зависит от количества поступающего антигена: чем его больше, тем выраженнее иммунная реакция макроорганизма.

Третья группа объединяет факторы, определяющие зависимость иммуногенности от состояния макроорганизма: наследственности и функциональных характеристик. Хорошо известно, что резуль-

тат иммунизации в определенной мере связан с генотипом особи. Существуют чувствительные и нечувствительные к определенным антигенам роды и виды животных. Например, кролики и крысы практически не реагируют на некоторые бактериальные антигены, которые могут вызывать у морской свинки или мыши чрезвычайно бурный иммунный ответ.

10.1.2.2. Специфичность

Специфичностью называют способность антигена индуцировать иммунный ответ к строго определенному эпитопу. Специфичность антигена во многом определяется свойствами составляющих его эпитопов.

10.1.3. Классификация антигенов

Основываясь на отдельных характерных свойствах, все многообразие антигенов можно классифицировать по происхождению, природе, молекулярной структуре, степени иммуногенности, степени чужеродности, направленности активации и обеспеченности иммунного реагирования.

По происхождению различают экзогенные (возникшие вне организма) и эндогенные (возникшие внутри организма) антигены. Среди эндогенных особого внимания заслуживают ауто- и неоантигены. Аутогенные антигены (аутоантигены) - это структурно неизмененные антигены собственного организма, синтезируемые в организме в физиологических условиях. В норме аутоантигены неиммуногенны вследствие сформировавшейся иммунологической толерантности (невосприимчивости) либо их недоступности для контакта с факторами иммунитета - это так называемые забарьерные антигены. При срыве толерантности или нарушении целостности биологических барьеров (воспаление, травма) компоненты иммунной системы начинают специфически реагировать на аутоантигены выработкой специфических факторов иммунитета (аутоантитела, клон аутореактивных лимфоцитов). Неоантигены, в отличие от аутоантигенов, возникают в организме в результате генетических мутаций или модификаций и всегда чужеродны.

По природе: биополимеры белковой (протеиды) и небелковой (полисахариды, липиды, липополисахариды, нуклеиновые кислоты и др.) природы.

По молекулярной структуре: глобулярные (молекула имеет шаровидную форму) и фибриллярные (форма нити).

По степени иммуногенности: полноценные и неполноценные. Полноценные антигены обладают выраженной антигенностью и иммуногенностью - иммунная система чувствительного организма реагирует на их введение выработкой факторов иммунитета. Такие вещества, как правило, имеют достаточно большую молекулярную массу (более 10 кД), большой размер молекулы (частицы) в виде глобулы и хорошо взаимодействуют с факторами иммунитета.

Неполноценные антигены, или гаптены (термин предложен К. Ландштейнером), обладают антигенностью - способны специфически взаимодействовать с уже готовыми факторами иммунитета (антителами, лимфоцитами), но не способны при введении в нормальных условиях индуцировать в организме иммунный ответ. Чаще всего гаптенами являются низкомолекулярные соединения (молекулярная масса менее 10 кД).

Если искусственно укрупнить молекулу гаптена - соединить ее прочной связью с достаточно большой белковой молекулой, удается заставить иммунную систему макроорганизма специфически реагировать на гаптен как на полноценный антиген и вырабатывать факторы иммунитета. Молекула белка-носителя получила название шлеппера (тягача). При этом специфичность в составе молекулы конъюгата определяется гаптенной частью, а иммуногенность - белком-носителем. Используя для иммунизации конъюгаты, получают антитела к гормонам, лекарственным препаратам и другим низкоиммуногенным соединениям.

По степени чужеродности: ксено-, алло- и изоантигены. Ксеногенные антигены (или гетерологичные) - общие для организмов, стоящих на разных ступенях эволюционного развития, например, относящиеся к разным родам и видам. Впервые феномен общности ряда антигенов у животных разных видов был отмечен Д. Форсманом (1911 г.). При иммунизации кролика суспензией органов морской свинки ученый получил иммунную сыворотку, способную взаимодействовать с эритроцитами барана. Позже было установлено, что морская свинка и баран имеют ряд структурно сходных антигенных детерминант, дающих перекрестное реагирование. В дальнейшем перечень подобных ксеногенных антигенов был значительно расширен и они получили обобщенное название «антигены Форсмана».

Аллогенные антигены (или групповые) - общие для генетически неродственных организмов, но относящихся к одному виду. На основании аллоантигенов общую популяцию организмов можно подразделить на отдельные группы. Примером таких антигенов у людей являются антигены групп крови (системы АВ0 и др.). Аллогенные ткани при трансплантации иммунологически несовместимы - они отторгаются или лизируются реципиентом. Микробы на основании групповых антигенов могут быть подразделены на серогруппы, что используется в микробиологической диагностике.

Изогенные антигены (или индивидуальные) - общие только для генетически идентичных организмов, например для однояйцовых близнецов, инбредных линий животных. Изотрансплантаты обладают практически полной иммунной совместимостью и не отторгаются. К изоантигенам у людей относятся антигены гистосовместимости, а у бактерий - типовые антигены, не дающие дальнейшего расщепления.

В пределах отдельного организма в определенных органах или тканях обнаруживаются специфичные для них антигены, которые нигде больше не встречаются. Такие антигены получили название органо- и тканеспецифических.

В зависимости от физико-химических свойств антигена, условий его внедрения, характера реакции и реактивности макроорганизма различают иммуногены, толерогены и аллергены. Иммуногены способны индуцировать нормальную продуктивную реакцию иммунной системы - выработку факторов иммунитета (антитела, антигенореактивные клоны лимфоцитов). В клинической практике иммуногены используют для иммунодиагностики, иммунотерапии и иммунопрофилактики многих патологических состояний.

Толероген является полной противоположностью иммуногену. Он формирует иммунологическую толерантность или неотвечаемость на эпитопы данного вещества (см. раздел 11.6). Толероген, как правило, - мономер с низкой молекулярной массой, высокой эпитопной плотностью и высокой дисперсностью. Толерогены используют для профилактики и лечения иммунологических конфликтов и аллергии путем наведения искусственной неотвечаемости на отдельные антигены.

Аллерген, в отличие от иммуногена, формирует патологическую реакцию организма в виде гиперчувствительности немедленного или замедленного типа (см. раздел 11.4). По своим свойствам

аллерген не отличается от иммуногена. В клинической практике аллергены применяют для диагностики инфекционных и аллергических заболеваний.

По направленности активации и обеспеченности иммунного реагирования, т.е. необходимости вовлечения Т-лимфоцитов в индукцию иммунного ответа, выделяют Т-зависимые и Т-независимые антигены. Иммунная реакция в ответ на введение Т-зависимого антигена реализуется при обязательном участии Т-хелперов. К ним относится большая часть известных антигенов. Для развития иммунного ответа на Т-независимые антигены не требуется привлечение Т-хелперов. Эти антигены способны непосредственно стимулировать В-лимфоциты к антителопродукции, дифференцировке и пролиферации, а также вызывать иммунный ответ у бестимусных животных. Т-независимые антигены имеют относительно простое строение. Это крупные молекулы с молекулярной массой более 10 3 кД, поливалентны и имеют многочисленные однотипные эпитопы. Т-независимые антигены являются митогенами и поликлональными активаторами, например полимерный флагеллин (сократительный белок жгутиков бактерий), липополисахарид, туберкулин и др.

От Т-независимых антигенов следует отличать суперантигены. Это группа веществ, в основном микробного происхождения, которые могут неспецифически вызывать поликлональную реакцию. Молекула суперантигена способна вмешиваться в кооперацию антигенпрезентирующей клетки и Т-хелпера и формировать ложный сигнал распознавания чужеродной субстанции.

Суперантигены способны одновременно неспецифически активировать огромное количество иммунокомпетентных клеток (до 20% и более), вызывать гиперпродукцию цитокинов и низкоспецифичных иммуноглобулинов, массовую гибель лимфоцитов вследствие апоптоза и развитие вторичного функционального иммунодефицита. Свойства суперантигена обнаружены у стафилококкового энтеротоксина, белков вирусов Эпштейна-Барр, бешенства, ВИЧ и некоторых других микробных агентов.

10.1.4. Антигены организма человека

Начало изучению аллоантигенных свойств тканей было положено К. Ландштайнером, который в 1901 г. открыл систему групповых антигенов эритроцитов (АВ0). В организме человека

выделяют множество разнообразных антигенов. Они не только нужны для полноценного развития и функционирования всего организма в целом, но также несут важную информацию при клинико-лабораторной диагностике, определении иммунной совместимости органов и тканей в трансплантологии, а также в научных исследованиях. Наибольший медицинский интерес из числа аллогенных антигенов представляют антигены групп крови, среди изогенных - антигены гистосовместимости, а в группе органо- и тканеспецифических - раково-эмбриональные антигены.

10.1.4.1. Антигены групп крови человека

Антигены групп крови человека располагаются на цитоплазматической мембране клеток, но наиболее легко определяются на поверхности эритроцитов. Поэтому они получили название «эритроцитарные антигены». На сегодняшний день известно более 250 различных эритроцитарных антигенов. Однако наиболее важное клиническое значение имеют антигены системы АВ0 и Rh (резус-фактор): их необходимо учитывать при проведении переливания крови, пересадке органов и тканей, предупреждении и лечении иммуноконфликтных осложнений беременности и т.д.

Антигены системы АВ0 обнаруживаются в плазме крови, лимфе, секретах слизистых оболочек и других биологических жидкостях, но наиболее выражены на эритроцитах. Они синтезируются многими клетками организма, включая ядросодержащие предшественники эритроцитов, и свободно секретируются в межклеточное пространство. На мембране клеток эти антигены могут появиться либо как продукт клеточного биосинтеза, либо в результате сорбции из межклеточных жидкостей.

Антигены системы АВ0 представляют собой высокогликозилированные пептиды: 85% приходится на углеводную часть и 15% - на полипептидную. Пептидный компонент состоит из 15 аминокислотных остатков. Он постоянен для всех групп крови АВ0 и иммунологически инертен. Иммуногенность молукулы антигена системы АВ0 определяется его углеводной частью.

В системе антигенов АВ0 выделяют три варианта антигенов, различающихся по строению углеводной части: Н, А и В. Базовой молекулой является антиген Н, специфичность которого определяют три углеводных остатка. Антиген А имеет в структуре дополнительный четвертый углеводный остаток - N-ацетил-D-галактозу, а антиген В - D-галактозу. Антигены системы АВ0 имеют неза-

висимое аллельное наследование, что определяет наличие в популяции 4 групп крови: 0(I), А(II), B(III) и АВ(IV). Кроме того, антигены А и В имеют несколько аллотипов (например, А 1 , А 2 , А 3 ... или В 1 , В 2 , В 3 ...), которые встречаются в популяции людей с разной частотой.

Антигены системы АВ0 определяют в реакции агглютинации. Однако, учитывая высокий популяционный полиморфизм данной антигенной системы, перед гемотрансфузией обязательно проводят биологическую пробу на совместимость крови реципиента и донора. Ошибка в определении групповой принадлежности и переливание пациенту несовместимой по группе крови приводят к развитию острого внутрисосудистого гемолиза.

Другой важнейшей системой эритроцитарных антигенов является система резус-антигенов (Rh ) или резус-факторов. Эти антигены синтезируются предшественниками эритроцитов и обнаруживаются главным образом на эритроцитах, так как они водонерастворимы. Резус-антиген представляет собой термолабильный липопротеид. Выделяют 6 разновидностей этого антигена. Генетическая информация о его строении закодирована в многочисленных аллелях трех сцепленных между собой локусов (D/d, C/c, E/e). В зависимости от наличия или отсутствия резус-антигена в популяции людей различают две группы: резус-положительных и резус-отрицательных индивидуумов.

Совпадение по резус-антигену важно не только при переливании крови, но также для течения и исхода беременности. При беременности резус-отрицательной матери резус-положительным плодом может развиться резус-конфликт. Это патологическое состояние связано с выработкой антирезусных антител, способных вызвать иммунологический конфликт: невынашивание беременности или желтуху новорожденного (внутрисосудистый иммунный лизис эритроцитов).

Вследствие того что плотность резус-антигена на мембране эритроцитов невысока и его молекула обладает слабой антигенностью, резус-фактор определяют на мембране эритроцитов в реакции непрямой агглютинации (реакция Кумбса).

10.1.4.2. Антигены гистосовместимости

На цитоплазматических мембранах практически всех клеток макроорганизма обнаруживаются антигены гистосовместимости. Большая часть из них относится к системе главного комплекса

гистосовместимости, или MHC (от англ. Main Hystocompatibility Complex). Установлено, что антигены гистосовместимости играют ключевую роль в осуществлении специфического распознавания «свой-чужой» и индукции приобретенного иммунного ответа, определяют совместимость органов и тканей при трансплантации в пределах одного вида и другие эффекты. Большая заслуга в изучении MHC принадлежит Дж. Доссе, П. Догерти, П. Гореру, Г. Снеллу, Р. Цинкернагелю, Р.В. Петрову, ставшими основоположниками иммуногенетики.

Впервые MHC был обнаружен в 60-х годах ХХ века в опытах на генетически чистых (инбредных) линиях мышей при попытке межлинейной пересадки опухолевых тканей (П. Горер, Г. Снелл). У мышей этот комплекс получил название Н-2 и был картирован в 17-й хромосоме.

У человека MHC был описан несколько позже в работах Дж. Доссе. Его обозначили как HLA (от англ. Human Leukocyte Antigen), так как он ассоциирован с лейкоцитами. Биосинтез HLA определяется генами, локализованными сразу в нескольких локусах короткого плеча 6-й хромосомы.

MHC имеет сложную структуру и высокую полиморфность. Антигены гистосовместимости представляют собой гликопротеины, прочно связанные с цитоплазматической мембраной клеток. Их отдельные фрагменты имеют структурное сходство с молекулами иммуноглобулинов и поэтому относятся к единому суперсемейству. Различают два основных класса молекул MHC (I и II), которые объединяют множество сходных по структуре антигенов, кодируемых множеством аллельных генов. На клетках индивидуума могут одновременно экспрессироваться не более двух разновидностей продуктов каждого гена MHC. MHC I класса индуцирует преимущественно клеточный иммунный ответ, а MHC II класса - гуморальный.

MHC I класса состоит из двух нековалентно связанных полипептидных цепей (α и β) с разной молекулярной массой (рис. 10.1). α-Цепь имеет внеклеточный участок с доменным строением (α 1 -, α 2 - и а 3 -домены), трансмембранный и цитоплазматический. β-Цепь представляет собой β 2 -микроглобулин, адгезированный на α,-домен после экспрессии α-цепи на цитоплазматической мембране клетки. α 1 - и α 2 -Домены α-цепи формируют щель Бъеркмана - участок, ответственный за сорбцию и презентацию молекул

Рис. 10.1. Схема строения антигенов главного комплекса гистосовместимости: I - МНС I класса; II - МНС II класса

антигена. Щель Бъеркмана MHC I класса вмещает нанопептид, который легко выявляется специфическими антителами.

Сборка комплекса MHC I класса - антиген протекает внутриклеточно непрерывно в эндоплазматическом ретикулуме. В его состав включаются любые эндогенно синтезированные пептиды, в том числе вирусные, куда они переносятся из цитоплазмы при помощи особого белка, протеосомы. Включенный в комплекс пептид придает структурную устойчивость MHC I класса. В его отсутствие функцию стабилизатора выполняет шаперон (калнексин).

MHC I класса экспрессируются на поверхности практически всех клеток, кроме эритроцитов и клеток ворсинчатого трофобласта (профилактика отторжения плода). Плотность MHC I класса достигает 7000 молекул на клетку, и они покрывают около 1% ее поверхности. Для них характерна высокая скорость биосинтеза - процесс завершается за 6 ч. Экспрессия MHC I класса усиливается под влиянием цитокинов, например γ-интерферона.

В настоящее время у человека различают более 200 различных вариантов HLA I класса. Они кодируются генами, картированными

в трех основных сублокусах 6-й хромосомы и наследуются и проявляются независимо: HLA-A, HLA-B и HLA-C. Локус А объединяет более 60 вариантов, В - 130, а С - около 40. Независимое наследование генов сублокусов в популяции формирует бесконечное множество неповторяющихся комбинаций HLA I класса. Каждый человек строго уникален по набору антигенов гистосовместимости, исключение составляют только однояйцовые близнецы. Основная биологическая роль HLA I класса - они определяют биологическую индивидуальность (биологический паспорт) и являются маркерами «своего» для иммунокомпетентных клеток. Заражение клетки вирусом или ее мутация изменяют структуру HLA I класса, что является сигналом для активации Т-киллеров (CD8 + -лимфоциты) к уничтожению объекта.

HLA I класса выявляют на лимфоцитах в реакции микролимфоцитолиза со специфическими сыворотками, которые получают от многорожавших женщин, пациентов после массивной гемотрансфузии, а также с использованием моноклональных антител.

В структуре и функции MHC II класса есть ряд принципиальных отличий. Комплекс образован двумя нековалентно связанными полипептидными цепями (α и β), имеющими сходное доменное строение (см. рис. 10.1). Обе цепи являются трансмембранными пептидами и «заякорены» в цитоплазматической мембране. Щель Бъеркмана в MHC II класса образована одновременно обеими цепями. Она вмещает олигопептид размером 12-25 аминокислотных остатков, недосягаемый специфическими антителами. MHC II класса включает в себя пептид, захваченный из внеклеточной среды путем эндоцитоза, а не синтезированный самой клеткой. Молекулы МНС II класса экспрессируются на поверхности ограниченного числа клеток: дендритных, В-лимфоцитах, Т-хелперах, активированных макрофагах, тучных, эпителиальных и эндотелиальных клетках. Обнаружение MHC II класса на нетипичных клетках расценивается в настоящее время как иммунопатология. Биосинтез MHC II класса протекает в эндоплазматическом ретикулуме и экспрессируется на цитоплазматической мембране клетки в течение 1 ч после эндоцитоза антигена. Экспрессия комплекса может быть усилена γ-интерфероном и снижена простагландином Е 2 .

У мыши антиген гистосовместимости получил название Ia- антигена, а у человека по аналогии - HLA II класса.

По имеющимся данным, человеческому организму свойствен чрезвычайно высокий полиморфизм HLA II класса, который в большей степени определяется особенностями строения β-цепи. В состав комплекса входят продукты трех основных локусов: HLA- DR, DQ и DP. При этом локус DR объединяет около 300 аллельных форм, DQ - около 400, а DP - около 500.

Наличие и тип MHC II класса определяют в серологических (микролимфоцитотоксический тест) на В-лимфоцитах и клеточных реакциях иммунитета (смешанная культура лимфоцитов). Специфические антитела к MHC II класса получают так же, как и к I классу. Тестирование в смешанной культуре лимфоцитов позволяет выявить минорные компоненты MHC II класса, не определяемые серологически.

MHC II класса участвуют в индукции приобретенного иммунного ответа. Фрагменты молекулы антигена экспрессируются на цитоплазматической мембране особой группы клеток, которая получила название антигенпрезентирующих. Основными являются дендритная клетка, макрофаг и В-лимфоцит. Структура MHC II класса с включенным в него пептидом в комплексе с кофакторными молекулами CD-антигенов воспринимается и анализируется Т-хелперами (CD4 + -лимфоциты). В случае распознавания чужеродности Т-хелпер начинает синтез соответствующих иммуноцитокинов, и включается механизм специфического иммунного реагирования: пролиферация и дифференцировка антигенспецифических клонов лимфоцитов.

Помимо описанных выше антигенов гистосовместимости, идентифицирован III класс молекул MHC. Локус, содержащий кодирующие их гены, вклинивается между I и II классами и разделяет их. К MHC III класса относятся некоторые компоненты комплемента (С2, С4), белки теплового шока, факторы некроза опухоли и др.

10.1.4.3. Опухольассоциированные антигены

В 1948-1949 гг. видный отечественный микробиолог и иммунолог Л.А. Зильбер при разработке вирусной теории рака доказал наличие антигена, специфичного для опухолевой ткани. Позже в 60-х годах ХХ века Г.И. Абелев (в опытах на мышах) и Ю.С. Татаринов (при обследовании людей) обнаружили в сыворотке крови больных первичным раком печени эмбриональный вариант сывороточного альбумина - α-фетопротеин. К настоящему моменту обнаружено и охарактеризовано множество опухольассоциирован-

ных антигенов. Однако не все опухоли содержат специфические маркерные антигены, равно как и не все маркеры обладают строгой тканевой специфичностью.

Опухольассоциированные антигены классифицируют по локализации и генезу. Различают сывороточные, секретируемые опухолевыми клетками в межклеточную среду, и мембранные. Последние получили название опухолеспецифических трансплантационных антигенов, или TSTA (от англ. Tumor-Specific Transplantation Antigen).

Выделяют также вирусные, эмбриональные, нормальные гиперэкспрессируемые и мутантные опухольассоциированные антигены. Вирусные - являются продуктами онковирусов, эмбриональные в норме синтезируются в зародышевом периоде. Хорошо известен α-фетопротеин (эмбриональный альбумин), нормальный протеин тестикул (MAGE 1,2,3 и др.), маркеры меланомы, рака молочной железы и др. Хорионический гонадотропин, в норме синтезируемый в плаценте, обнаруживается при хориокарциноме и других опухолях. В меланоме в большом количестве синтезируется нормальный фермент тирозиназа. Из мутантных белков следует отметить протеин Ras - ГТФ-связывающий белок, участвующий в трансмембранном проведении сигнала. Маркерами рака молочной и поджелудочной желез, карцином кишечника являются модифицированные муцины (MUC 1, 2 и др.).

В большинстве случаев опухольассоциированные антигены представляют собой продукты экспрессии генов, в норме включаемых в эмбриональном периоде. Они являются слабыми иммуногенами, хотя в отдельных случаях могут индуцировать реакцию цитотоксических Т-лимфоцитов (Т-киллеров) и распознаваться в составе молекул MHC (HLA) I класса. Синтезируемые к опухольассоциированным антигенам специфические антитела не угнетают рост опухолей.

10.1.4.4. CD-антигены

На мембране клеток обнаруживаются групповые антигены, объединяющие клетки с определенными морфофункциональными характеристиками. Эти молекулы получили название антигенов кластеров дифференцировки клетки, или CD-антигенов (от англ. Cell Differentiation Antigens, или Claster Definition). По структуре они являются гликопротеинами и в большинстве своем относятся к суперсемейству иммуноглобулинов.

Список CD-маркеров довольно обширный и насчитывает около 200 вариантов. Среди многообразия CD-антигенов наиболее широкое распространение получили маркеры иммунокомпетентных клеток. Например, CD3 экспрессируется в популяции Т-лимфоцитов, CD4 - Т-хелперов, а CD8 - цитотоксических Т-лимфоцитов Т-киллеров, CD11a - моно- и гранулоцитов, CD11b - естественных киллеров, CD19-22 - В-лимфоцитов. Информация о структуре закодирована в различных участках генома, а экспрессия зависит от стадии дифференцировки клетки и ее функционального состояния.

CD-антигены имеют значение в диагностике иммунодефицитных состояний. Определение CD-маркеров осуществляется в иммунологических реакциях с использованием моноклональных антител.

10.1.5. Антигены микробов

10.1.5.1. Антигены бактерий

В структуре бактериальной клетки различают жгутиковые, соматические, капсульные и некоторые другие антигены (рис. 10.2). Жгутиковые, или Н-антигены, локализуются в их жгутиках и представляют собой эпитопы сократительного белка флагеллина. При нагревании флагеллин денатурирует и Н-антиген теряет свою специфичность. Фенол не действует на этот антиген.

Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу составляют липополисахариды. О-антиген термостабилен и не разрушается при длительном кипячении. Однако альдегиды (например, формалин) и спирты нарушают его структуру.

Если проиммунизировать животное живыми бактериями, имеющими жгутики, то будут вырабатываться антитела одновременно к О- и Н-антигенам. Введение животному прокипяченной культуры стимулирует биосинтез антител к соматическому антигену. Культура бактерий, обработанная фенолом, вызовет образование антител к жгутиковым антигенам.

Капсульные, или К-антигены, встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из полипептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В и L.

Рис. 10.2. Основные бактериальные антигены (пояснение в тексте)

Наибольшая термостабильность характерна для группы А - они не денатурируют даже при длительном кипячении. Группа В выдерживает непродолжительное нагревание (около 1 ч) до 60 °С. Группа L быстро разрушается при этой температуре. Поэтому частичное удаление К-антигена возможно путем длительного кипячения бактериальной культуры.

На поверхности возбудителя брюшного тифа и других энтеробактерий, которые обладают высокой вирулентностью, можно обнаружить особый вариант капсульного антигена. Он получил название антигена вирулентности, или Vi-антигена. Обнаружение этого антигена или специфичных к нему антител имеет большое диагностическое значение.

Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие вещества, которые секретируются бактериями в окружающую среду (например, тубер-

кулин). Столбнячный, дифтерийный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэтому их используют для получения молекулярных вакцин - анатоксинов.

В антигенном составе некоторых бактерий выделяется группа антигенов с сильно выраженной иммуногенностью, чья биологическая активность играет ключевую роль в формировании патогенности возбудителя - связывание таких антигенов специфическими антителами практически полностью инактивирует вирулентные свойства микроорганизма и обеспечивает к нему иммунитет. Эти антигены получили название протективных.

10.1.5.2. Антигены вирусов

В структуре вирусной частицы различают ядерные (или коровые), капсидные (или оболочечные) и суперкапсидные антигены. На поверхности некоторых вирусных частиц встречаются особые V-антигены - гемагглютинин и фермент нейраминидаза. Антигены вирусов различаются по происхождению. Часть из них вирусоспецифические, кодируются в нуклеиновой кислоте вируса. Другие, являющиеся компонентами клетки хозяина (углеводы, липиды), формируют суперкапсид вируса при его рождении путем почкования.

Антигенный состав вириона зависит от строения самой вирусной частицы. В просто организованных вирусах антигены ассоциированы с нуклеопротеидами. Эти вещества хорошо растворяются в воде и поэтому обозначаются как S-антигены (от лат. solutio - раствор). У сложноорганизованных вирусов часть антигенов связана с нуклеокапсидом, а другая находится во внешней оболочке, или суперкапсиде.

Антигены многих вирусов отличаются высокой степенью изменчивости, что связано с постоянными мутациями в генетическом материале вирусов. Примером могут служить вирус гриппа,

10.1.6. Процессы, происходящие с антигеном в макроорганизме

Антигенная интервенция - это процесс, протекающий поэтапно с определенной динамикой во времени. При этом на каждом этапе появления и распространения в макроорганизме антиген сталкивается с мощным противодействием развитой сети разнообразных факторов иммунитета (табл. 10.1).

Таблица 10.1. Процессинг антигена в макроорганизме

Выделяют несколько путей проникновения и распространения антигена в макроорганизме. Они могут появляться внутри самого макроорганизма (эндогенное происхождение) или поступать извне (экзогенное происхождение). Экзогенные антигены могут проникнуть в макроорганизм:

Через дефекты кожных покровов и слизистых оболочек (как результат ранений, микротравм, укусов насекомых, расчесов и др.);

Путем всасывания в желудочно-кишечном тракте (эндоцитоз эпителиальными клетками);

Межклеточно (при незавершенном фагоцитозе);

В организме антиген может распространяться с лимфой (лимфогенный путь) и кровью (гематогенный путь) по различным органам и тканям. При этом чаще всего он фильтруется в лимфоузлах, селезенке, а также в лимфоидных скоплениях печени, кишечника и других органов, где вступает в контакт с факторами иммунной защиты.

Ответная реакция этих факторов возникает практически немедленно. Первыми вступают в действие факторы врожденного иммунитета, так как эта система не требует длительного времени для активации. Если антиген не был инактивирован или элиминирован в течение 4 ч, включается система приобретенного иммунитета: обеспечивается специфическое распознавание «свой-чужой», вырабатываются факторы регуляции (цитокины) и иммунной защиты (специфические антитела, клоны антигенореактивных лимфоцитов).

Совокупный эффект всех звеньев и уровней иммунной защиты макроорганизма, независимо от степени их вовлечения в процесс, направлен на:

Связывание и блокирование биологически активных участков молекулы антигена;

Разрушение или отторжение антигена;

Утилизацию, изоляцию (инкапсуляцию) или выведение остатков антигена из макроорганизма.

В итоге достигается восстановление гомеостаза и структурной целостности макроорганизма. Параллельно формируется иммунная память, толерантность или аллергия.

10.2. Иммунная система человека

Специфическую функцию надзора за генетическим постоянством внутренней среды организма, сохранения его биологической и видовой индивидуальности осуществляет иммунная система.

10.2.1. Структурно-функциональные элементы иммунной системы

Иммунная система - это специализированная, анатомически обособленная лимфоидная ткань. Она распределена по всему организму в виде различных лимфоидных образований и отдельных клеток, и на ее долю приходится 1-2% от массы тела. В анатомическом плане иммунная система подразделена на центральные и периферические органы, в функциональном - на органы воспроизводства и селекции клеток (костный мозг, тимус), контроля внешней среды или экзогенной интервенции (лимфоидные системы кожи и слизистых оболочек), контроля генетического постоянства внутренней среды (селезенка, лимфатические узлы, печень, кровь, лимфа).

Основными функциональными клетками являются лимфоциты. Их количество в организме достигает 10 12 . К числу функциональных клеток иммунной системы относят также мононуклеарные и гранулярные лейкоциты, тучные и дендритные клетки. Часть клеток сосредоточена в отдельных органах иммунной системы, другие свободно перемещаются по всему организму. Схематическое строение иммунной системы представлено на рис. 10.3.

10.2.1.1. Центральные органы иммунной системы

Центральные органы иммунной системы, костный мозг и вилочковая железа или тимус, - это органы воспроизводства и селекции клеток иммунной системы. Здесь происходят лимфопоэз - рождение, размножение (пролиферация) и дифференцировка лимфоцитов до стадии предшественников или зрелых неиммунных (наивных) клеток, а также их «обучение». У птиц к центральным органам иммунной системы относят сумку Фабрициуса (bursa Fabricii), локализованную в области клоаки.

Костный мозг располагается в губчатом веществе костей (эпифизы трубчатых костей, грудина, ребра и др.). Здесь находятся полипотентные стволовые клетки (ППСК), которые являются ро-

Рис. 10.3. Органы иммунной системы человека

доначальницами всех форменных элементов крови, включая иммунокомпетентные клетки. В строме костного мозга формируются предшественники В- и Т-лимфоцитов, которые впоследствии мигрируют соответственно в В-зоны макроорганизма и тимус. Фагоциты и некоторые дендритные клетки также образуются в костном мозгу. В нем можно также обнаружить плазматические клетки - результат терминальной дифференцировки В-лимфоцитов.

Вилочковая железа, тимус, или зобная железа, располагается в верхней части загрудинного пространства. Этот орган отличается особым морфогенезом. Тимус формируется в период внутриутробного развития. К моменту рождения масса тимуса достигает 10-15 г, окончательно он созревает к пятилетнему возрасту, а максимального размера достигает к 10-12 годам жизни (масса 30-40 г). После периода полового созревания начинается инволюция органа - происходит замещение лимфоидной ткани жировой и соединительной.

Тимус имеет дольчатое строение. В его структуре различают мозговой и корковый слои. В строме коркового слоя находится большое количество эпителиальных клеток коры, названных «клеткиняньки», которые своими отростками образуют мелкоячеистую сеть, где располагаются созревающие лимфоциты. В пограничном, корково-мозговом, слое располагаются дендритные клетки тимуса, а в мозговом - эпителиальные клетки мозгового слоя.

Предшественники Т-лимфоцитов поступают из костного мозга в корковый слой тимуса. Здесь под влиянием тимических факторов они активно размножаются, дифференцируются (превращаются) в зрелые Т-лимфоциты и «учатся» распознавать чужеродные антигенные детерминанты.

Процесс «обучения» включает положительную и отрицательную селекцию. Критерием «обученности» являются качество Т-клеточной антигенной рецепции (специфичность и аффинность) и жизнеспособность клетки.

Положительная селекция происходит в корковом слое при помощи эпителиальных клеток. Суть ее заключается в поддержке клонов Т-лимфоцитов, рецепторы которых эффективно связались с экспрессированными на эпителиальных клетках молекулами MHC, независимо от структуры инкорпорированных собственных олигопептидов. Эпителиоциты коры выделяют ростовые факторы тимуса, активирующие размножение Т-лимфоцитов.

Отрицательную селекцию осуществляют дендритные клетки в пограничной корково-мозговой зоне тимуса. Ее цель - выбраковка аутореактивных клонов Т-лимфоцитов. Клетки, позитивно реагирующие на комплекс MHC-аутологичный пептид, подвергаются уничтожению путем индукции у них апоптоза.

В итоге селекции более 99% Т-лимфоцитов не выдерживают испытаний и погибают. Лишь менее 1% клеток превращается в зрелые формы, способные распознать в комплексе с аутологичными MHC только чужеродные биополимеры. Ежесуточно около 10 6 зрелых «обученных» Т-лимфоцитов покидают тимус с крово- и лимфотоком и мигрируют в различные органы и ткани.

Созревание и «обучение» Т-лимфоцитов в тимусе имеет важное значение для формирования иммунитета. Отсутствие или недоразвитие тимуса при врожденном дефекте развития вилочковой железы - аплазии или гипоплазии органа, ее хирургическом удалении или радиационном поражении ведет к резкому снижению эффективности иммунной защиты макроорганизма. Между тем тимэктомия у взрослых практически не приводит к серьезным дефектам в иммунитете.

10.2.1.2. Периферические органы иммунной системы

К периферическим органам иммунной системы относят селезенку, лимфатические узлы, аппендикс, печень, миндалины глоточного кольца, групповые лимфатические фолликулы, кровь, лимфу и др. В этих органах проходит иммуногенез - размножение и окончательное созревание предшественников иммунокомпетентных клеток и осуществляется иммунологический надзор. В функциональном плане периферические органы иммунной системы могут быть подразделены на органы контроля внутренней среды организма (лимфатические узлы, селезенка, тканевые мигрирующие клетки) и его кожных и слизистых покровов (аппендикс, лимфатические фолликулы и скопления).

Лимфатические узлы - мелкие округлые анатомические образования бобовидной формы, которые располагаются по ходу лимфатических сосудов. Каждый участок тела имеет региональные лимфоузлы. В общей сложности в организме человека насчитывается до 1000 лимфоузлов. Лимфатические узлы выполняют функцию биологического сита - через них фильтруется лимфа и задерживаются и концентрируются антигены. Через лимфоузел проходит в среднем около 10 9 лимфоцитов в 1 ч.

В строении лимфоузла различают корковое и мозговое вещество. Строма коры разделена соединительнотканными трабекулами на сектора. В ней выделяют поверхностный корковый слой и паракортикальную зону. В секторах поверхностного коркового слоя расположены лимфатические фолликулы с центрами размножения В-лимфоцитов (герминативные центры). Здесь же обнаруживаются фолликулярные дендритные клетки, способствующие созреванию В-лимфоцитов. Паракортикальный слой - это зона Т-лимфоцитов и интердигитальных дендритных клеток, потомков дермальных клеток Лангерганса. Мозговое вещество образовано тяжами соединительной ткани, между которыми располагаются макрофаги и плазматические клетки.

В пределах лимфоузла происходит антигенная стимуляция иммунокомпетентных клеток и включается система специфического иммунного реагирования, направленная на обезвреживание антигена.

Селезенка - это орган, через который фильтруется вся кровь. Он располагается в левой подвздошной области и имеет дольчатое строение. Лимфоидная ткань образует белую пульпу. В строении различают первичные, периартериальные лимфоидные фолликулы (окружают артерии по их ходу) и вторичные, располагающиеся на границах первичных фолликулов. Первичные лимфоидные скопления заселены преимущественно Т-лимфоцитами, а вторичные - В-лимфоцитами и плазматическими клетками. Кроме того, в строме селезенки обнаруживают фагоциты и ретикулярные дендритные клетки.

В селезенке, как в сите, задерживаются антигены, оказавшиеся в кровотоке, и состарившиеся эритроциты. Этот орган называют кладбищем эритроцитов. Здесь происходят антигенная стимуляция иммунокомпетентных клеток, развитие специфической иммунной реакции на антиген и его обезвреживание.

Печень играет особую роль в иммунной системе. В ней находится более половины всех тканевых макрофагов и большая часть естественных киллеров. Лимфоидные популяции печени обеспечивают толерантность к пищевым антигенам, а макрофаги утилизируют иммунные комплексы, в том числе сорбированные на стареющих эритроцитах.

Групповые лимфатические фолликулы (пейеровы бляшки) являются скоплением лимфоидной ткани в слизистой оболочке тонкой кишки. Такие образования также находятся в червеобразном отростке слепой кишки - аппендиксе. Кроме того, на всем протяже-

нии желудочно-кишечного тракта, начиная с пищевода и кончая анальным отверстием, располагаются единичные лимфатические фолликулы. Они обеспечивают местный иммунитет слизистой оболочки кишки и ее просвета и регулируют видовой и количественный состав ее нормальной микрофлоры.

Скопление лимфоидных элементов в виде миндалин глоточного кольца обеспечивает местный иммунитет в носоглотке, ротовой полости и верхних дыхательных путях, защищает их слизистые оболочки от внедрения микробов и других генетически чужеродных агентов, передающихся воздушно-капельным или воздушнопылевым путем, и регулирует локальную нормофлору.

Лимфа - жидкая ткань организма, которая содержится в лимфатических сосудах и узлах. Она включает в себя все соединения, поступающие из межтканевой жидкости. Основными и практически единственными клетками лимфы являются лимфоциты. В ее составе эти клетки осуществляют кругооборот в организме.

В кровь циркулируют предшественники и зрелые Т- и В-лимфоциты, полиморфно-ядерные лейкоциты, моноциты. Лимфоциты составляют 30% общего количества лейкоцитов. Одномоментно в крови присутствует менее 2% общего количества лимфоцитов.

10.2.1.3. Клетки иммунной системы

Специфическую функцию иммунной защиты непосредственно осуществляет многочисленный пул клеток миелоидного и лимфоидного ростков крови: лимфоциты, фагоциты и дендритные клетки. Это основные клетки иммунной системы. Кроме них, в иммунный ответ может вовлекаться множество других клеточных популяций (эпителий, эндотелий, фибробласты и др.). Перечисленные клетки различаются морфологически, по функциональной активности, маркерам (специфические молекулярные метки), рецепторному аппарату и продуктам биосинтеза. Тем не менее большую часть клеток иммунной системы объединяет близкое генетическое родство: они имеют общего предшественника, полипотентную стволовую клетку костного мозга (рис. 10.4).

На поверхности цитоплазматической мембраны клеток иммунной системы существуют особые молекулы, которые служат их маркерами. В 80-х годах прошлого века была принята международная номенклатура мембранных маркеров лейкоцитов человека, названных «CD-антигены» (табл. 10.2)

Рис. 10.4. Схема иммуногенеза (пояснения в тексте)

Таблица 10.2. Основные CD-маркеры клеток, участвующих в иммунном ответе

Продолжение табл. 10.2

Окончание табл. 10.2

Примечание. АЗКЦТ - антителозависимая клеточно-опосредованная цитотоксичность; АПК - антигенпрезентирующие клетки.

По функциональной активности клетки-участники иммунного ответа подразделяют на регуляторные (индукторные), эффекторные и антигенпрезентирующие. Регуляторные клетки управляют функционированием компонентов иммунной системы путем выработки медиаторов - иммуноцитокинов и лигандов. Эти клетки определяют направление развития иммунного реагирования, его интенсивность и продолжительность. Эффекторы являются непосредственными исполнителями иммунной защиты путем прямого воздействия на объект либо путем биосинтеза биологически активных веществ со специфическим эффектом (антитела, токсичные субстанции, медиаторы и пр.).

Антигенпрезентирующие клетки выполняют ответственную задачу: захватывают, процессируют (перерабатывают путем ограниченного протеолиза) и представляют антиген иммунокомпетентным Т-клеткам в составе комплекса с MHC II класса. АПК лишены специфичности в отношении самого антигена. Молекула MHC II класса может включать в себя любые эндоцитированные из межклеточной среды олигопептиды, как свои собственные, так и чужие. Установлено, что большая часть комплексов MHC II класса содержит аутогенные молекулы и лишь малая доля - чужеродный материал.

Помимо MHC II класса, АПК экспрессируют ко-стимулирующие факторы (CD40, 80, 86) и множество молекул адгезии. Последние обеспечивают тесный, пространственно стабильный и продолжительный контакт АПК с Т-хелпером. Кроме того, АПК экспрессируют молекулы CD1, с помощью которых могут презентировать липосодержащие или полисахаридные антигены.

Основными профессиональными АПК являются дендритные клетки костно-мозгового происхождения, В-лимфоциты и макро-

фаги. Дендритные клетки почти в 100 раз эффективнее макрофагов. Функцию непрофессиональных АПК могут также выполнять некоторые другие клетки в состоянии активации - эпителиальные клетки и эндотелиоциты.

Осуществление целенаправленной иммунной защиты макроорганизма возможно благодаря наличию на клетках иммунной системы специфических антигенных рецепторов (иммунорецепторов). По механизму функционирования они подразделяются на прямые и непрямые. Прямые иммунорецепторы непосредственно связываются с молекулой антигена. Непрямые иммунорецепторы взаимодействуют с молекулой антигена опосредованно - через Fc-фрагмент молекулы иммуноглобулина (см. раздел 11.1.2). Это так называемый Fc-рецептор (FcR).

Fc-рецепторы различаются по аффинности. Высокоаффинный рецептор может связываться с интактными молекулами IgE или IgG4 и образовывать рецепторный комплекс, в котором антигенспецифическую ко-рецепторную функцию выполняет молекула иммуноглобулина. Такой рецептор есть у базофилов и тучных клеток. Низкоаффинный FcR распознает молекулы иммуноглобулина, уже образовавшие иммунные комплексы. Он обнаруживается на макрофагах, естественных киллерах, эпителиальных, дендритных и множестве других клеток.

Иммунное реагирование основано на тесном взаимодействии различных клеточных популяций. Это достигается при помощи биосинтеза клетками иммунной системы широкого спектра иммуноцитокинов. Подавляющее большинство клеток иммунной системы постоянно перемещается во внутренних средах организма с крово- и лимфотоком и благодаря амебоидной подвижности.

Клеточно-элементный состав иммунной системы постоянно возобновляется за счет деления стволовых клеток. Состарившиеся, выработавшие свой биологический ресурс, ложно активированные, зараженные и генетически трансформированные клетки уничтожаются.

10.2.1.3.1. Лимфоциты

Лимфоциты - подвижные мононуклеарные клетки. В зависимости от места созревания эти клетки подразделяются на две популяции Т- (тимус) и В- (бурса Фабрициуса, костный мозг) лимфоцитов. Лимфоциты играют ключевую роль в обеспечении приобретенного (адаптивного) иммунитета. Они осуществляют

специфическое распознавание антигена, индукцию клеточного и гуморального иммунного ответа, различные формы иммунного реагирования.

В организме непрерывно идет возобновление популяций лимфоцитов, клетки активно мигрируют между различными органами и тканями. Вместе с тем миграция и расселение лимфоцитов в тканях не являются хаотическим процессом. Он имеет направленный характер и строго регулируется экспрессией на мембране лимфоцитов, эндотелии сосудов и клеточных элементах стромы особых молекул адгезии (интегрины, селектины и др.). Так, незрелые Т-лимфоциты активно мигрируют в тимус. Зрелые неиммунные («наивные») лимфоциты тропны к периферическим лимфоидным органам и тканям. При этом Т- и В-лимфоциты заселяют только «свои» области - это так называемый эффект хоминговой рецепции (от англ. home - дом). Зрелые иммунные (активированные) лимфоциты распознают эпителий в очаге воспаления. Клетки иммунологической памяти всегда возвращаются в места своего происхождения.

Продолжительность жизни неиммунных лимфоцитов достаточно большая. У Т-лимфоцитов она достигает нескольких месяцев или лет, а у В-клеток - недель или месяцев. Дольше всех живут клетки иммунологической памяти (см. раздел 11.5) - до 10 лет и более. Однако активированные или терминально дифференцированные лимфоциты имеют короткую продолжительность жизни (несколько суток). Состарившиеся, ложно активированные и аутореактивные (реагирующие на аутоантигены) лимфоциты подвергаются уничтожению путем индукции у них апоптоза. Погибшие лимфоциты постоянно заменяются новыми за счет их пролиферации в центральных и периферических органах иммунной системы. Численность лимфоидных популяций находится под жестким контролем клеток самой иммунной системы.

Для выполнения специфической функции лимфоциты несут на своей поверхности прямые антигенные рецепторы и являются иммунокомпетентными клетками. Иммунорецептор В-лимфоцита и особого γδТ-лимфоцита распознает нативный эпитоп, т.е. непосредственно отличает чужеродные субстанции. Иммунорецептор традиционного Т-лимфоцита ориентирован на олигопептиды в составе MHC, т.е. распознает измененное «свое».

Антигенспецифические рецепторы лимфоцитов имеют сложное молекулярное строение, уникальное для каждой клетки. Напри-

мер, у Т-лимфоцитов они состоят из нескольких полипептидных субъединиц, имеющих полигенное кодирование. Число генов, детерминирующих структуру V-области этого рецептора (вариабельный участок, ответственный за специфическое распознавание), в незрелой клетке достигает 100. При созревании лимфоцита в результате рекомбинационных перестроек в V-генах, индивидуальных для каждой клетки, образуется бесконечно большое количество вариантов антигенной специфичности рецептора, достигающее 10 12 , что сопоставимо с общей численностью популяции Т-лимфоцитов. Формирование В-клеточного рецептора имеет те же закономерности. Биологический смысл феномена чрезвычайно важен: в организме постоянно поддерживается широкий репертуар специфической направленности лимфоидных рецепторов, и клетки готовы в любой момент ответить защитной реакцией на любой возможный антиген.

В такой ситуации закономерно появление Т-лимфоцитов, специфичных для антигенов собственного организма. Однако они должны элиминироваться в тимусе на ранних этапах своего развития. Поэтому различают первичный и вторичный антигенраспознающий репертуар лимфоидных популяций. Первичный характеризуется набором рецепторных специфичностей, формирующимся при образовании лимфоцитов в костном мозгу индивидуума. Вторичный, или клональный, репертуар является совокупностью вариантов рецептора после отбраковки аутореактивных клонов клеток.

Антигенспецифическая рецепция в лимфоцитах имеет стандартные механизмы реализации. Полученный внеклеточной частью рецептора сигнал от раздражителя (антигена) передается по трансмембранному участку на его внутриклеточную часть, которая уже активирует внутриклеточные ферменты (тирозинкиназу, фосфорилазу и др.).

Для запуска продуктивной реакции лимфоцита необходима агрегация его рецепторов. Кроме того, для стабилизации рецепторлигандного взаимодействия и восприятия ко-стимулирующего сигнала требуются вспомогательные молекулы.

Среди лимфоцитов встречаются клетки без отличительных признаков Т- и В-лимфоцитов. Они получили название нулевых клеток. В костном мозгу на их долю приходится около 50% всех лимфоцитов, а в крови - примерно 5%. Функциональная активность остается неясной.

В-лимфоциты. В-лимфоциты - это преимущественно эффекторные иммунокомпетентные клетки, на долю которых приходится около 15% всей численности лимфоцитов. Выделяют две субпопуляции В-лимфоцитов: традиционные В-клетки, не имеющие маркера CD5 - , и CD5 + В1-лимфоциты.

При электронной микроскопии CD5 - В-лимфоциты имеют шероховатую поверхность, на ней определяются CD19-22 и некоторые другие. Функцию антигенспецифического рецептора (BCR) выполняют особые мембранные формы иммуноглобулинов. Клетки экспрессируют MHC II класса, ко-стимулирующие молекулы CD40, 80, 86, FcR к иммунным комплексам и нативным молекулам иммуноглобулина класса G, рецептор к эритроцитам мыши, иммуноцитокинам и др.

Рис. 10.5. Схема дифференцировки В-лимфоцита: Р - плазматическая клетка; МВ - В-лимфоцит иммунологической памяти; Вαα - синтезирует полимерный иммуноглобулин А в слизистых оболочках

Функцией зрелых CD5 - В-лимфоцитов и их потомков (плазмоцитов) является продукция иммуноглобулинов. Кроме того, В-лимфоциты являются профессиональными АПК. Они участвуют в формировании гуморального иммунитета, В-клеточной иммунологической памяти и гиперчувствительности немедленного типа.

Дифференцировка и созревание В-лимфоцитов (рис. 10.5) происходят сначала в костном мозге, а затем в периферических органах иммунной системы, куда они отселяются на стадии предшественников. Потомками В-лимфоцитов являются клетки иммунологической памяти и плазматические клетки. Основные морфологические признаки последних - развитый эндоплазматический ретикулум и аппарат Гольджи с большим количеством рибо-

сом. Плазмоцит имеет короткий период жизни - не более 2-3 сут.

В1-лимфоциты считают филогенетически наиболее древней ветвью антителопродуцирующих клеток. Предшественники этих клеток рано мигрируют в ткани слизистых оболочек, где автономно от центральных органов иммунной системы поддерживают численность своей популяции. Клетки экспрессируют CD5, синтезируют низкоаффинные IgA и IgM к полисахаридным и липидным антигенам микробов и обеспечивают иммунную защиту слизистых оболочек от условно-патогенных бактерий.

Функциональной активностью В-лимфоцитов управляют молекулярные антигены и иммуноцитокины Т-хелпера, макрофага и других клеток.

Т-лимфоциты. Т-лимфоциты - это сложная по составу группа клеток, которая происходит от полипотентной стволовой клетки костного мозга, а созревает и дифференцируется в тимусе из предшественников. На долю этих клеток приходится около 75% всей лимфоидной популяции. На электронограмме все Т-лимфоциты имеют гладкую поверхность, их общим маркером являются CD3, а также рецептор к эритроцитам барана. В зависимости от строения антигенного рецептора (TCR) и функциональной направленности сообщество Т-лимфоцитов может быть разделено на группы.

Различают два типа TCR: αβ и γδ. Первый тип - гетеродимер, который состоит из двух полипептидных цепей - α и β. Он характерен для традиционных Т-лимфоцитов, известных как Т-хелперы и Т-киллеры. Второй обнаруживается на поверхности особой популяции γδТ-лимфоцитов.

Т-лимфоциты функционально также разделяются на две субпопуляции: иммунорегуляторов и эффекторов. Задачу регуляции иммунного ответа выполняют Т-хелперы. Ранее предполагалось существование Т-супрессоров, способных тормозить развитие иммунной реакции (супрессия). Однако до сих пор клетка морфологически не идентифицирована, хотя сам супрессорный эффект существует. Эффекторную функцию осуществляют цитотоксические лимфоциты Т-киллеры.

В организме Т-лимфоциты обеспечивают клеточные формы иммунного ответа (гиперчувствительность замедленного типа, трансплантационный иммунитет и т.д.), определяют силу и продолжительность иммунной реакции. Их созреванием, дифференцировкой и активностью управляют цитокины и макрофаги.

Т-хелперы. Т-хелперы или Т-помощники - субпопуляция Т-лимфоцитов, которые выполняют регуляторную функцию. На их долю приходится около 75% всей популяции Т-лимфоцитов. Они несут маркер CD4, а также αβ TCR , с помощью которого анализируют природу антигена, представляемую им АПК.

Рецепция антигена Т-хелпером, т.е. анализ его чужеродности, - весьма сложный процесс, требующий высокой точности. Ему способствуют (рис. 10.6) молекула CD3 (комплексируется с TCR), ко-рецепторные молекулы CD4 (имеют сродство к молекулярному комплексу MHC II класса), молекулы адгезии (стабилизируют межклеточный контакт), рецепторы (взаимодействуют с ко-стимулирующими факторами АПК - CD28, 40L).

Рис. 10.6. Схема активации Т-хелпера (пояснение в тексте)

Активированный Т-хелпер продуцирует широкий спектр иммуноцитокитов, при помощи которых он управляет биологической активностью множества клеток, вовлеченных в иммунный ответ.

Популяция Т-хелперов гетерогенна. Активированный CD4 + Т-лимфоцит (Т Ω -хелпер) дифференцируется в одного из своих потомков: T 1 - или Т 2 -хелпер (рис. 10.7). Эта дифференцировка является альтернативной и направляемой цитокинами. Т 1 - или Т 2 -хелперы различаются лишь функционально по спектру продуцируемых цитокинов.

Т 1 -хелпер образует ИЛ-2, 3, γ-ИФН, ФНО и др., необходимые для развития клеточного иммунного ответа, гиперчувствительности замедленного типа, иммунного воспаления. Формирование этой клетки определяют активированный макрофаг, естественный и Т-киллеры, синтезирующие ИЛ-12 и γ-ИФН.

Т 2 -хелпер продуцирует ИЛ-4, 5, 6, 9, 10, 13 и др., которые поддерживают гуморальный иммунный ответ, а также гиперчув-

Рис. 10.7. Схема дифференцировки Т-хелпера: Т-х - Т-хелпер; аМ - активированный макрофаг; Т-к - Т-киллер; аЕК - активированный естественный киллер; Э - эозинофил; Б - базофил; Т - тучная клетка; γδТ - γδТ-лимфоцит

ствительность немедленного типа. Дифференцировку в сторону Т 2 -хелпера потенцируют γδТ-клетки, базофилы, тучные клетки и эозинофилы, синтезирующие ИЛ-4 и 13.

В организме поддерживается баланс Т 1 -/Т 2 -хелперов, который необходим для развития адекватного иммунного ответа. Т 1 - и Т 2 - хелперы являются антагонистами и тормозят развитие друг друга. Установлено, что в организме новорожденных преобладают Т 2 -хелперы. Нарушение заселения желудочно-кишечного тракта нормальной микрофлорой тормозит развитие субпопуляции Т 1 - хелперов и ведет к аллергизации организма.

Т-киллеры (цитотоксические Т-лимфоциты). Т-киллер - субпопуляция Т-лимфоцитов-эффекторов, на долю которых приходится примерно 25% всех Т-лимфоцитов. На поверхности Т-киллера определяются молекулы CD8, а также αβTCR к антигену в комплексе с MHC I класса, по которому «свои» клетки отличаются от «чужих». В рецепции принимают участие молекула CD3, комплексирующая с TCR, и ко-рецепторные молекулы CD8, тропные к MHC I класса (рис. 10.8).

Т-киллер анализирует клетки собственного организма в поисках чужеродного MHC I класса. Клетки мутантные, пораженные вирусом, или аллогенного трансплантата несут на своей поверхности такие признаки генетической чужеродности, поэтому являются мишенью Т-киллера.

Рис. 10.8. Схема активации Т-киллера (пояснения в тексте)

Т-киллер устраняет клетки-мишени путем антителонезависимой клеточно-опосредованной цитотоксичности (АНКЦТ) (см. раздел 11.3.2), для чего синтезирует ряд токсичных субстанций: перфорин, гранзимы и гранулизин. Перфорин - токсичный белок, который синтезируют цитотоксические лимфоциты-Т-киллеры и естественные киллеры. Обладает неспецифическим свойством. Вырабатывается только зрелыми активированными клетками. Перфорин образуется в виде растворимого белка-предшественника и накапливается в цитоплазме в гранулах, которые сосредоточиваются около TCR, связавшегося с клеткой-мишенью для обеспечения локального, адресного поражения клетки-мишени. Содержимое гранул высвобождается в узкую синаптическую щель, образованную тесным контактом цитотоксического лимфоцита и клеткимишени. За счет гидрофобных участков перфорин встраивается в цитоплазматическую мембрану клетки-мишени, где в присутствии ионов Са 2+ полимеризуется в трансмембранную пору диаметром 16 нм. Образовавшийся канал может вызвать осмотический лизис клетки-мишени (некроз) и/или обеспечить проникновение в нее гранзимов и гранулизина.

Гранзимы - это обобщающее название сериновых протеаз, синтезируемых зрелыми активированными цитотоксическими лимфоцитами. Различают три типа гранзимов: А, В и С. После синтеза гранзимы накапливаются в гранулах подобно перфорину и вместе

Гранулизин - эффекторная молекула с ферментативной активностью, синтезируемая цитотоксическими лимфоцитами. Способен запускать в клетках-мишенях апоптоз, повреждая мембрану их митохондрий.

Т-киллер обладает огромным биологическим потенциалом - его называют серийным убийцем. За короткий срок он может уничтожить несколько клеток-мишеней, затрачивая на каждую около 5 мин. Эффекторную функцию Т-киллера стимулирует Т 1 -хелпер, хотя в ряде случаев его помощь не требуется. Помимо эффекторной функции, активированный Т-киллер синтезирует γ-ИФН и ФНО, стимулирующие макрофаг и потенцирующие иммунное воспаление.

γδТ-лимфоциты. Среди Т-лимфоцитов существует малочисленная популяция клеток с фенотипом CD4 - CD8 - , которые несут на своей поверхности особый TCR γδ-типа - γδТ-лимфоциты. Локализуются в эпидермисе и слизистой оболочке желудочнокишечного тракта. Их общая численность не превышает 1% общего пула Т-лимфоцитов, однако в покровных тканях она может достигать 10%.

γδТ-лимфоциты происходят из автономного ростка стволовых клеток, мигрировавших в покровные ткани на ранних этапах эмбриогенеза. В созревании минуют тимус. Активируются клетками поврежденного эпителия желудочно-кишечного тракта и эпидермиса, размножение усиливается ИЛ-7.

Антигенный рецептор γδТ-лимфоцита сходен с BCR, его активный центр непосредственно связывается с эпитопом антигена без его предварительного процессинга и участия MHC. Антигенные детерминанты могут быть представлены, например, молекулами CD1. γδTCRориентированы на распознавание некоторых широко распространенных микробных антигенов (липопротеинов, белков теплового шока, бактериальных суперантигенов и др.).

γδТ-лимфоциты могут быть как эффекторными, цитотоксическими клетками (принимают участие в удалении патогенов на ранних этапах антиинфекционной защиты), так и регуляторами иммунореактивности. Синтезируют цитокины, активирующие местный иммунитет и локальную воспалительную реакцию, в том числе усиливают образование Т 2 -хелперов. Кроме того, γδ-клетки продуцируют ИЛ-7 и управляют численностью собственной популяции.

Рецептор к MHC I класса анализирует плотность его экспрессии на мембране клетки. Дефицит этих молекул, наблюдающийся при раковой трансфорации клеток, также потенцирует цитотоксичность ЕК.

Тканевые ЕК ведут более оседлый образ жизни и обнаруживаются в большом количестве в печени и децидаульной оболочке беременной матки. Несут маркер CD16 - CD56 много и много Fas -лиганда. Реализуют АНКЦТ (см. раздел 11.3.2). Клетками-мишенями являются лимфоциты, активированные, например, пищевыми антигенами или аллоантигенами плода и экспрессирующие Fas .

Помимо цитотоксических функций, ЕК вырабатывают цитокины (ИЛ-5, 8, γ-ИФН, ФНО, гранулоцит-моноцит-колониестимулирующий фактор-ГМ-КСФ и др.), активирует макрофагально-фагоцитарное звено, развитие иммунного ответа и иммунного воспаления. Эффекторная функция ЕК усиливается цитокинами (ИЛ-2, 4, 10, 12, γ-ИФН и др.).

Фагоциты (см. раздел 9.2.3.1) - самая многочисленная морфологически гетерогенная фракция иммунокомпетентных клеток. Выполняют регуляторную и эффекторную функции. Вырабатывают иммуноцитокины, ферменты, ион-радикалы и другие биологически активные вещества, осуществляют вне- и внутриклеточный киллинг и фагоцитоз. Кроме того, макрофаги являются АПК - обеспечивают процессинг и презентацию антигена Т-хелперам.

Эозинофилы - гранулярные лейкоциты крови. Содержатся в крови, рыхлой соединительной ткани, в большом количестве накапливаются в очагах местного воспаления, вызванного гельминтами, и обеспечивают АЗКЦТ.

Эозинофилы также синтезируют цитокины (ИЛ-3, 5, 8, ГМ-КСФ и др.), стимулирующие клеточное звено иммунитета и образование Т 2 -хелпера, и липидные медиаторы (лейкотриены, тромбоцитактивирующий фактор и др.), запускающие воспалительную реакцию в месте внедрения гельминта.

Тучные клетки - немигрирующие морфологические элементы неясного происхождения, располагаются оседло вдоль барьерных тканей (lamina propria слизистых оболочек, в подкожной соединительной ткани) и в соединительной ткани кровеносных сосудов. По набору синтезируемых биологически активных соединений и локализации выделяют две разновидности тучных клеток - клетки слизистых оболочек и соединительной ткани.

Базофилы - гранулоциты, происходящие из костно-мозговой стволовой ППСК и родственные эозинофилам. Их дифференцировка альтернативно определяется цитокинами. Постоянно мигрируют с кровотоком, привлекаются в очаг воспаления анафилотоксинами (С3а, С4а и С5а) и задерживаются там с помощью соответствующих хоминговых рецепторов.

Базофил и тучная клетка синтезируют сходный набор биологически активных веществ. Вырабатывают, накапливая в гранулах, вазоактивные амины (гистамин у человека и серотонин у грызунов), сульфатированные глюкозаминогликаны (хондроитинсульфат, гепарин), ферменты (сериновые протеазы и др.), а также цитокин α-ФНО. Напрямую выделяют в межклеточное пространство лейкотриены (С4, Д4, Е4), простагландины (PGD2, PGE2), цитокины (ИЛ-3, 4, 5, 13 и ГМ-КСФ) и фактор активации тромбоцитов.

На поверхности базофил и тучная клетка несут высокоаффинный FcR к IgE и G4. Образованный рецепторный комплекс специфически взаимодействует с эпитопом антигена/аллергена. Экспрессируют также FcR к IgG в составе иммунного комплекса. Базофил и тучная клетка активируются аллергенами, анафилотоксинами, медиаторами активированных нейтрофилов, норадреналином, ингибируются иммунными комплексами.

Связывание аллергена с рецепторным комплексом вызывает дегрануляцию базофила и тучной клетки - залповый выброс биологически активных соединений, содержащихся в гранулах, в межклеточное пространство, которые вызывают развитие гиперчувствительности немедленного типа (аллергической реакции I типа).

Базофил и тучная клетка направляют дифференцировку Т-хелперов в сторону Т 2 -субпопуляции и усиливают эозинофилогенез.

Дендритные клетки - отростчатые клетки костно-мозгового происхождения. Локализуются в лимфоидных органах и барьерных тканях. Экспрессируют на своей поверхности MHC II класса и ко-стимулирующие факторы (CD40, 80, 86). Способны погло-

щать путем эндоцитоза, перерабатывать (процессировать) и представлять (презентировать) антиген Т-хелперам в комплексе с MHC II класса. Является наиболее активной АПК. Из числа дендритных клеток хорошо известны клетки Лангерганса (в эпидермисе), интердигитальные клетки (в лимфатических узлах) и дендритные клетки тимуса.

10.2.2. Организация функционирования иммунной системы

Иммунная система имеет сложную организацию - для осуществления специфической функции задействовано множество различных клеточных популяций и растворимых факторов иммунитета. Клетки постоянно циркулируют в организме, погибают в процессе жизнедеятельности и воспроизводятся.

В зависимости от конкретной потребности специфическая функция иммунной системы может быть активирована либо подавлена (супрессирована). Однако любое реагирование иммунной системы осуществляется только при постоянном взаимодействии практически всех типов ее клеток, т.е. в условиях межклеточной кооперации. Раздражителем (активирующим сигналом) является антиген. В развитии любого иммунного реагирования прослеживается каскад последовательно сменяющихся этапов.

10.2.2.1. Взаимодействие клеток иммунной системы

Необходимым условием функционирования иммунной системы является тесная межклеточная кооперация, основу которой составляет рецептор-лигандное взаимодействие. Для связи между собой клетки используют различные дистантные растворимые факторы и прямой контакт.

Синтез растворимых факторов является одним из универсальных способов коммутации клеток между собой. К таковым относятся цитокины, которых в настоящее время известно более 25. Они представляют собой гетерогенное семейство разнообразных по структуре и функции биологически активных молекул, имеющих ряд общих свойств:

Как правило, цитокины не депонируются в клетке, а синтезируются после соответствующего стимула;

Для восприятия цитокинового сигнала клетка экспрессирует соответствующий рецептор, который может взаимодействовать с несколькими различными цитокинами;

Цитокины синтезируются клетками разных ростков, уровней и направлений дифференцировки;

Субпопуляции клеток иммунной системы различаются по спектру синтезируемых цитокинов и их рецепторов;

Цитокины обладают универсальностью, множественностью эффектов и синергизмом;

Цитокины могут воздействовать как на рядом расположенную клетку (паракринная регуляция), так и на сам продуцент (аутокринная регуляция);

Цитокиновая регуляция носит каскадный характер: активация клетки одним цитокином вызывает синтез другого;

В подавляющем большинстве это короткодистантные медиаторы - их эффекты проявляются на месте выработки. Вместе с тем ряд провоспалительнъгх цитокинов (ИЛ-1, 6, α-ФНО и др.) могут оказывать системное действие.

Цитокины различаются по ведущей функциональной направленности:

Медиаторы доиммунного воспаления (ИЛ-1, 6,12, α-ФНОидр);

Медиаторы иммунного воспаления (ИЛ-5, 9, 10, γ-ИФН

Стимуляторы пролиферации и дифференцировки лимфоцитов (ИЛ-2, 4, 13, трансформирующий фактор роста - β-ТФР

Факторы роста клеток, или колониестимулирующие факторы

(ИЛ-3, 7, ГМ-КСФ и др.);

Хемокины, или клеточные хемоаттрактанты (ИЛ-8 и др.). Краткая характеристика некоторых цитокинов приведена в

Прямое межклеточное взаимодействие основано на рецепции структур, экспрессированных на мембране клетки-оппонента. Для этого требуется достаточно продолжительный и стабильный контакт клеток. Такой способ коммутации используют Т-хелперы и Т-киллеры при анализе чужеродности презентированных структур. Механизм действия ко-стимулирующих факторов (пары CD40- CD40-лиганд, CD28-CD80, 86) также требует непосредственного контакта.

10.2.2.2. Активация иммунной системы

Активация иммунной системы подразумевает развитие продуктивной иммунной реакции в ответ на антигенное раздражение

Таблица 10 .3. Характеристика основных цитокинов

Продолжение табл. 10.3

Продолжение табл. 10.3

Окончание табл. 10.3

Примечание. МИФ - миграцию ингибирующий фактор.

и появление продуктов деструкции тканей макроорганизма. Это сложный многоступенчатый процесс, требующий продолжительного времени для своей индукции - около 4 сут. Критическим событием является невозможность элиминации антигена факторами врожденного иммунитета в течение указанного срока.

Пусковым механизмом адаптивного иммунитета является распознавание «свой-чужой», которое осуществляют Т-лимфоциты при помощи своих прямых иммунорецепторов - TCR. В случае установления чужеродности биоорганической молекулы включается второй этап реагирования - запускается интенсивное тиражирование клона высокоспецифичных для антигена лимфоцитовэффекторов, способных прервать антигенную интервенцию. Это явление получило название «экспансия клона». Параллельно, но несколько позже пролиферации стимулируются дифференцировка иммунных лимфоцитов и формирование из него клеток иммунологической памяти, гарантирующих выживание в будущем.

Таким образом, продуктивная активация иммунной системы связана с размножением и дифференцировкой антигенореактивных клонов иммунокомпетентных клеток. Антигену в этом процессе отведена роль индуктора и фактора клональной селекции. Механизмы основных этапов активации иммунной системы рассмотрены ниже.

Активация Т-хелпера. Процесс (см. рис. 10.6) осуществляется при непосредственном участии АПК (дендритные клетки, В-лимфоциты и макрофаги). После эндоцитоза и процессинга антигена во внутриклеточных везикулах АПК встраивает образовавшийся олигопептид в молекулу MHC II класса и выставляет полученный комплекс на наружной мембране. На поверхности АПК также экспрессируются ко-стимулирующие факторы - молекулы CD40, 80, 86, мощным индуктором которых являются продукты разрушения покровных тканей на этапе доиммунного воспаления.

Т-хелпер при помощи молекул адгезии прочно соединяется с поверхностью АПК. Иммунорецептор Т-хелпера совместно с молекулой CD3 при поддержке ко-рецепторной молекулы CD4 взаимодействует с комплексом антиген-MHC II класса и анализирует чужеродность его структуры. Продуктивность рецепции зависит от ко-стимулирующих воздействий в парах CD28-CD80/86 и CD40- лиганд-CD40.

В случае признания чужеродности комплекса антиген-MHC II класса (точнее, «не своего») Т-хелпер активируется. Он экспресси-

рует рецептор к ИЛ-2 и начинает синтезировать ИЛ-2 и другие цитокины. Итогом активации Т-хелпера являются его размножение и дифференцировка в одного из своих потомков - T 1 - или Т 2 -хелпер (см. рис. 10.2). Любое изменение условий рецепции прекращает активацию Т-хелпера и может индуцировать в нем апоптоз.

Активация В-лимфоцита. Для активации В-лимфоцита (рис. 10.9) необходима суммация трех последовательных сигналов. Первый сигнал - результат взаимодействия молекулы антигена со специфичным для него BCR, второй - интерлейкиновый стимул активированного Т-хелпера и третий - результат взаимодействия ко-стимулирующих молекул CD40 с CD40-лигандом.

Активация инициирует размножение и дифференцировку специфичного для конкретного антигена В-лимфоцита (см. рис. 10.2). В итоге в пределах зародышевых (герминативных) центров лимфоидных фолликулов появляется клон специфических антителопродуцентов. Дифференцировка позволяет переключить биосинтез иммуноглобулинов с классов M и D на более экономные: G, A или Е (редко), повысить аффинность синтезируемых антител и образовать В-клетки иммунологической памяти или плазматические клетки.

Активация В-лимфоцита - весьма тонкий процесс. Отсутствие хотя бы одного из стимулов (нарушение межклеточной кооперации, неспецифичность рецептора В-лимфоцита или элиминация антигена) блокирует развитие антительного иммунного ответа.

Активация Т-киллера. Для исполнения надзорной функции Т-киллер вступает в тесный и прочный контакт с потенциальной

Рис. 10.9. Схема активации В-лимфоцита (пояснения в тексте)

клеткой-мишенью, используя молекулы адгезии (см. рис. 10.8). Затем иммунорецептор Т-киллера (αβTCR) совместно с молекулой CD3 при поддержке ко-рецепторной молекулы CD8 взаимодействует с антигенным комплексом MHC I класса и анализирует его структуру. Обнаружение отклонений в пользу аллогенности активирует Т-киллер к экспрессии рецептора к ИЛ-2 и синтезу ИЛ-2 и высвобождение эффекторных молекул (перфорин, гранзимы, гранулизин) из цитоплазматических гранул в синаптическую щель межклеточного контакта.

Для адекватного развития клеточной формы иммунного ответа требуются активизирующие стимулы со стороны Т 1 -хелпера. Т-киллер может функционировать автономно, самостоятельно инициируя и поддерживая клонообразование за счет аутокринной стимуляции ИЛ-2. Однако это свойство реализуется редко.

10.2.2.3. Супрессия иммунного ответа

Супрессия или подавление иммунного ответа является физиологической реакцией организма, которая в норме завершает иммунный ответ и направлена на торможение экспансии антигенспецифических клонов лимфоцитов. В отличие от иммунологической толерантности, супрессии подвергается уже инициированное иммунное реагирование. Различают три механизма иммуносупрессии: уничтожение клонов иммунокомпетентных клеток, торможение активности иммунокомпетентных клеток, элиминация антигенного стимула.

Устранить иммунокомпетентные клетки можно путем апоптоза. При этом элиминации подвергаются следующие группы клеток:

Терминально дифференцированные лимфоциты, завершившие свою биологическую программу;

Активированные лимфоциты, не получившие антигенного стимула;

«изношенные» лимфоциты;

Аутореактивные клетки.

Естественными факторами, инициирующими апоптоз, яляются глюкокортикоидные гормоны, Fas -лиганд, α-ФНО и другие иммуноцитокины, гранзимы и гранулизин. Апоптотическое уничтожение клеток-мишеней могут активировать Т-киллеры, ЕК с фенотипом CD16 - CD56 много и Т 1 -хелперы.

Помимо апоптоза возможен антителозависимый лимфоцитолиз. Например, с медицинской целью применяют антилимфоцитарную

сыворотку, которая в присутствии комплемента вызывает лизис лимфоцитов. Устранить лимфоидную популяцию возможно также воздействием ионизирующего излучения или цитостатиков.

Функциональная активность иммунокомпетентных клеток может быть ингибирована растворимыми факторами их конкурентов или потомков. Ведущая роль принадлежит иммуноцитокинам с множественными эффектами. Известно, например, что Т 2 - хелперы, γδТ-лимфоциты и тучные клетки при помощи ИЛ-4, 13 препятствуют дифференцировке Т0-хелпера в Т 1 -клетку. Последний, в свою очередь, может блокировать образование Т 2 -хелпера, синтезируя γ-ИФН. Пролиферацию Т- и В-лимфоцитов ограничивает β-ТФР, который продуцируют терминально дифференцированные Т-хелперы. Уже упомянутые продукты Т 2 -хелпера (ИЛ-4, 13 и β-ТФР) подавляют биологическую активность макрофагов.

Супрессия гуморального звена иммунитета может быть вызвана иммуноглобулинами. Избыточные концентрации иммуноглобулина класса G, связываясь со специальными рецепторами на мембране В-лимфоцита, тормозят биологическую активность клетки и ее способность дифференцироваться в плазмоцит.

Устранение из организма антигена в природе наблюдается при полном освобождении организма от патогена при развитии стерильного иммунитета. В клинической практике эффект достигается очищением организма плазмоили лимфосорбцией, а также нейтрализацией антигена антителами, специфичными для высокоиммуногенных эпитопов.

10.2.2.4. Возрастные изменения иммунной системы

В развитии иммунной системы четко прослеживаются два этапа. Первый, антигеннезависимый, который начинается с эмбрионального периода развития и частично продолжается всю жизнь. В течение этого периода образуются стволовые клетки и разнообразные антигенспецифические клоны лимфоцитов. Предшественники γδT и В1-лимфоцитов мигрируют в покровные ткани и формируют автономные лимфоидные ростки.

Второй этап, антигензависимый, продолжается с момента рождения особи до ее гибели. В этот период идет «ознакомление» иммунной системы с многообразием окружающих нас антигенов. По мере накопления биологического опыта, т.е. количества и качества продуктивных контактов с антигенами, происходят селекция

и тиражирование отдельных клонов иммунокомпетентных клеток. Особенно интенсивная экспансия клонов характерна для детского возраста. В течение первых 5 лет жизни иммунной системе ребенка приходится усваивать примерно 90% биологической информации. Еще 9% воспринимается до наступления пубертата, на взрослое состояние остается лишь около 1%.

Иммунной системе ребенка приходится справляться с чудовищными нагрузками, которые в основном падают на гуморальное звено иммунитета. В местах с повышенной плотностью населения и частыми межиндивидуальными контактами (крупные города) создаются условия для длительной персистенции высокой концентрации разнообразных патогенов. Поэтому дети в мегаполисах часто болеют. Однако создается впечатление о тотальном иммунодефиците, порожденном крайним экологическим неблагополучием. Между тем эволюционно заложенные механизмы иммунной защиты позволяют организму ребенка успешно справиться с трудными естественными испытаниями на жизнеспособность и адекватно отреагировать на вакцинопрофилактику.

С возрастом иммунная система меняет свою структуру. В организме взрослого до 50% всего лимфоидного пула представлено клонами клеток, прошедших антигенную стимуляцию. Накопленный иммунной системой биологический опыт проявляется образованием узкой «библиотеки» жизненно важных (актуальных) клонов лимфоцитов, специфичных для основных патогенов. Благодаря долгоживучести клеток иммунологической памяти актуальные клоны со временем становятся самодостаточными. Они приобретают способность к самоподдержанию и независимость от центральных органов иммунной системы. Функциональная нагрузка на тимус снижается, что проявляется его возрастной инволюцией. Тем не менее в организме сохраняется широкий набор невостребованных «наивных» клеток. Они способны отреагировать на любую новую антигенную агрессию.

точных элементов организма. Поэтому после рождения начинает усиленно развиваться система адаптивного клеточного иммунитета, а вместе с ним образование клонов Т 1 -хелперов и Т-киллеров. Отмечено, что нарушение постнатальной колонизации желудочнокишечного тракта нормальной флорой тормозит процесс адекватного формирования популяции Т 1 -хелперов в пользу Т 2 -клеток. Избыточная активность последних оборачивается аллергизацией детских организмов.

Продуктивный иммунный ответ после своего завершения (нейтрализации и элиминации антигена из организма) также сопровождается изменениями клональной структуры антигенореактивных лимфоцитов. При отсутствии активирующих стимулов клон инволюционирует. Невостребованные клетки со временем погибают от старости или индукции апоптоза, причем этот процесс начинается с более дифференцированных лимфоцитов-эффекторов. Численность клона постепенно снижается и проявляется постепенным угасанием иммунного ответа. Однако в организме длительно персистируют клетки иммунологической памяти.

Старческий период жизни характеризуется доминированием в иммунной системе актуальных клонов антигенспецифических лимфоцитов в сочетании с нарастающей иммунодепрессией и снижением общей реактивности. Инфекции, вызванные даже условно-патогенными микробами, зачастую принимают затяжной или угрожающий характер. Клеточный иммунитет также теряет эффективность, постепенно нарастает объем злокачественно трансформированных клеток. Поэтому у пожилых людей часто встречаются новообразования.

Задания для самоподготовки (самоконтроля)

А. Отметьте эффекторные клетки иммунной системы:

1. Дендритные клетки.

2. В-лимфоциты.

3. Т-хелперы.

4. Т-киллеры. Б. Отметьте АПК:

1. Дендритные клетки.

2. В-лимфоциты.

3. Макрофаги.

4. Т-хелперы.

В. Отметьте клетки, на которых экспрессируется рецептор 2-го класса МНС:

1. Т-киллеры.

2. Дендритные клетки.

3. Макрофаги.

4. В-лимфоциты.

Г. Отметьте маркеры В-лимфоцитов:

1. МНС 2-го класса.

Д. Отметьте рецепторные молекулы Т-хелперов:

Е. Назовите клетки и медиаторы, принимающие участие в формировании Т 1 -хелперов:

2. Т-киллеры.

3. γ-Интерферон.

4. Активированный макрофаг.

5. Тучная клетка.

Ж. Назовите клетки и медиаторы, принимающие участие в формировании Т 2 -хелперов:

1. Базофилы.

2. Т-киллеры.

3. Тучные клетки.

З. Назовите рецептор-лигазную пару, необходимую для костимуляции Т-хелперов АПК. Без этой ко-стимуляции представление антигена Т-хелперу может привести к его функциональной инактивации:

2. MHC класс2/CD4.

3. MHC класс1CD8.

4. MHC класс2/TCR

И. Назовите рецептор-лигазную пару, необходимую для стимуляции Т-киллера (CD8):

1. MHC класс 2/CD4.

2. MHC класс 1/CD8.

К. Некоторые вирусы и бактериальные токсины обладают свойством суперантигенов, вызывая неспецифическую активацию лимфоцитов, приводящую их к гибели. Объясните механизм их действия.

Что такое антигены

Это любые вещества, содержащиеся в микроорганизмах и других клетках (или выделяемые ими), которые несут в себе признаки генетически чужеродной информации и которые потенциально могут быть распознаны иммунной системой организма. При введении во внутреннюю среду организма эти генетически чужеродные вещества способны вызывать иммунный ответ различных типов.

Каждый микроорганизм, как бы примитивно он ни был устроен, содержит несколько антигенов. Чем сложнее его структура, тем больше антигенов можно обнаружить в его составе.

Антигенными свойствами обладают различные элементы микроорганизма - жгутики, капсула, клеточная стенка, цитоплазматическая мембрана, рибосомы и другие компоненты цитоплазмы, а также различные продукты белковой природы, выделяемые бактериями во внешнюю среду, в том числе токсины и ферменты.

Различают экзогенные антигены (поступающие в организм извне) и эндогенные антигены (аутоантигены - продукты собственных клеток организма), а также антигены, вызывающие аллергические реакции, - аллергены.

Что такое антитела

Организм непрерывно встречается с разнообразными антигенами. Он подвергается атаке как извне - со стороны вирусов и бактерий, так и изнутри - со стороны клеток организма, приобретающих антигенные свойства.

– белки сыворотки крови, которые вырабатываются плазматическими клетками в ответ на проникновение антигена в организм. Антитела вырабатываются клетками лимфоидных органов, и циркулируют в плазме крови, лимфе и других жидкостях организма.

Главная важная роль антител - это распознавание и связывание чужеродного материала (антигена), а также запуск механизма уничтожения этого чужеродного материала. Существенным и уникальным свойством антител служит их способность связывать антиген непосредственно в том виде, в каком он проникает в организм.

Антитела обладают способностью отличать один антиген от другого. Они способны к специфическому взаимодействию с антигеном, но взаимодействуют только с тем антигеном (за редким исключением), который индуцировал их образование и подходит к ним по пространственной структуре. Эта способность антитела получила название комплементарности .

Полного понимания молекулярного механизма образования антител пока не существует. Не изучены молекулярные и генетические механизмы, лежащие в основе распознавания миллионов различных антигенов, встречающихся в окружающей среде.

Антитела и иммуноглобулины

В конце 30-х годов XX века началось изучение молекулярной природы антител. Одним из способов исследования молекул являлся электрофорез, который был введен в практику в эти же годы. Электрофорез позволяет разделить белки по их электрическому заряду и молекулярной массе. При электрофорезе белков сыворотки обычно получается 5 основных полос, которые соответствуют (от + к -) фракциям альбумина, альфа1-, альфа2-, бета- и гамма-глобулинов.

В 1939 году шведский химик Арне Тиселиус и американский иммунохимик Элвин Кэбет (Tiselius, Kabat) использовали электрофорез, чтобы разделить на фракции сыворотку крови иммунизированных животных. Ученые показали, что антитела содержатся в определённой фракции белков сыворотки. А именно - антитела относятся, в основном, к гамма-глобулинам. Так как часть попадала также в область бета-глобулинов, то для антител был предложен лучший термин - иммуноглобулины.

В соответствии с международной классификацией, совокупность сывороточных белков, обладающих свойствами антител, называют иммуноглобулинами и обозначают символом Ig (от слова «Immunoglob­ulin»).

Термин «иммуноглобулины» отражает химическую структуру молекул этих белков. Термин «антитело» определяет функциональные свойства молекулы и учитывает способность антитела реагировать только с определенным антигеном.

Раньше предполагалось, что иммуноглобулины и антитела – синонимы. В настоящее время существует мнение, что все антитела являются иммуноглобулинами, но не все иммуноглобулиновые молекулы обладают функцией антител.

Мы говорим об антителах только относительно антигена, т.е. если антиген известен. Если мы не знаем антиген, комплементарный некоему иммуноглобулину, который оказался у нас «в руках», то мы имеем только иммуноглобулин. В любой антисыворотке, кроме антител против данного антигена, имеется большое количество иммуноглобулинов, антительную активность которых не удалось обнаружить, однако это не означает, что данные иммуноглобулины не являются антителами к каким-либо другим антигенам. Вопрос о существовании молекул иммуноглобулинов, изначально не обладающих свойствами антител, пока остается открытым.

Антитела (АТ, иммуноглобулины, ИГ, Ig) являются центральной фигурой гуморального иммунитета. Основную роль в иммунной защите организма играют лимфоциты, которые подразделяются на две основные категории – Т-лимфоциты и В-лимфоциты.

Антитела или иммуноглобулины (Ig) синтезируются В-лимфоцитами, а точнее антителообразующими клетками (АОК). Синтез антител начинается в ответ на попадание во внутреннюю среду организма антигенов. Для синтеза антител B-клеткам необходим контакт с антигеном и вызванное им созревание B-клеток в антителообразующие клетки. Значительное число антител вырабатывают образовавшиеся из В-лимфоцитов так называемые плазматические клетки - АОК, выявляемые в крови и тканях. Иммуноглобулины содержатся в большом количестве в сыворотке, в межклеточной жидкости и других секретах, обеспечивая гуморальный ответ.

Классы иммуноглобулинов


Иммуноглобулины (Ig) различаются по структуре и по выполняемым функциям. У человека обнаружены 5 различных классов иммуноглобулинов: IgG , IgA , IgM , IgE , IgD , часть из которых ещё подразделяется на подклассы. Подклассы есть у иммуноглобулинов классов G (Gl, G2, G3, G4), А (А1, А2) и M (M1, M2).

Классы и подклассы, вместе взятые, называют изотипами иммуноглобулинов.

Антитела разных классов различаются по размерам молекул, заряду белковой молекулы, аминокислотному составу и содержанию углеводного компонента. Наиболее изученным классом антител является IgG.

В сыворотке крови человека в норме преобладают иммуноглобулины класса IgG. Они составляют приблизительно 70–80% от общего количества сывороточных антител. Содержание IgA - 10-15%, IgM - 5-10%. Содержание иммуноглобулинов класса IgE и IgD очень мало - около 0.1% для каждого из этих классов.

Не следует думать, что антитела против того или иного антигена принадлежат только к какому-то одному из пяти классов иммуноглобулинов. Наоборот, антитела против одного и того же антигена могут быть представлены разными классами Ig.

Важнейшую диагностическую роль играет определение антител классов М и G, так как после инфицирования человека первыми появляются антитела класса М, затем класса G, и последними иммуноглобулины А и Е.

Иммуногенность и антигенность антигенов

В ответ на попадание антигенов в организм начинается целый комплекс реакций, направленный на освобождение внутренней среды организма от продуктов чужеродной генетической информации. Такая совокупность защитных реакций иммунной системы называется иммунным ответом .

Иммуногенностью называется способность антигена вызывать иммунный ответ, то есть индуцировать специфическую защитную реакцию иммунной системы. Иммуногенность также можно описать, как способность создавать иммунитет.

Иммуногенность в значительной степени зависит от природы антигена, его свойств (молекулярного веса, подвижности молекул антигена, формы, структуры, способности к изменению), от пути и режима попадания антигена в организм, а также дополнительных воздействий и генотипа реципиента.

Как упомянуто выше, одной из форм реагирования иммунной системы в ответ на внедрение в организм антигена является биосинтез антител. Антитела способны связывать антиген, вызвавший их образование, и тем самым защищать организм от возможного вредного действия чужеродных антигенов. В связи с этим, вводится понятие антигенности.

Антигенность – это способность антигена специфически взаимодействовать с факторами иммунитета, а именно вступать во взаимодействие с продуктами вызванного именно этим веществом иммунного ответа (антителами и Т- и В-антиген-распознающими рецепторами).

Некоторый термины молекулярной биологии

Липиды (от др.-греч. λίπος - жир) - обширная группа довольно разнообразных природных органических соединений, включающая жиры и жироподобные вещества. Липиды содержатся во всех живых клетках и являются одним из основных компонентов биологических мембран. Они нерастворимы в воде и хорошо растворимы в органических растворителях. Фосфолипиды - сложные липиды, содержащие в себе высшие жирные кислоты и остаток фосфорной кислоты.

Конформация молекул (от лат. conformatio - форма, построение, расположение) - геометрические формы, которые могут принимать молекулы органических соединений при вращении атомов или групп атомов (заместителей) вокруг простых связей при сохранении неизменными порядка химической связи атомов (химического строения), длины связей и валентных углов.

Органические соединения (кислоты) особой структуры. В их молекулах одновременно содержатся аминогруппы (NH 2) и карбоксильные группы (СООН). Все аминокислоты состоят всегоиз 5 химических элементов: С, H, O, N, S.


Пептиды (греч. πεπτος - питательный) - семейство веществ, молекулы которых построены из двух и более остатков аминокислот, соединённых в цепь пептидными (амидными) связями. Пептиды, последовательность которых длиннее примерно 10-20 аминокислотных остатков, называются полипептидами .

В полипептидной цепи различают N-конец , образованный свободной α-аминогруппой и С-конец , имеющий свободную α-карбоксильную группу. Пептиды пишутся и читаются с N-конца к С-концу- с N-концевой аминокислоты к С-концевой аминокислоте.

Аминокислотные остатки - это мономеры аминокислот, входящих в состав пептидов. Аминокислотный остаток, имеющий свободную аминогруппу, называется N-концевым и пишется слева, а имеющий свободную α-карбоксильную группу - С-концевым и пишется справа.

Белками обычно называют полипептиды, содержащие примерно от 50 аминокислотных остатков. В качестве синонима термина «белки» также используется термин «протеины» (от греч. protos - первый, важнейший). Молекула любого белка имеет четко определенную, достаточно сложную, трехмерную структуру.

Аминокислотные остатки в белках принято обозначать с помощью трёх-буквенного или одно-буквенного кода. Трёх-буквенный код представляет собой аббревиатуру от английских названий аминокислот и часто используется в научной литературе. Одно-буквенный код по большей части не имеет интуитивно понятной связи с названиями аминокислот и используется в биоинформатике для представления последовательности аминокислот в виде текста, удобного для компьютерного анализа.

Пептидный остов. В полипептидной цепи многократно повторяется последовательность атомов -NH-CH-CО- .Эта последовательность и формирует пептидный остов. Полипептидная цепь состоит из полипептидного остова (скелета), имеющего регулярную, повторяющуюся структуру, и отдельных боковых групп (R-групп).

Пептидные связи соединяют аминокислоты в пептиды. Пептидные связи образуются при взаимодействии α-карбоксильной группы одной аминокислоты и α-аминогруппы от последующей аминокислоты. Пептидные связи очень прочны и самопроизвольно не разрываются при нормальных условиях, существующих в клетках.

Многократно повторяющиеся в молекулах пептидов группы атомов -СО-NH- называются пептидными группами . Пептидная группа обладает жесткой планарной (плоской) структурой.

Конформация белков - расположение полипептидной цепи в пространстве. Пространственная структура, характерная для молекулы белка, образуется за счет внутримолекулярных взаимодействий. Линейные полипептидные цепи индивидуальных белков за счёт взаимодействия функциональных групп аминокислот приобретают определённую трёхмерную структуру, которая и называется «конформацией белков».

Процесс формирования функционально активной конформации белка носит название фолдинг . Жёсткость пептидной связи уменьшает количество степеней свободы полипептидной цепи, что играет большую роль в процессе фолдинга.

Глобулярные и фибриллярные белки. Изученные к настоящему времени белки можно разделить на два больших класса по способности принимать в растворе определенную геометрическую форму: фибриллярные (вытянyтые в нить) и глобулярные (свернутые в клубок). Полипептидные цепи фибриллярных белков вытянуты, расположены параллельно друг другу и образуют длинные нити или слои. В глобулярных белках полипептидные цепи плотно свернyты в глобулы - компактные структуры сферической формы.

Следует отметить условность деления белков на фибриллярные и глобулярные, так как существует большое число белков с промежуточной структурой.

Первичная структура белка (primary structure of protein) - это линейная последовательность аминокислот, составляющих белок, в полипептидной цепи. Аминокислоты соединены между собой пептидными связями. Последовательность аминокислот записывают, начиная от С-конца молекулы, в направлении к N-концу полипептидной цепочки.

П.с.б - это простейший уровень структурной организации белковой молекулы. Первая П.с.б. была установлена Ф. Сенгером для инсулина (Нобелевская премия за 1958 г.).

(secondary structure of protein)- укладка полипептидной цепи белка в результате взаимодействия между близкорасположенными аминокислотами в составе одной и той же пептидной цепочки - между аминокислотами расположенными через считанные остатки друг от друга.

Вторичная структура белков - это пространственная структура, которая образуется в результате взаимодействий между функциональными группами, входящими в состав пептидного остова.

Вторичная структура белков обусловлена способностью групп пептидной связи к водородным взаимодействиям-между функциональными группами -С=О и - NH- пептидного остова. При этом пептид стремится принять конформацию с образованием максимального числа водородных связей. Однако возможность их образования ограничивается характером пептидной связи. Поэтому пептидная цепь приобретает не произвольную, а строго определенную конформацию.

Вторичная структура образуется из сегментов полипептидной цепи, которые участвуют в формировании регулярной сетки водородных связей.

Другими словами, под вторичной структурой полипептида понимают конформацию его основной цепи (остова) без учета конформации боковых групп.

Полипептидная цепь белка, складываясь под действием водородных связей в компактную форму, может образовывать некоторое количество регулярных структур. Таких структур известно несколько: α (альфа)-спираль, β (бета)-структура (другое название - β-складчатый слой или β-складчатый лист), беспорядочный клубок и поворот. Редким видом вторичной структуры белков являются π-спирали. Первоначально исследователи считали, что данный вид спирали в природе не встречается, однако позже эти спирали были открыты в белках.

α -спираль и β-структура являются энергетически наиболее выгодными конформациями, поскольку обе они стабилизированы водородными связями. Кроме того, и α-спираль, и β-структура дополнительно стабилизируются благодаря плотной упаковке атомов основной цепи, которые подогнаны друг к другу, как кусочки одной картинки-головоломки.

Эти фрагменты и их сочетание в некотором белке, если они имеются, также принято называть вторичной структурой этого белка.

В структуре глобулярных белков могут встречаться фрагменты регулярного строения всех типов в любой комбинации, но может не быть и ни одного. В фибриллярных белках все остатки принадлежат какому-то одному типу: например, шерсть содержит α-спирали, а шелк - β-структуры.

Таким образом, чаще всего вторичная структура белка - это укладка полипептидной цепи белка в α-спиральные участки и β-структурные образования (слои) с участием водородных связей. Если водородные связи образуются между участками изгиба одной цепи, то их называют внутрицепочечными, если между цепями – межцепочечные. Водородные связи располагаются перпендикулярно полипептидной цепи.


α-спираль -образуется внутрицепочечными водородными связями между NH группой одного остатка аминокислоты и CO-группой четвертого от нее остатка. Средняя длина α-спиралей в белках - 10 аминокислотных остатков

В α-спирали водородные связи образуются между атомом кислорода карбонильной группы и водородом амидного азота 4-й от него аминокислоты. В образовании этих водородных связей вовлечены все группы C=O и N-H основной полипептидной цепи. Боковые цепи аминокислотных остатков располагаются по периферии спирали и не участвуют в образовании вторичной структуры.

β-структуры формируются между линейными областями пептидного остова одной полипептидной цепи, образуя при этом складчатые структуры (несколько зигзагообразных полипептидных цепей).

β-структура формируется за счет образования множества водородных связей между атомами пептидных групп линейных цепей. В β-структурах водородные связи образуются между относительно удалёнными друг от друга в первичной структуре аминокислотами или разными цепями белка, а не близко расположенными, как имеет место в α-спирали.

В некоторых белках β-структуры могут формироваться за счет образования водородных связей между атомами пептидного остова разных полипептидных цепей.

Полипептилные цепи или их части могут формировать параллельные или антипараллельные β-структуры. Если связанные несколько цепей полипептида направлены противоположно, а N- и С-концы не совпадают, то возникает антипараллельная β–структура, если совпадают – параллельная β-структура.

Другое название β-структур - β-листы (β-складчатые слои, β-sheets). β-лист формируется из двух или более β-структурных участков полипептидной цепи, называемых β-тяжами (β-strands). Обычно β-листы встречаются в глобулярных белках и содержат не более, чем 6 β-тяжей.

β-тяжи (β- strands)- это участки молекулы белка, в которых связи пептидного остова нескольких идущих подряд полипептидов организованы в плоской конформации. На иллюстрациях, β-тяжи белков иногда изображаются в виде плоских "лент со стрелками", чтобы подчеркнуть направление полипептидной цепи.

Основная часть β-тяжей расположена по соседству с другими тяжами и образует с ними обширную систему водородных связей между C=O и N-H группами основной белковой цепи (пептидного остова). β-тяжи могут быть упакованы , будучи стабилизированными поперечно двумя или тремя водородными связями между последовательными тяжами. Такой способ укладки и называется β-листом.

Беспорядочный клубок - это участок пептидной цепи, который не имеет какой-либо правильной, периодической пространственной организации. Такие участки в каждом белке имеют свою фиксированную конформацию, которая определяется аминокислотным составом этого участка, а также вторичной и третичной структурами смежных областей, окружающих «беспорядочный клубок». В областях беспорядочного клубка пептидная цепь может сравнительно легко изгибаться, изменять конформацию, в то время как α-спирали и β-складчатый слой представляют собой достаточно жесткие структуры

Еще одна форма вторичной структуры обозначается как β-поворот . Эту структуру образуют 4 или больше аминокислотных остатка с водородной связью между первым и последним, причем таким образом, что пептидная цепь меняет направление на 180°. Петлевая структура такого поворота стабилизирована водородной связью между карбонильным кислородом аминокислотного остатка в начале поворота и N-H группой третьего по ходу цепи остатка в конце поворота.

Если к β-повороту с двух концов подходят антипараллельные β-тяжи, то образуется вторичная структура, называемая β-шпилькой (β-hairpin)

Третичная структура белка (tertiary structure of protein) - В растворе при физиологических условиях полипептидная цепь сворачивается в компактное образование, имеющее определенную пространственную структуру, которую называют третичной структурой белка. Она образуется в результате самоукладки за счет взаимодействия между радикалами (ковалентные и водородные связи, ионные и гидрофобные взаимодействия). Впервые Т.с.б. была установлена для белка миоглобина Дж. Кендрю и М. Перуцем в 1959 г. (Нобелевская премия за 1962 г.). Т.с.б. практически полностью определяется первичной структурой белка. В настоящее время с помощью методов рентгеноструктурного анализа и ядерной магнитной спектроскопии (ЯМР-спектроскопия) определены пространственные (третичные) структуры большого числа белков.

Четвертичная структура белка. Белки, состоящие из одной полипептидной цепи, имеют только третичную структуру. Однако некоторые белки построены из нескольких полипептидных цепей, каждая из которых имеет третичную структуру. Для таких белков введено понятие четвертичной структуры, которая представляет собой организацию нескольких полипептидных цепей с третичной структурой в единую функциональную молекулу белка. Такой белок с четвертичной структурой называется олигомером, а его полипептидные цепи с третичной структурой - протомерами или субъединицами.


Конъюгат (conjugate, лат. conjugatio - соединение) - искусственно синтезированная (химически или путем рекомбинации in vitro) гибридная молекула, в которой соединены (объединены) две молекулы с разными свойствами; широко используется в медицине и экспериментальной биологии.

Гаптены

Гаптены - это «неполноценные антигены» (термин предложен иммунологом К. Ландштейнером). При введении в организм в нормальных условиях гаптены не способны индуцировать в организме иммунный ответ, так как обладают крайне низкой иммуногенностью.

Чаще всего гаптенами являются низкомолекулярные соединения (молекулярная масса меньше 10 кДа). Они распознаются организмом реципиента как генетически чужеродные (т.е. обладают специфичностью), но в силу низкой молекулярной массы сами по себе не вызывают иммунных реакций. Однако свойство антигенности они не утратили, что позволяет им специфически взаимодействовать с уже готовыми факторами иммунитета (антителами, лимфоцитами).

При определенных условиях удается за­ ставить иммунную систему макроорганизма специфически реагировав на гаптен как на полноценный антиген. Для этого необходимо ис­кусственно укрупнить молекулу гаптена - соединить ее прочной связью с достаточно большой белковой молекулой или другим полимером-носителем. Синтезированный таким образом конъюгат будет обладать всеми свойствами полноценного антигена и вызы­вать иммунный ответ при введении в организм.

Эпитопы (антигенные детерминанты)

Организм способен образовать антитела почти к любой части молекулы антигена, но при нормальном иммунном ответе этого обычно не происходит. Комплексные антигены (белки, полисахариды) имеют особые участки, на которые собственно и формируется специфический иммунный ответ. Такие участки получили название эпитопы (epitope), от греч. epi - на, над, сверх и topos - место, местность. Синоним - антигенная детерминанта .

Эти участки состоят из немногих аминокислот или углеводов, каждый участок - это группа аминокислотных остатков белкового антигена или участок полисахаридной цепи. Эпитопы способны взаимодействовать как со специфическими рецепторами лимфоцитов, индуцируя тем самым иммунный ответ, так и с антигенсвязывающими центрами специфических антител.


Эпитопы разнообразны по своей структуре. Антигенной детерминантой (эпитопом) может быть участок поверхности белка, образованный радикалами аминокислот, гаптен или простетическая группа белка (связанный с белком небелковый компонент), особенно часто - полисахаридные группы гликопротеинов.

Антигенные детерминанты или эпитопы - это определенные участки трехмерной структуры антигенов. Существуют разные типы эпитопов - линейные и конформационные .

Линейные эпитопы образованы линейной последовательностью аминокислотных остатков.

В результате изучения строения белков было выяснено, что белковые молекулы имеют сложную пространственную структуру. При свертывании (в клубок) макромолекулы белка могут сближаться остатки, отдаленные друг от друга в линейной последовательности, образуя конформационную антигенную детерминанту.

Кроме того, сушествуют кон­цевые эпитопы (расположенные на концевых участках молекулы антигена) и центральные. Определяют также «глубинные», или скрытые, антигенные детерминанты, которые проявляются при разрушении антигена.

Молекулы большинства антигенов имеют довольно большие размеры. Одна макромолекула белка (антиген), состоящая из нескольких сот аминокислот, может содержать много различных эпитопов. Некоторые белки могут иметь одну и ту же антигенную детерминанту в нескольких экземплярах (повторные антигенные детерминанты).

Против одного эпитопа образуется широкий спектр разных антител. Каждый из эпитопов способен стимулировать продукцию различных специфичных антител. К каждому из эпитопов могут вырабатываться специфические антитела.

Существует явление иммунодоминантности , которое проявляется в том, что эпитопы различают­ся по способности индуцировать иммунный ответ.

Не все эпитопы в составе белка характеризуются равной антигенностью. Как правило, некоторые эпитопы антигена обладают особой антигенностью, что проявляется в преимущественном образовании антител против этих эпитопов. Устанавливается иерархия в спектре эпитопов молекулы белка - некоторые из эпитопов являются доминирующими и большинство антител образуется именно к ним. Такие эпитопы названы иммунодоминантными эпитопами . Они почти всегда расположены на выдающихся частях молекулы антигена.

Строение антител (иммуноглобулинов)

Иммуноглобулины IgG на основании экспериментальных данных. Каждый аминокислотный остаток молекулы белка изображен в виде маленького шарика. Визуализация построена с помощью программы RasMol.

В течение XX века биохимики стремились выяснить, какие варианты иммуноглобулинов существуют и какова структура молекул этих белков. Структура антител устанавливалась в ходе разнообразных экспериментов. В основном они заключались в том, что антитела обрабатывались протеолитическими ферментами (папаином, пепсином), и подвергались алкилированию и восстановлению меркаптоэтанолом.

Затем исследовались свойства полученных фрагментов: определялась их молекулярная масса (хроматографией), четвертичная структура (рентгеноструктурным анализом), способность связываться с антигеном и т.п. Также использовались антитела к данным фрагментам: выяснялось, могут ли антитела к одному типу фрагментов связываться с фрагментами другого типа. На основе полученных данных была построена модель молекулы антител.

Более 100 лет исследований структуры и функций иммуноглобулинов только подчеркнули сложную природу этих белков. В настоящее время, строение молекул иммуноглобулинов человека не описано полностью. Большинство исследователей сконцентрировали свои усилия не на описании структуры этих белков, а на выяснении механизмов, посредством которых антитела взаимодействуют с антигенами. Кроме того, молекулы антител , поэтому изучение антител, сохраненных в неизменном виде, становится сложной задачей. Гораздо чаще удается выяснить точное строение отдельных фрагментов антител.

Несмотря на предполагаемое раз­нообразие иммуноглобулинов, их молекулы удалось классифицировать по структурам, входящим в эти молекулы. Эта классификация основана на том, что иммуноглобулины всех классов построены по общему плану, имеют некое универсальное строение.

Молекулы иммуноглобулинов - это сложные пространственные образования. Все без исключения антитела принадлежат к одному типу белковых молекул, имеющих глобулярную вторичную структуру, что соответствует их названию - «иммуноглобулины» (вторичная структура белка - это способ укладки в пространстве его полипептидной цепи). Они могут быть мономерами либо полимерами, построенными из нескольких субъединиц.

Тяжелые и легкие полипептидные цепи в структуре иммуноглобулинов

Пептидные цепи иммуноглобулинов. Схематическое изображение. Вариабельные области выделены пунктиром.

Структурная единица иммуноглобулина - мономер, молекула состоящая из полипептидных цепей, соединенных друг с другом дисульфидными связями (S-S мостиками).

Если молекулу Ig обработать 2-меркаптоэтанолом (реактивом, разрушающим дисульфидные связи), то она распадется на пары полипептидных цепей. Полученные полипептидные цепи классифицируют по молекулярной массе: легкие и тяжелые. Лёгкие цепи имеют низкую молекулярную массу (около 23 кД) и обозначаются буквой L, от англ. Light -
 лёгкий. Тяжёлые цепи Н (от англ.
 Heavy - тяжёлый) имеют высокую молекулярную массу (варьирует в пределах 50 - 73 кД).

Так называемый мономерный иммуноглобулин содержит две L-цепи и две H-цепи. Легкие и тяжелые цепи удерживаются вместе дисульфидными мостиками. Дисульфидные связи соединяют легкие цепи с тяжелыми, а также тяжелые цепи между собой.

Основной структурной субъединицей всех классов иммуноглобулинов является пара «легкая цепь - тяжелая цепь» (L-H). Структура иммуноглобулинов разных классов и подклассов различается по числу и расположению дисульфидных связей между тяжелыми цепями, а также по числу (L-H)-субъединиц в молекуле. Н-цепи скрепляются различным числом дисульфидных связей. Типы тяжелых и легких цепей, входящих в состав разных классов иммуноглобулинов, также различаются.

На рисунке представлена схема организации IgG в качестве типичного иммуноглобулина. Как и все иммуноглобулины, IgG содержит две одинаковые тяжелые (Н) цепи и две одинаковые легкие (L) цепи, которые объединены в четырехцепочечную молекулу посредством межцепьевых дисульфидных связей (-S-S-). Единственная дисульфидная связь, соединяющая Н- и L-цепи, локализуется недалеко от С-конца легкой цепи. Между двумя тяжелыми цепями также есть дисульфидная связь.

Домены в составе молекулы антитела

Легкие и тяжелые полипептидные цепи в составе молекулы Ig имеют определенную структуру. Каждая цепь условно разделена на специфические участки, называемые доменами.

Как легкие, так и тяжелые цепи не представляют собой прямолинейную нить. Внутри каждой цепи через регулярные и примерно равные промежутки по 100-110 аминокислот существуют дисульфидные мостики, которые формируют петли в структуре каждой цепи. Наличие дисульфидных мостиков означает, что каждая петля в пептидных цепях должна формировать компактно сложенный глобулярный домен. Таким образом, каждая полипептидная цепь в составе иммуноглобулина образует несколько глобулярных доменов в виде петель, включающих примерно по 110 аминокислотных остатков.

Можно сказать, что молекулы иммуноглобулинов собраны из отдельных доменов, каждый из которых располагается вокруг дисульфидного мостика и гомологичен остальным.


В каждой из легких цепей молекул антител существуют две внутрицепочечные дисульфидные связи, соответственно каждая легкая цепь имеет по два домена. Число таких связей в тяжелых цепях различно; тяжелые цепи содержат по четыре или пять доменов. Домены разделены несложно организованными отрезками. Наличие таких конфигураций было подтверждено прямыми наблюдениями и с помощью генетического анализа.

Первичная, вторичная, третичная и четвертичная структура иммуноглобулинов

Строение молекулы иммуноглобулина (как и других белков) определяется первичной, вторичной, третичной и четвертичной структурой. Первичная структура -- это последовательность аминокислот, составляющих легкие и тяжелые цепи иммуноглобулинов. Рентгеноструктурный анализ показал, что легкие и тяжелые цепи иммуноглобулинов состоят из компактных глобулярных доменов (так называемых иммуноглобулиновых доменов). Домены уложены в характерную третичную структуру, названную иммуноглобулиновой укладкой (immunoglobulin fold).

Иммуноглобулиновые домены - это области в третичной структуре молекулы Ig, которым свойственна определенная автономия структурной организации. Домены формируются различными отрезками одной и той же полипептидной цепи, свернутыми в «клубки» (глобулы). В глобулу включается примерно 110 аминокислотных остатков.

Домены имеют сходную с друг другом общую структуру и определенные функции. Внутри доменов пептидные фрагменты, входящие в состав домена, образуют компактно уложенную антипараллельную β-складчатую структуру, стабилизированную водородными связями (вторичная структура белка). Участков с α-спиральной конформацией в структуре доменов практически не содержится.

Вторичная структура каждого из доменов сформирована посредством укладки протяженной полипептидной цепи back and forth upon itself в два антипараллельных β-слоя (β-листа), содержащих несколько β-складок. Каждый β-лист имеет плоскую форму - полипептидные цепи в β-складках почти полностью вытянуты.

Два β-листа, из которых состоит иммуноглобулиновый домен, уложены в структуру, названную β-сэндвичем ("словно два куска хлеба друг на друга"). Структура каждого иммуноглобулинового домена стабилизирована за счет внутридоменной дисульфидной связи - β-листы ковалентно связаны дисульфидной связью между цистеиновыми остатками каждого β-листа. Каждый β-лист состоит из антипараллельных β-тяжей, соединенных петлями различной длины.

Домены, в свою очередь, связаны между собой продолжением полипептидной цепи, которая продолжается за пределы β-складчатых листов. Имеющиеся между глобулами открытые участки полипептидной цепи особенно чувствительные к протеолитическим ферментам.


Глобулярные домены пары из легкой и тяжелой цепи взаимодействуют между собой, образуя четвертичную структуру. Благодаря этому формируются функциональные фрагменты, которые позволяют полекуле антитела специфически связывать антиген и, в то же время, выполнять ряд биологических эффекторных функций.

Вариабельные и постоянные домены

Домены в пептидных цепях отличаются по постоянству аминокислотного состава. Различают вариабельные и постоянные домены (области). Вариабельные домены обозначаются буквой V, от англ. variable - «изменчивый» и называются V-доменами. Постоянные (константные) домены обозначают буквой C, от англ constant - «постоянный» и называют С-доменами.

Иммуноглобулины, продуцируемые разными клонами плазматических клеток, имеют разные по аминокислотной последовательности вариабельные домены. Константные домены сходны или очень близки для каждого изотипа иммуноглобулина.

Каждый домен обозначают буквой, означающей его принадлежность к легкой или тяжелой цепи, и числом, указывающим его положение.

Первый домен на легкой и тяжелой цепях всех антител крайне вариабелен по последовательности аминокислот; он обозначается как V L и V H соответственно.

Второй и последующие домены на обеих тяжелых цепях гораздо более постоянны по последовательности аминокислот. Они обозначаются C H или С H 1, С H 2 и С H 3. Иммуноглобулины IgM и IgЕ имеют дополнительный С H 4-домен на тяжелой цепи, расположенный за доменом С H 3.

Половину легкой цепи, включающую карбоксильный конец, называют константной областью C L , a N-концевую половину легкой цепи – вариабельной областью V L .

С доменом С Н 2 также связаны цепочки углеводов. Иммуноглобулины разных классов сильно отличаются по количеству и расположению углеводных групп. Углеводные компоненты иммуноглобулинов имеют сходное строение. Они состоят из постоянного ядра и вариабельной наружной части. Углеводные компоненты влияют на биологические свойства антител.

Fab- и Fc-фрагменты молекулы иммуноглобулина

Вариабельные домены легкой и тяжелой цепи (V H и V L) вместе с ближайшими к ним константными доменами (С H 1 и C L 1) образуют Fab-фрагменты антител (fragment, antigen binding). Участок иммуноглобулина, связывающийся со специфическим антигеном, формируется N-концевыми вариабельными областями легких и тяжелых цепей, т.е. V H - и V L -доменами.

Остальную часть, представленную C-концевыми константными доменами тяжелых цепей, обозначают как Fc-фрагмент (fragment, crystallizable). Fc-фрагмент включает остальные C H -домены, скрепленные дисульфидными связями. В месте соединения Fab- и Fc-фрагментов расположена шарнирная область, позволяющая антиген-связывающим фрагментам разворачиваться для более тесного контакта с антигеном.

Шарнирная область

На границе Fab- и Fc-фрагментов располагается т.наз. «шарнирная область», имеющая гибкую структуру. Она обеспечивает подвижность между двумя Fab-фрагментами Y-образной молекулы антитела. Подвижность фрагментов молекулы антитела друг относительно друга - это важная структурная характеристика иммуноглобулинов. Такой тип межпептидного соединения придает структуре мoлeкyлы динамичность - он позволяет легко менять конформацию в зависимости от окружающих условий и состояния.

Шарнирная область - это участок тяжелой цепи. Шарнирная область содержит дисульфидные связи, соединяющие тяжелые цепи между собой. У каждого класса иммуноглобулинов шарнирная область имеет свое строение.

У иммуноглобулинов (возможно, за исключением IgM и IgE) шарнирная область состоит из короткого сегмента аминокислот и обнаруживается между участками С H 1 и С H 2 тяжелых цепей. Этот сегмент состоит преимущественно из остатков цистеина и пролина. Цистеины вовлечены в формирование дисульфидных мостиков между цепями, а пролиновые остатки предотвращают складывание в глобулярную структуру.

Типичное строение молекулы иммуноглобулина на примере IgG

Схематическое изображение на плоском рисунке неточно отражает структуру Ig; в действительности вариабельные домены легкой и тяжелой цепей не располагаются параллельно, а тесно, крест-накрест переплетены друг с другом.

Типичное строение иммуноглобулина удобно рассмотреть на примере молекулы антитела класса IgG. Всего в молекуле IgG 12 доменов - по 4 на тяжелых цепях и по 2 на легких цепях.

В состав каждой легкой цепи входит два домена – один вариабельный (V L , variable domain of the light chain) и один константный (C L , constant domain of the light chain). В состав каждой тяжелой цепи – один вариабельный (V H , variable domain of the heavy chain) и три константных домена (C H 1–3, constant domains of the heavy chain). Примерно четвертую часть тяжелой цепи, включающую N-конец, относят к вариабельной области Н-цепи (V H), остальная часть ее – это константные области (С Н 1, С Н 2, С Н 3).

Каждая пара вариабельных доменов V H и V L , расположенных в соседних тяжелой и легкой цепях, образует вариабельный фрагмент (Fv, variable fragment).

Типы тяжелых и легких цепей в составе молекул антител

По различиям первичной структуры постоянных областей цепи делятся на типы. Типы определяются первичной аминокислотной последовательностью цепей и степенью их гликозилирования. Легкие цепи делятся на два типа: κ и λ (каппа и лямбда), тяжелые - на пять типов: α, γ, μ, ε и δ (альфа, гамма, мю, эпсилон и дельта). Среди многообразия тяжелых цепей альфа-, мю- и гамма-типов выделяют подтипы.

Классификация иммуноглобулинов

Иммуноглобулины классифицируют по типу H-цепей (тяжелых цепей). Постоянные области тяжелых цепей у иммуноглобулинов разных классов неодинаковы. Иммуноглобулины человека поделены на 5 классов и ряд подклассов, по типам тяжелых цепей, которые входят в их состав. Эти классы получили название IgA, IgG, IgM, IgD и IgE.

Сами Н-цепи обозначены греческой буквой, соответствующей большой латинской букве названия одного из иммуноглобулинов. У IgA тяжелые цепи α (альфа), IgM – μ (мю), IgG – γ (гамма), IgE – ε (эпсилон), IgD – δ (дельта).

У иммуноглобулинов IgG, IgM и IgA имеется ряд подклассов. Разделение на подклассы (субтипы) также происходит в зависимости от особенностей Н-цепей. У человека существует 4 подкласса IgG: IgG1, IgG2, IgG3 и IgG4, содержащие тяжелые цепи γ1, γ2, γ3 и γ4 соответственно. Эти H-цепи отличаются небольшими деталями Fc-фрагмента. Для μ-цепи известны 2 подтипа- μ1- и μ2-. IgA имеет 2 подкласса: IgA1 и IgA2 с α1- и α2-подтипами α-цепей.

В каждой молекуле иммуноrлобулина все тяжелые цепи относяrся к одинаковому типу, в соответствии с классом или подклассом.

Все 5 классов иммуноглобулинов состоят из тяжелых и легких цепей.

Легкие цепи (L-цепи) у иммуноглобулинов разных классов одни и те же. У всех иммуноглобулинов легкие цепи могут быть или обе κ (каппа) или обе λ (лямбда). Иммуноглобулины всех классов разделяют на К- и L-типы, в зависимости от присутствия в составе их молекул легких цепей κ- или λ-типов, соответственно. У человека соотношение K- и L-типов составляет 3:2.

Классы и подклассы, вместе взятые, называют изотипами иммуноглобулинов. Изотип антител (класс, подкласс иммуноглобулинов – IgM1, IgM2, IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, IgD, IgE) определяется C-доменами тяжелых цепей.

Каждый класс включает огромное множество индивидуальных иммуноглобулинов, различающихся по первичной структуре вариабельных областей; общее число иммуноглобулинов всех классов равно ≈ 10^7.

Строение молекул антител различных классов

Схемы строения иммуноглобулинов. (А) - мономерные IgG, IgE, IgD, IgA; (Б) - полимерный секреторный Ig A (slgA) и IgM (В); (1) - секреторный компонент; (2) - соединительная J-цепь.

1. Классы антител IgG, IgD и IgE

Молекулы антител классов IgG, IgD и IgE мономерны; они имеют Y-образную форму.

На долю иммуноглобулинов класса IgG приходится 75% от общего количества имуноглобулинов человека. Находятся они как в крови, так и вне сосудов. Важным свойством IgG является их способность проходить через плаценту. Таким образом материнские антитела попадают в организм новорожденного ребенка и защищают его от инфекции в первые месяцы жизни (естественный пассивный иммунитет).

IgD в основном находятся на мембране В-лимфоцитов. Имеют строение, подобное IgG, 2 активных центра. Тяжелая цепь (δ-цепь) состоит из вариабельного и 3 константных доменов. Шарнирная область δ-цепи самая длинная, локализация углеводов в этой цепи также необычна.

IgЕ – концентрация этого класса иммуноглобулинов в сыворотке крови чрезвычайно низкая. Молекулы IgЕ в основном фиксированы на поверхности тучных клеток и базофилов. По своему строению IgЕ сходен с IgG, имеет 2 активных центра. Тяжелая цепь (ε-цепь) имеет один вариабельный и 4 константных домена. Предполагается, что IgЕ имеет существенное значение в развитии антигельминтозного иммунитета. IgЕ играет главную роль в патогенезе некоторых аллергических заболеваний (бронхиальная астма, сенная лихорадка) и анафилактического шока.

2. Классы антител IgM и IgA

Иммуноглобулины IgM и IgA формируют полимерные структуры. Для полимеризации IgM и IgA включают в свой состав дополнительную полипептидную цепочку с молекулярной массой 15 кД, называемую J-цепью (joint-связь, от англ. joining – соединение). Эта J-цепь связывает терминальные цистеины на С-концах соответственно тяжелых μ- и α -цепей IgM и IgA.

На поверхности зрелых B-лимфоцитов молекулы IgM располагаются в виде мономеров. Однако в сыворотке они существуют в виде пентамеров: молекула IgM состоит из пяти структурных молекул, расположеных радиально. Пентамер IgM сформирован из пяти мономеров-«рогаток», подобных IgG, соедененных между собой дисульфидными связями и J-цепью. Их Fc-фрагменты направлены в центр (где и соединены J-цепью), а Fab-фрагменты - наружу.

В IgM тяжелые (Н) цепи состоят из 5 доменов, так как содержат 4 константных домена. Тяжелые цепи IgM не имеют шарнирной области; её роль выполняет домен С H 2, обладающий некоторой конформационной лабильностью.

IgM синтезируется в основном при первичном иммунном ответе и преимущественно содержится во внутрисосудистом русле. Количество Ig M в сыворотке крови здоровых людей составляет около 10% от общего количества Ig.

Антите­ла IgA построены из различного количества мономеров. Иммуноглобулины класса А делят на два вида: сывороточный и секреторный. Большая часть (80%) IgА, присутствующих в сыворотке крови, имеет мономерную структуру. Менее 20% IgA в сыворотке представлено димерными молекулами.

Секреторные IgA находятся не в крови, а в составе экзосекретов на слизистых оболочках и обозначаются sIgА. В секретах слизистых оболочек IgА представлены в виде димеров. Секреторный IgA формирует димер из двух «рогаток» (Ig-мономеров). С-концы тяжелых цепей в молекуле sIgА соединены между собой J-цепью и белковой молекулой, которая называется «секреторный компонент».

Секреторный компонент вырабатывается эпителиальными клетками слизистых оболочек. Он присоединяется к молекуле IgA в момент её прохождения через эпителиальные клетки. Секреторный компонент защищает sIgА от расщепления и инактивации протеолитическими ферментами, которые содержатся в большом количестве в секрете слизистых оболочек.

Основная функция sIgА – защита слизистых оболочек от инфекции. Роль sIgA в обеспечении местного иммунитета весьма значительна, т.к. общая площадь слизистых оболочек в организме взрослого человека составляет несколько сот квадратных метров и намного превышает поверхность кожи.

Высокая концентрация sIgА обнаруживается в женском грудном молоке, особенно в первые дни лактации. Они защищают желудочно-кишечный тракт новорожденного от инфекции.

Дети рождаются без IgA и получают его с молоком матери. Достоверно показано, что дети, находящиеся на естественном вскармливании, значительно реже болеют кишечными инфекциями и заболеваниями дыхательных путей по сравнению с детьми, получающими искусственное питание.

Антитела класса IgА составляют 15-20% от общего содержания иммуноглобулинов. IgА не проникают через плацентарный барьер. Ig A синтезируется плазматическими клетками, находящимися преимущественно в подслизистых тканях, на слизистой эпителиальной поверхности дыхательных путей, урогенитального и кишечного тракта, почти во всех экскреторных железах. Часть Ig А попадает в общую циркуляцию, но большая его часть секретируется местно на слизистых оболочках в виде sIgA и служит местным защитным иммунологическим барьером слизистых. Сывороточный IgA и sIgA это различные иммуноглобулины, sIgA нет в сыворотке крови.

У лиц с иммунодефицитом IgA отмечается склонность к аутоиммунным заболеваниям инфекциям дыхательных путей, гайморовых и лобных пазух, кишечным расстройствам.

Расщепление молекулы иммуноглобулина ферментами

Протеолитические ферменты (такие, как папаин или пепсин) расщепляют молекулы иммуноглобулинов на фрагменты. При этом под воздействием разных протеаз можно получить различные продукты. Полученные таким способом фрагменты иммуноглобулинов можно использовать для исследовательских, либо медицинских целей.

Глобулярная структура иммуноглобулинов и способность ферментов расщеплять эти молекулы на крупные составляющие в строго определенных местах, а не разрушать их до олигопептидов и аминокислот, указывает на чрезвычайную компактность структуры.

1. Расщепление молекулы иммуноглобулина папаином. Fab- и Fc-фрагменты антител.

В конце 50-х - начале 60-х годов, английский ученый Р.Р. Портер проанализировал структурные характеристики антител IgG, посредством разделения их молекулы папаином (очищенным ферментом сока папайи). Папаин разрушает иммуноглобулин в шарнирной области, выше межцепьевых дисульфидных связей. Этот фермент расщепляет молекулу иммуноглобулина на три фрагмента, примерно одинаковых размеров.

Два из них получили название Fab-фрагментов (от англ. fragment antigen-binding - фрагмент антигенсвязывающий). Fab-фрагменты полностью идентичны и, как показали исследования, предназначены для связывания с антигеном. Участок тяжелой цепи в составе Fab-фрагмента называют Fd; он состоит из доменов V H и С H 1.

Третий фрагмент может быть выкристаллизован из раствора и не может связывать антиген. Этот фрагмент назван Fc-фрагментом (от англ. fragment crystallizable - фрагмент кристализации). Он отвечает за биологические функции молекулы антитела после связывания антигена и Fab-части неповрежденной молекулы антитела.

Fc-фрагмент имеет одинаковую структуру у антител каждого класса и подкласса и разную - у антител, принадлежащих к разным подклассам и классам.

Fc-фрагмент молекулы взаимодействует с клетками иммунной системы: нейтрофилами, макрофагами и другими мононуклеарными фагоцитами, несущими на своей поверхности рецепторы для Fc-фрагмента. Если антитела связались с патогенными микроорганизмами, они могут своим Fc-фрагментом взаимодействовать и с фагоцитами. Благодаря этому клетки возбудителя будут разрушены этими фагоцитами. Фактически антитела действуют в данном случае как молекулы-посредники.

Впоследствии стало известно, что Fc-фрагменты иммуноглобулинов в пределах одного изотипа у данного организма строго идентичны независимо от специфичности антитела по антигену. За эту инвариантность их стали называть константными областями (fragment constant - Fc, аббревиатура совпала).

2. Расщепление молекулы иммуноглобулина пепсином.

Другой протеолитический фермент - пепсин - расщепляет молекулу в другом месте, ближе к С-концу Н-цепей, чем это делает папаин. Расщепление происходит «ниже» дисульфидных связей, скрепляющих Н-цепи. В результате при действии пепсина образуется двухвалентный антигенсвязывающий F(аb")2 -фрагмент и укороченный pFc"-фрагмент. Фрагмент pFc" представляет собой C-концевую часть Fc -области.

Пепсин отсекает pFc" -фрагмент от большого фрагмента с константой седиментации 5S. Этот большой фрагмент получил название F(ab")2 , поскольку он, как и исходное антитело, бивалентен в отношении связывания антигена. Он представляет собой соединенные Fab-фрагменты, связанные дисульфидным мостиком в шарнирной области. Эти Fab-фрагменты одновалентны и гомологичны с папаиновыми Fab-фрагментами I и II, но их Fd-фрагмент примерно на десять аминокислотных остатков больше.

Антигенсвязывающие центры антител (паратопы)

В Fab-фрагмент иммуноглобулина входят V-домены обеих цепей, C L и C H 1-домены. Антигенсвязывающий участок Fab-фрагмента получил несколько названий: активный или антигенсвязывающий центр антител, антидетерминанта или паратоп.

В образовании активных центров участвуют вариабельные отрезки легких и тяжелых цепей. Активный центр представляет собой щель, расположенную между вариабельными доменами легкой и тяжелой цепей. В формировании активного центра участвуют оба этих домена.

Молекула иммуноглобулина. L - лёгкие цепи; H - тяжёлые цепи; V - вариабельная область; С - константная область; N-концевые области L- и Н-цепей (V-область) образуют два антигенсвязывающих центра в составе Fab-фрагментов.

Каждый Fab-фрагмент иммуноглобулинов IgG имеет один антигенсвязывающий центр. Активные центры антител других классов, способные взаимодействовать с антигеном, также расположены в Fab-фрагментах. Антитела IgG, IgA и IgE имеют по 2 активных центра, IgM - по 10 центров.

Иммуноглобулины могут связывать антигены разной химической природы: пептиды, карбогидраты, сахара, полифосфаты, стероидные молекулы.

Существенным и уникальным свойством антител является их способность вступать в связывание с цельными, нативными молекулами антигенов, непосредственно в том виде, в каком антиген проник во внутреннюю среду организма. Для этого не требуется никакая предварительная метаболическая обработка антигенов

Структура доменов в составе молекул иммуноглобулинов

Вторичная структура полипептидных цепей молекулы иммуноглобулина обладает доменным строением. Отдельные участки тяжелых и легких цепей свернуты в глобулы (домены), которые соединены линейными фрагментами. Каждый домен имеет примерно цилиндрическую форму и представляет собой β-складчатую структуру, сформированную из антипараллельных β-складок. В рамках базовой структуры, между C- и V-доменами есть определенная разница, которую можно рассмотреть на примере легкой цепи.

На рисунке схематически изображена укладка одиночной полипептидной цепи белка Бенс-Джонса, содержащей V L и C L домены. Схема построена по данным рентгеноструктурного анализа - метода, который позволяет устанавливать трехмерную структуру белков. На схеме можно видеть сходства и различия между V- и C-доменами.

В верхней части рисунка схематически показана пространственная укладка постоянного (C) и вариабельного (V) доменов легкой цепи молекулы белка. Каждый домен - это цилиндрическая "бочкообразная" (barrel-shaped) структура, в которой участки полипептидной цепи (β-тяжи), идущие в противоположных направлениях (т.е. антипареллельные) упакованы так, что формируют два β-листа, удерживаемых вместе дисульфидной связью.

Каждый из доменов, V- и C-, состоит из двух β-листов (слоев с β-складчатой структурой). Каждый β-лист содержит несколько антипараллельных (идущих в противоположных направлениях) β-тяжей: в С-домене β-листы содержат четыре и три β-тяжа, в V-домене - оба слоя состоят из четырех β-тяжей. На рисунке β-тяжи показаны желтым и зеленым для C-домена и красным и синим для V-домена.

В нижней части рисунка иммуноглобулиновые домены рассмотрены подробнее. В этой половине картинки отображена схема взаимного расположения β-тяжей для V- и C-доменов легкой цепи. Можно яснее рассмотреть создающий итоговую структуру способ укладки их полипептидных цепей при формировании из них β-листов. Чтобы показать укладку, β-тяжи обозначены буквами латинского алфавита, в соответствии с порядком их появления в последовательности аминокислот, составляющих домен. Порядок следования в каждом β-листе - это характеристика иммуноглобулиновых доменов.

β-листы (слои) в доменах связаны дисульфидным мостиком (связью) примерно в середине каждого домена. Эти связи отображены на рисунке: между слоями изображена дисульфидная связь, соединяющая складки В и F и стабилизирующая структуру домена.

Основная разница между V- и C-доменами состоит в том, что V-домен больше и содержит дополнительные β-тяжи, обозначенные, как Cʹ и Cʹʹ. На рисунке β-тяжи Cʹ и Cʹʹ, имеющиеся у V-доменов, но отсутствующие у C-доменов выделены голубым прямоугольником. Можно видеть, что каждая полипептидная цепь формирует гибкие петли между последовательными β-тяжами при смене направления. В V-домене, гибкие петли, сформированные между некоторыми из β-тяжей, входят в структуру активного центра молекулы иммуноглобулина.

Гипервариабельные области в составе V-доменов

Уровень вариабельности внутри вариабельных доменов распределен неравномерно. Не весь вариабельный домен изменчив по своему аминокислотному составу, а лишь его малая часть - гипервариабельные области. На их долю приходится около 20 % аминокислотной последовательности V-доменов.

В структуре цельной молекулы иммуноглобулина V H - и V L -домены объединены. Их гипервариабельные области примыкают друг к другу и создают единый гипервариабельный участок в виде кармана. Это участок, который специфически связывается с антигеном. Гипервариабельные области определяют комплементарность антитела антигену.

Поскольку гипервариабельные участки играют ключевую роль в распознавании и связывании антигена, их еще называют участками, определяющими комплементарность - CDR (Сomplementarity determining regions). В вариабельных доменах тяжелой и легкой цепей выделяют по три CDR (V L CDR1–3, V H CDR1–3).

Между гипервариабельными областями расположены относительно постоянные участки аминокислотной последовательности, которые называются каркасными участками (framework region, FR). На их долю приходится около 80% аминокислотной последовательности V-доменов. Роль таких участков заключается в поддержании относительно однотипной трехмерной структуры V-доменов, которая необходима для обеспечения аффинного взаимодействия гипервариабельных участков с антигеном.

В последовательности вариабельного домена области 3 гипервариантные области чередуются с 4 относительно инвариантными «каркасными» участками FR1–FR4,


H1–3 – CDR-петли, входящие в состав цепей.

Особый интерес представляет пространственное расположение гипервариабельных областей в трех отдельных петлях вариабельного домена. Эти гипервариабельные области, хотя и находятся на большом отдалении друг от друга в первичной структуре легкой цепи, но, при образовании трехмерной структуры, они оказываются расположенными в непосредственной близости друг к другу.

В пространственной структуре V-доменов гипервариабельные последовательности расположены в зоне изгибов полипептидной цепи, направленной навстречу соответствующим участкам V-домена другой цепи (т.е. CDR легкой и тяжелой цепей направлены навстречу друг другу). В результате взаимодействия вариабельного домена H- и L-цепей и формируется антигенсвязывающий участок (активный центр) иммуноглобулина. По данным электронной микроскопии, он представляет собой полость длиной 6 нм и шириной 1,2–1,5 нм.

Пространственная структура этой полости, обусловленная строением гипервариабельных участков, определяет способность антител распознавать и связывать конкретные молекулы на основе пространственного соответствия (специфичность антител). В формирование активного центра вносят вклад и пространственно разделенные участки Н- и L-цепей. Гипервариабельные участки V-доменов входят в состав активного центра не полностью - поверхность антигенсвязывающего участка захватывает только около 30% CDR.

Гипервариабельные области тяжелой и лег­кой цепи определяют индивидуальные особенности строения антигенсвязывающего центра для каждого клона Ig и многообразие их специфичностей.

Сверхвысокая вариабельность CDR и активных центров обеспечивает уникальность молекул иммуноглобулинов, синтезируемых В-лимфоцитами одного клона, не только по структуре, но и по способности связывать различные антигены. Несмотря на то, что структура иммуноглобулинов довольно хорошо известна и именно CDR отвечают за их особенности, до сих пор не ясно, какой именно домен отвечает за связывание антигена в наибольшей степени.

Взаимодействие антител и антигенов (взаимодействие эпитопа и паратопа)

В основе реакции антиген-антитело лежит взаимодействие между эпитопом антигена и активным центром антитела, основанное на их пространственном соответствии (комплементарности). В результате связывания патогена с активным центром антитела происходит нейтрализация патогена и затрудняется его проникновение в клетки организма.

В процессе взаимодействия с антигеном принимает участие не вся молекула иммуноглобулина, а лишь ее ограниченный участок - антигенсвязывающий центр, или паратоп, который локализован в Fab-фрагменте молекулы Ig. При этом антитело взаимодействует не со всей молекулой антигена сразу, а лишь с ее антигенной детерминантой (эпитопом).

Активный центр антител является структурой, пространственно комплементарной (специфичной) детерминантой группе антигена. Активный центр антител обладает функциональной автономией, т.е. способен связывать антигенную детерминанту в изолированном виде.

Со стороны антигена, за взаимодействие с активными центрами антигенраспознающих молекул ответственны эпитопы, которые взаимодействуют со специфичными антителами. Эпитоп непосредственно вступает в ионные, водородные, ван-дер-ваальсовы и гидрофобные связи с активным центром антитела.

Специфическое взаимодействие антител с молекулой антигена связано с относительно небольшим участком ее поверхности, соответствующим по размеру антиген-связывающему участку рецепторов и антител.

Связь антигена с антителом осуществляется за счет слабых взаимодействий в пределах антигенсвязывающего центра. Все эти взаимодействия проявляются только при близком контакте молекул. Такое маленькое расстояние между молекулами может быть достигнуто только за счет комплементарности эпитопа и активного центра антитела.

Иногда один и тот же антигенсвязывающий центр молекулы антитела может связываться с несколькими различными антигенными детерминантами (обычно эти антигенные детерминанты очень схожи). Такие антитела называют перекрестно-реагирующими , способными к полиспецифическому связыванию.


Например если антиген А имеет общие эпитопы с антигеном Б, то часть антител, специфичных к А, будет реагировать также с Б. Этот феномен назван перекрестной реактивностью.

Полные и неполные антитела. Валентность

Валентность – это количество активных центров антитела, которые способны соединяться с антигенными детерминантами. Антитела имеют различное число активных центров в молекуле, что и определяет их валентность. В связи с этим, различают полные и неполные антитела.

Полные антитела имеют не менее двух активных центров. Полные (двух- и пятивалентные) антитела при взаимодействии in vitro с антигеном, в ответ на который они выработаны, дают визуально видимые реакции (агглютинации, лизиса, преципитации, связывания комплемента и др.).

Неполные, или моновалентные антитела отличаются от обычных (полных) антител тем, что имеют лишь один активный центр, второй центр у таких антител не работает. Это не значит, что второй активный центр молекулы отсутствует. Второй активный центр у подобных иммуноглобулинов экранирован различными структурами, либо обладает низкой авидностью. Такие антитела могут взаимодействовать с антигеном, блокировать его, связывая эпитопы антигена и препятствуя контакту с ним полных антител, но не вызывают агрегацию антигена. Поэтому они также называются блокирующими .

Реакция между неполными антителами и антигеном не сопровождается макроскопическими феноменами. Неполные антитела при специфическом взаимодействии с гомологичным антигеном не дают видимого проявления серологической реакции, т.к. не могут аггрегировать частицы в крупные конгломераты, а лишь блокируют их.

Неполные антитела образуются независимо от полных и выполняют те же функции. Они также представлены различными классами иммуноглобулинов.

Идиотипы и идиотопы

Антитела являются сложными белковыми молекулами, которые сами по себе могут иметь антигенные свойства и вызывать образование антител. В их составе различают несколько типов антегенных детерминант (эпитипов): изотипы, аллотипы и идиотипы.

Различные антитела отличаются друг от друга своими вариабельными областями. Антигенные детерминанты вариабельных областей (V-областей) антител называются идиотопами . Идиотопы могут быть построены из характерных участков V-областей только лишь H-цепей или же L-цепей. В большинстве случаев, в образовании идиотопа участвуют обе цепи сразу.

Идиотопы могут относиться к антигенсвязывающему участку (сайт-ассоциированные идиотопы) или не иметь к нему отношения (неассоциированные идиотопы).

Сайт-ассоциированные идиотопы зависят от структуры антигенсвязывающего участка антитела (принадлежащего к Fab-фрагменту). Если этот участок занят антигеном, то антиидиотопическое антитело уже не может реагировать с антителом, имеющим данный идиотоп. Другие идиотопы, по-видимому, не имеют такой тесной связи с антигенсвязывающими участками.

Набор идиотопов на молекуле любого антитела обозначают как идиотип . Таким образом, идиотип состоит из набора идиотопов – антигенных детерминант V-области антитела.

Групповые конституциональные варианты антигенной структуры тяжёлых цепей называются аллотипами . Аллотипы - детерминанты, кодируемые аллелями данного иммуноглобулинового гена.

Изотипы - детерминанты, по которым различаются классы и подклассы тяжелых цепей и варианты κ (каппа) и λ (лямбда) легких цепей.

Афинность и авидность антител

Сила связывания антител может быть охарактеризована иммунохимическими характеристиками: авидностью и аффинностью.

Под аффинностью понимают силу связывания активного центра молекулы антитела с соответствующей детерминантой антигена. Силу химической связи одного антигенного эпитопа с одним из активных центров молекулы Ig называют аффинностью связи антитела с антигеном. Аффинность количественно принято оценивать по константе диссоциации (в моль-1) одного антигенного эпитопа с одним активным центром.

Аффинность – это точность совпадения пространственной конфигурации активного центра (паратопа) антитела и антигенной детерминанты (эпитопа). Чем больше образуется связей между эпитопом и паратопом, тем выше будут устойчивость и продолжительность жизни образовавшегося иммунного комплекса. Иммунный комплекс, образованный низкоаффинными антителами, чрезвычайно неустойчив и имеет малую продолжительность существования.

Сродство антител к антигену называется авидностью антител. Авидностью связи антитела с антигеном называют суммарную силу прочности и интенсивности связи цельной молекулы антитела со всеми ангитегнными эпитопами, которые ей удалось связать.

Авидность антител характеризуется скоростью образования комплекса «антиген-антитело», полнотой взаимодействия и прочностью образующегося комплекса. В основе авидности, так же, как и в основе специфичности антител, лежит первичное строение детерминанты (активного центра) антитела и связанная с ней степень адаптации поверхностной конфигурации полипептидов антител к детерминанте (эпитопу) антигена.

Авидность определяется как аффинностью взаимодействия между эпитопами и паратопами, так и валентностью антител и антигена. Авидность зависит от числа антигенсвязывающих центров в молекуле антитела и их способностью связываться с многочисленными эпитопами данного антигена.

Типичная молекула IgG при вовлечении в реакцию обоих антиген-связывающих участков будет связываться с мультивалентным антигеном по меньшей мере в 10000 раз сильнее, чем в том случае, когда воэлечен лишь один участок.

Наибольшей авидностью обладают антитела класса М, так как они имеют 10 антигенсвязывающих центров. Если сродство отдельных антиген-связывающих участков IgG и IgM одинаково, молекула IgM (имеющая 10 таких участков) проявит несравненно большую авидностъ к мультивалентному антигену, чем молекула IgG (имеющая 2 участка). Благодаря высокой общей авидности антитела IgM - основной класс иммуноглобулинов, вырабатываемых в начале иммунного ответа, - могут эффективно функционировать даже при низком сродстве отдельных связывающих участков.

Различие в авидиости весьма важно, так как антитела, образующиеся на ранних стадиях имунного ответа, обычно обладают значительно меньшим сродством к антигену, чем те, которые вырабатываются позже. Повышение среднего сродства продуцируемых антител с течением времени после иммунизации называется созреванием сродства.

Специфичность взаимодействия антигенов и антител

В иммунологии под специфичностью понимают избирательность взаимодействия индукторов и продуктов иммунных процессов, в частности, антигенов и антител.

Специфичность взаимодействия для антител - это способность иммуноглобулина реагировать только с определенным антигеном, а именно - способность связываться со строго определенной антигенной детерминантой. Феномен специфичности основан на наличии активных центров в молекуле антител, вступающих в контакт с соответствующими детерминантами антигена. Избирательность взаимодействия обусловлена комплементарностью между структурой активного центра антитела (паратопа) и структурой антигенной детерминанты (эпитопа).

Специфичностью антигена называют способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу. Специфичность антигена во многом определяется свойствами составляющих его эпитопов.

Одной из важнейших функций иммуноглобулинов является связывание антигена и образование иммунных комплексов. Белки-антитела специфически реагируют с антигенами, образуя иммунные комплексы - комплексы антител, связанных с антигенами. Такая связь отли­чается неустойчивостью: образовавшийся иммунный комплекс (ИК) может легко распадаться на составляющие его компоненты.

К каждой молекуле антигена может присоединиться несколько молекул антител, поскольку на антигене есть несколько антигенных детерминант и к каждой из них могут образовываться антитела. В результате возникают сложные молекулярные комплексы.

Образование иммунных комплексов является неотъемлемым компонентом нормального иммунного ответа. Формирование и биологическая активность иммунных комплексов зависят, в первую очередь, от природы антител и антигена, входящих в их состав, а также от их соотношения. Особенности иммунных комплексов зависят от свойств антител (валентность, аффинность, скорость синтеза, способность связывать комплемент) и антигена (растворимость, размер, заряд, валентность, пространственное распределение и плотность эпитопов).

Взаимодействие антигенов и антител. Реакция антиген-антитело

Реакция антиген-антитело - образование комплекса между антигеном и направленными к нему антителами. Изучение таких реакций имеет большое значение для понимания механизма специфического взаимодействия биологических макромолекул и для выяснения механизма серологических реакций.

Эффективность взаимодействия антитела с антигеном существенно зависит от условий, в которых происходит реакция, прежде всего от pH среды, осмотической плотности, солевого состава и температура среды. Оптимальными для реакции антиген-антитело являются физиологические условия внутренней среды макроорганизма: близкая к нейтральной реакция среды, присутствие фосфат-, карбонат-, хлорид- и ацетат-ионов, осмолярность физиологического раствора (концентрация раствора 0,15 М), а также температура 36-37 °С.

Взаимодействие молекулы антигена с антителом или его активным Fab-фрагментом сопровождается изменениями пространственной структуры молекулы антигена.

Поскольку при соединении антигена с антителом не возникает химических связей, прочность этого соединения определяется пространственной точностью (специфичностью) взаимодействующих участков двух молекул - активного центра иммуноглобулина и антигенной детерминанты. Мера прочности связи определяется афинностью антитела (величиной связи одного антигенсвязывающего центра с индивидуальным эпитопом антигена) и его авидностью (суммарной силой взаимодействия антитела с антигеном в случае взаимодействия поливалентного антитела с поливалентным антигеном).

Все реакции антиген-антитело обратимы; комплекс "антиген-антитело" может диссоциировать с выделением антител. При этом обратная реакция антиген-антитело протекает значительно медленнее, чем прямая.

Можно выделить два основных пути, с помощью которых может быть частично или полностью разделен уже сформировавшийся комплекс антиген - антитело. Первый состоит в вытеснении антител избытком антигена, а второй - в воздействии на иммунный комплекс внешних факторов, приводящих к разрыву связей (уменьшению сродства) между антигеном и антителом. Частичная диссоциация комплекса "антиген-антитело" может быть достигнута в общем случае при повышении температуры.

При использовании серологических методов наиболее универсальным способом диссоциации иммунных комплексов, образованных самыми разнообразными антителами, служит их обработка разбавленными кислотами и щелочами, а также концентрированными растворами амидов (мочевины, солянокислого гуанидина).

Гетерогенность антител

Антитела, образовавшиеся при иммунном ответе организма, неоднородны и отличаются друг от друга, т.е. они гетерогенны . Антитела гетерогенны по своим физико-химическим, биологическим свойствам и прежде всего по своей специфичности. Главная основа гетерогенности (разнообразия специфичностей) антител - разнообразие их активных центров. Последняя связана с вариабельностью аминокислотного состава в V-областях молекулы антитела.

Также антитела гете­рогенны по принадлежности к различным классам и подклассам.

Гетерогенность антител связана также с тем, что иммуноглобулины содержат 3 вида антигенных детерминант: изотипические, характеризующие принадлежность иммуноглобулина к определенному классу; аллотипические, соответствующие аллельным вариантам иммуноглобулина; идиотипические, отражающие индивидуальные особенности иммуноглобулина. Система идиотип−антиидиотип составляет основу так называемой сетевой теории Ерне.

Изотипы, аллотипы, идиотипы антител

Иммуноглобулины содержат три вида антигенных детерминант: изотипические (одинаковые для каждого представителя данного вида), аллотипические (детерминанты, различные у представителей данного вида) и идиотипические (детерминанты, определяющие индивидуальность данного иммуноглобулина и являющиеся различными у антител одного класса, подкласса).

У каж­дого биологического вида тяжелые и легкие цепи иммуноглобулинов имеют определенные антигенные осо­бенности, в соответствии с которыми тяжелые цепи разделены на 5 классов (γ, μ, α, δ, ε), а легкие на 2 типа (κ и λ). Эти антигенные детерминанты называют изотипическими (изотипы), для каждой цепи они одинаковые у каждого представителя данного биологического вида.

Вместе с тем имеются внутривидовые различия названных цепей иммуноглобулинов - аллотипы, обусловленные генетичес­кими особенностями организма-продуцента: их признаки генети­чески детерминированы. Например, у тяжелых цепей описано более 20 аллотипов.

Даже тогда, когда антитела к конкретному антигену относятся к одному классу, подклассу и даже аллотипу, они характеризуются специфическими отличиями друг от друга. Эти различия названы идиотипами. Они характе­ризуют «индивидуальность» данного иммуноглобулина в зависи­мости от специфичности антигена-индуктора. Это зависит от особенностей строения V-доменов H- и L- цепей, множества различных вариантов их аминокислотных последовательностей. Все указанные антигенные различия определяются с помощью специфических сывороток.

Классификации антител в соответствии с реакциями, в которых они могут участвовать

Первоначально антитела условно классифицировали по их функциональным свойствам на нейтрализующие, лизирующие и коагулирующие. К нейтрализующим были отнесены антитоксины, антиферменты и вирус-нейтрализующие лизины. К коагулирующим – агглютинины и преципитины; к лизирующим – гемолитические и комплемент-связывающие антитела. С учетом функциональной способности антител были даны названия серологическим реакциям: агглютинация, гемолиз, лизис, преципитация и др.

Исследования антител. Фаговый дисплей.

До недавнего времени изучение антител было затруднено техническими причинами. Иммуноглобулины в организме - это сложная смесь белков. Фракция иммуноглобулинов сыворотки крови представляет собой смесь огромного числа различных антител. Причем относительное содержание каждого вида из них, как правило, очень мало. До недавнего времени, получение чистых антител из иммуноглобулиновой фракции было труднодоступно. Трудность выделения индивидуальных иммуноглобулинов долгое время была препятствием как для их биохимического исследования, так и для установления их первичной структуры.

В последние годы сформировалась новая область иммунологии – инженерия антител, которая занимается получением неприродных иммуноглобулинов с заданными свойствами. Для этого обычно используются два основных направления: биосинтез полноразмерных антител и получение минимальных фрагментов молекулы антител, которые необходимы для эффективного и специфического связывания с антигеном.

Современные технологии получения антител in vitro копируют селекционные стратегии иммунной системы. Одной из таких технологий является фаговый дисплей, который позволяет получать фрагменты антител человека разной специфичности. Гены этих фрагментов могут быть использованы для конструирования полноразмерных антител.

Кроме того, очень часто терапевтические препараты, созданные на основе антител, не требуют привлечения их эффекторных функций посредством Fc-домена, например, при инактивации цитокинов, блокировании рецепторов или нейтрализации вирусов. Поэтому одна из тенденций в конструировании рекомбинантных антител состоит в уменьшении их размера до минимального фрагмента, сохраняющего как связывающую активность, так и специфичность.

Такие фрагменты в некоторых случаях могут быть более предпочтительны из-за их способности лучше проникать в ткани и быстрее выводиться из организма, по сравнению с полноразмерными молекулами антител. Вместе с тем, нужный фрагмент может быть наработан в E.coli или дрожжах, что существенно снижает его стоимость по сравнению с антителами, полученными с использованием культур клеток млекопитающих. К тому же, такой способ наработки позволяет избежать биологической опасности, связанной с применением антител, выделенных из донорской крови.

Миеломные иммуноглобулины

Белок Бенс-Джонса. Пример молекулы такого иммуноглобулина, который представляет собой димер легких каппа-цепей

Термин иммуноглобулины относится не только к нормальным классам антител, но и к большому числу патологических белков, обычно называемых миеломными белками. Эти белки синтезируются в большом количестве при множественной миеломе, злокачественном заболевании, при котором переродившиеся специфические клетки антителообразующей системы продуцируют большие количества определенных белков, например белки Бенс-Джонса, миеломные глобулины, фрагменты иммуноглобулинов различных классов.

Белки Бенс-Джонса представляют собой либо одиночные κ- или λ-цепи, либо димеры из двух одинаковых цепей, связанных одной дисульфидной связью; они экскретируются с мочой.

Миеломные глобулины содержатся в высокой концентрации в плазме больных множественной миеломой; их Н- и L-цепи имеют уникальную последовательность. Одно время предполагали, что миеломные глобулины представляют собой патологические иммуноглобулины, характерные для опухоли, в которой они образуются, но теперь считают, что каждый из них является одним из индивидуальных иммуноглобулинов, случайно «выбранным» из многих тысяч нормальных антител, образующихся в организме человека.

Установлена полная аминокислотная последовательность нескольких индивидуальных иммуноглобулинов, в том числе миеломных глобулинов, белков Бенс-Джонса, а также легкой и тяжелой цепей одного и того же миеломного иммуноглобулина. В отличие от антител здорового человека все белковые молекулы каждой названной группы имеют одинаковую аминокислотную последовательность и являются одним из многих тысяч возможных антител индивидуума.

Гибридомы и моноклональные антитела

Получение антител для нужд человека начинается с иммунизации животных. После нескольких инъекций антигена (в присутствии стимуляторов иммунного ответа) в сыворотке крови животных накапливаются специфические антитела. Такие сыворотки называются иммунными. Из них специальными методами выделяют антитела.

Однако иммунная система организма животного вырабатывает специальные антитела на огромное множество антигенов. В основе этой способности лежит наличие разнообразия клонов лимфоцитов, каждый из которых вырабатывает антитела одного типа с узкой специфичностью. Общее число клонов у мышей, например, достигает 10^7 –10^10 степени.

Поэтому иммунные сыворотки содержат много молекул антител с различной специфичностью, т. е. имеющих сродство ко многим антигенным детерминантам. Антитела, полученные из иммунных сывороток направлены как против антигена, которым проводилась иммунизация, так и против других антигенов, с которыми встречалось животное-донор.

Для современного иммунохимического анализа и клинического применения очень важны специфичность и стандартизованность применяемых антител. Необходимо получать абсолютно идентичные антитела, что невозможно сделать с помощью иммунных сывороток.

В 1975 году Ж. Кёлер и С. Мильштейн (G. Köhler, C. Milstein) решили эту проблему, предложив метод получения гомогенных антител. Они разработали так называемую «гибридомную технологию» - методику получения клеточных гибридов (гибридом). С помощью этого метода получают гибридные клетки, способные неограниченно размножаться и синтезировать антитела узкой специфичности - моноклональные антитела .

Для получения моноклональных антител производят слияние клеток плазмоцитарной опухоли (плазмоцитомы или множественной миеломы) с клетками селезенки иммунизированного животного, чаще всего мыши. Технология Кёлера и Мильштейна включает в себя несколько этапов.


Мыши вводят специфический антиген, который вызывает продукцию антител против этого антигена. Селезенку мышей удаляют и гомогенизируют для получения суспензии клеток. Эта суспензия содержит B-клетки, которые продуцируют антитела против введенного антигена.

Клетки селезенки затем смешивают с клетками миеломы. Это опухолевые клетки, которые способны непрерывно расти в культуре, в них также отсутствует резервный путь синтеза нуклеотидов. Некоторые антителопродуцирующие клетки селезенки и клетки миеломы сливаются, образуя гибридные клетки. Эти гибридные клетки теперь способны непрерывно расти в культуре и продуцировать антитела.

Смесь клеток помещают в селективную среду, которая позволяет расти только гибридным клеткам. Погибают неслившиеся миеломные клетки и В-лимфоциты.

Гибридные клетки пролиферируют, образуя клон гибридом. Гибридомы проверяют на продукцию нужных антител. Выбранные гибридомы затем культивируют для получения больших количеств моноклональных антител, не содержащих посторонних антител и настолько однородных, что могут рассматриваться как чистые химические реагенты.

Следует отметить, что антитела, продуцируемые одной культурой гибридом, связываются только с одной антигенной детерминантой (эпитопом). В связи с этим к антигену с несколькими эпитопами можно получить столько моноклональных антител, сколько у него имеется антигенных детерминант. Также можно отобрать клоны, продуцирующие антитела только одной нужной специфичности.

Разработка технологии получения гибридом имела революционное значение в иммунологии, молекулярной биологии и медицине. Она позволила создать совершенно новые научные направления. Благодаря гибридомам открылись новые пути для изучения и лечения злокачественных опухолей и многих других заболеваний.

В настоящее время гибридомы стали основным источником моноклональных антител, использующихся в фундаментальных исследованиях и в биотехнологии при создании тест-систем. Моноклональные антитела получили широкое распространение при диагностике инфекционных болезней сельскохозяйственных животных и человека.

Благодаря моноклональным антителам стали рутинными иммуноферментный анализ, реакция иммунофлюоресценции, методы проточной цитометрии, иммунохроматографии, радиоиммунный анализ.

Разработано множество технологий, позволивших усовершенствовать синтез антител. Это - технологии рекомбинации ДНК, методы клонирования клеток и другие трансгенные технологий. В 90-х годах, с помощью методов генной инженерии удалось свести к минимуму процент мышиных последовательностей аминокислот в искусственно синтезируемых антителах. Благодаря этому, помимо мышиных, были получены химерные, гуманизированные и полностью человеческие антитела.



Случайные статьи

Вверх