Белки системы комплемента в норме содержатся. Активацию тучных клеток, в результате чего выделяется гистамин, расширяющий капилляры и вызывающий локальное покраснение при воспалении и аллергических реакциях; эта функция связана с фрагментами С5а, С3а, Ва,

Без регуляторных механизмов , действующих на многих этапах, система комплемента оказалась бы неэффективной; неограниченное расходование ее компонентов могло бы привести к тяжелым, потенциально смертельным повреждениям клеток и тканей организма. На первом этапе ингибитор С1 блокирует ферментативную активность Clr и Cls и, следовательно, расщепление С4 и С2. Активированный С2 сохраняется лишь короткое время, и его относительная нестабильность ограничивает время существования С42 и С423. Активирующий СЗ фермент альтернативного пути, С3bВb, также обладает коротким временем полувыведения, хотя связывание пропердина ферментным комплексом продлевает время существования комплекса.

В сыворотке присутствует инактиватор анафилатоксинов - фермент, отщепляющий N-концевой аргинин от С4а, С3а и С5а и тем самым резко снижающий их биологическую активность. Фактор I инактивирует C4b и С3b, фактор Н ускоряет инактивацию С3b фактором I, а аналогичный фактор, С4-связывающий белок (С4-сб), ускоряет расщепление С4b фактором I. Три конституциональных белка клеточных мембран - РК1, мембранный кофакторный белок и фактор, ускоряющий распад (ФУР) - разрушают С3- и С5-конвертазные комплексы, формирующиеся на этих мембранах.

Другие компоненты клеточных мембран - ассоциированные белки (среди которых наиболее изучен CD59) - могут связывать С8 или С8 и С9, что препятствует встраиванию мембраноатакующего комплекса (С5b6789). Некоторые белки сыворотки крови (среди которых наиболее изучены протеин S и кластерин) блокируют присоединение к клеточной мембране комплекса С5b67, связывание им С8 или С9 (т. е. образование полноценного мембраноатакующего комплекса) или как-то иначе препятствуют образованию и встраиванию этого комплекса.

Защитная роль комплемента

Нейтрализация вирусов антителами усиливается С1 и С4 и еще больше возрастает при фиксации С3b, образующегося по ходу классического или альтернативного пути. Таким образом, комплемент приобретает особую важность на ранних стадиях вирусной инфекции, когда количество антител еще невелико. Антитела и комплемент ограничивают инфектив-ность по крайней мере некоторых вирусов и за счет образования типичных комплементных «дыр», видимых при электронной микроскопии. Взаимодействие Clq с его рецептором опсонизирует мишень, т. е. облегчает ее фагоцитоз.

С4а, С3а и С5а фиксируются тучными клетками, которые начинают секретировать гистамин и другие медиаторы, приводя к расширению сосудов и характерным для воспаления отеку и гиперемии. Под влиянием С5а моноциты выделяют ФНО и ИЛ-1, усиливающие воспалительную реакцию. С5а - основной хемотактический фактор для нейтрофилов, моноцитов и эозинофилов, способных фагоцитировать микроорганизмы, опсонизированные С3b или продуктом его расщепления iC3b. Дальнейшая инактивация связанного с клеткой С3b, приводящая к появлению C3d, лишает его опсонизирующей активности, но способность его связывания с В-лимфоцитами сохраняется. Фиксация С3b на клетке-мишени облегчает ее лизис NK-клетками или макрофагами.

Связывание С3b с нерастворимыми иммунными комплексами солюбилизирует их, так как С3b, по-видимому, разрушает решетчатую структуру комплекса антиген-антитело. Одновременно появляется возможность взаимодействия этого комплекса с рецептором С3b (РК1) на эритроцитах, которые переносят комплекс в печень или селезенку, где он поглощается макрофагами. Этот феномен частично объясняет развитие сывороточной болезни (болезни иммунных комплексов) у лиц с недостаточностью С1, С4, С2 или С3.

Система комплемента

Мембраноатакующий комплекс, вызывающий лизис клетки.

Система комплемента - комплекс сложных белков, постоянно присутствующих в крови. Это каскадная система протеолитических ферментов , предназначенная для гуморальной защиты организма от действия чужеродных агентов, она участвует в реализации иммунного ответа организма. Является важным компонентом как врождённого, так и приобретённого иммунитета.

История понятия

В конце XIX столетия было установлено, что сыворотка крови содержит некий «фактор», обладающий бактерицидными свойствами. В 1896 году молодой бельгийский ученый Жюль Борде , работавший в Институте Пастера в Париже, показал, что в сыворотке имеются два разных вещества, совместное действие которых приводит к лизису бактерий: термостабильный фактор и термолабильный (теряющий свои свойства при нагревании сыворотки) фактор. Термостабильный фактор, как оказалось, мог действовать только против определенных микроорганизмов, в то время как термолабильный фактор имел неспецифическую антибактериальную активность. Термолабильный фактор позднее был назван комплементом . Термин «комплемент» ввел Пауль Эрлих в конце 1890-х годов. Эрлих был автором гуморальной теории иммунитета и ввел в иммунологию много терминов, которые впоследствии стали общепринятыми. Согласно его теории, клетки, ответственные за иммунные реакции, имеют на поверхности рецепторы , которые служат для распознавания антигенов . Эти рецепторы мы сейчас называем «антителами » (основой вариабельного рецептора лимфоцитов является прикреплённое к мембране антитело класса IgD, реже IgM. Антитела других классов в отсутствие соответствующего антигена не прикреплены к клеткам). Рецепторы связываются с определенным антигеном, а также с термолабильным антибактериальным компонентом сыворотки крови. Эрлих назвал термолабильный фактор «комплементом» потому, что этот компонент крови «служит дополнением» к клеткам иммунной системы.

Эрлих полагал, что имеется множество комплементов, каждый из которых связывается со своим рецептором, подобно тому, как рецептор связывается со специфическим антигеном. В противоположность этому Борде утверждал, что существует «дополнение» только одного типа. В начале XX века спор был разрешен в пользу Борде; выяснилось, что комплемент может активироваться с участием специфических антител или самостоятельно, неспецифическим способом.

Общее представление

Компоненты системы комплемента

Комплемент - система белков, включающая около 20 взаимодействующих компонентов: С1 (комплекс из трех белков), С2, СЗ, …, С9, фактор В, фактор D и ряд регуляторных белков. Все эти компоненты - растворимые белки с мол. массой от 24 000 до 400 000, циркулирующие в крови и тканевой жидкости. Белки комплемента синтезируются в основном в печени и составляют приблизительно 5 % от всей глобулиновой фракции плазмы крови. Большинство из них неактивны до тех пор, пока не будут приведены в действие или в результате иммунного ответа (с участием антител), или непосредственно внедрившимся микроорганизмом (см. ниже). Один из возможных результатов активации комплемента - последовательное объединение так называемых поздних компонентов (С5, С6, С7, С8 и С9) в большой белковый комплекс, вызывающий лизис клеток (литический, или мембраноатакующий, комплекс). Агрегация поздних компонентов происходит в результате ряда последовательных реакций протеолитической активации с участием ранних компонентов (С1, С2, С3, С4, фактора В и фактора D). Большинство этих ранних компонентов - проферменты, последовательно активируемые путем протеолиза . Когда какой-либо из этих проферментов специфическим образом расщепляется, он становится активным протеолитическим ферментом и расщепляет следующий профермент, и т. д. Поскольку многие из активированных компонентов прочно связываются с мембранами, большинство этих событий происходит на поверхностях клеток. Центральный компонент этого протеолитического каскада - С3. Его активация путем расщепления представляет собой главную реакцию всей цепи активации комплемента. С3 может быть активирован двумя основными путями - классическим и альтернативным. В обоих случаях С3 расщепляется ферментным комплексом, называемым С3-конвертазой. Два разных пути приводят к образованию разных С3-конвертаз, однако обе они образуются в результате спонтанного объединения двух компонентов комплемента, активированных ранее в цепи протеолитического каскада. С3-конвертаза расщепляет С3 на два фрагмента, больший из которых (С3b) связывается с мембраной клетки-мишени рядом с С3-конвертазой; в результате образуется ферментный комплекс еще больших размеров с измененной специфичностью - С5-конвертаза. Затем С5-конвертаза расщепляет С5 и тем самым инициирует спонтанную сборку литического комплекса из поздних компонентов - от С5 до С9. Поскольку каждый активированный фермент расщепляет много молекул следующего профермента, каскад активации ранних компонентов действует как усилитель: каждая молекула, активированная в начале всей цепи, приводит к образованию множества литических комплексов.

Основные этапы активации системы комплемента.

Классический и альтернативный пути активации системы комплемента.

Система комплемента работает как биохимический каскад реакций. Комплемент активируется тремя биохимическими путями: классическим, альтернативным и лектиновым путем. Все три пути активации производят разные варианты C3-конвертазы (белка, расщепляющего С3). Классический путь (он был открыт первым, но эволюционно является новым) требует антител для активации (специфический иммунный ответ, приобретённый иммунитет), в то время как альтернативный и лектиновый пути могут быть активизированы антигенами без присутствия антител (неспецифический иммунный ответ, врождённый иммунитет). Итог активации комплемента во всех трёх случаях одинаков: C3-конвертаза гидролизует СЗ, создавая C3a и C3b и вызывая каскад дальнейшего гидролиза элементов системы комплемента и событий активации. В классическом пути для активации С3-конвертазы необходимо образование комплекса С4bC2a. Этот комплекс образуется при расщеплении С2 и С4 С1-комплексом. С1-комплекс, в свою очередь, для активации должен связаться с иммуноглобулинами класса М или G. C3b связывается с поверхностью болезнетворных микроорганизмов, что приводит к большей «заинтересованности» фагоцитов к связанным с СЗb клеткам (опсонизация). C5a - важный хемоаттрактант, помогающий привлекать в район активации системы комплемента новые иммунные клетки. И C3a, и C5a имеют анафилотоксическую активность, непосредственно вызывая дегрануляцию тучных клеток (как следствие - выделение медиаторов воспаления). C5b начинает формирование мембраноатакующих комплексов (МАК), состоящим из C5b, C6, C7, C8 и полимерного C9. МАК - цитолитический конечный продукт активации системы комплемента. МАК формирует трансмембранный канал, вызывающий осмотический лизис клетки-мишени. Макрофаги поглощают помеченные системой комплемента болезнетворные микроорганизмы.

Биологические функции

Сейчас выделяют следующие функции:

  1. Опсонизирующая функция. Сразу вслед за активацией системы комплемента образуются опсонизирующие компоненты, которые покрывают патогенные организмы или иммунные комплексы, привлекая фагоцитов. Наличие на поверхности фагоцитирующих клеток рецептора к С3b усиливает их прикрепление к опсонизированным бактериям и активирует процесс поглощения. Такое более тесное прикрепление С3b-связанных клеток или иммунных комплексов к фагоцитирующим клеткам получило название феномена иммунного прикрепления .
  2. Солюбилизация (т.е. растворение) иммунных комплексов (молекулой C3b). При недостаточности комплемента развивается иммунокомплексная патология (СКВ-подобные состояния). [СКВ = системная красная волчанка]
  3. Участие в воспалительных реакциях. Активация системы комплемента приводит к выделению из тканевых базофилов (тучных клеток) и базофильных гранулоцитов крови биологически активных веществ (гистамина, серотонина, брадикинина), которые стимулируют воспалительную реакцию (медиаторов воспаления). Биологически активные компоненты, которые образуются при расщеплении С3 и С5 , приводят к высвобождению вазоактивных аминов, таких как гистамин , из тканевых базофилов (тучных клеток) и базофильных гранулоцитов крови. В свою очередь это сопровождается расслаблением гладкой мускулатуры и сокращением клеток эндотелия капилляров, усилением сосудистой проницаемости. Фрагмент С5а и другие продукты активации комплемента содействуют хемотаксису , агрегации и дегрануляции нейтрофилов и образованию свободных радикалов кислорода. Введение С5а животным приводило к артериальной гипотонии, сужению легочных сосудов и повышению проницаемости сосудов из-за повреждения эндотелия.
    Фукнции С3а:
    • выступать в роли хемотаксического фактора, вызывая миграцию нейтрофилов по направлению к месту его высвобождения;
    • индуцировать прикрепление нейтрофилов к эндотелию сосудов и друг к другу;
    • активировать нейтрофилы, вызывая в них развитие респираторного взрыва и дегрануляцию;
    • стимулировать продукцию нейтрофилами лейкотриенов.
  4. Цитотоксическая, или литическая функция. В конечной стадии активации системы комплемента образуется мембраноатакующий комплекс (МАК) из поздних компонентов комплемента, который атакует мембрану бактериальной или любой другой клетки и разрушает ее.
Фактор С3е, образующийся при расщеплении фактора С3b, обладает способностью вызывать миграцию нейтрофилов из костного мозга, и в таком случае быть причиной лейкоцитоза .

Активация системы комплемента

Классический путь

Классический путь запускается активацией комплекса С1 (он включает одну молекулу С1q и по одной молекуле С1r и С1s). Комплекс С1 связывается с помощью С1q с иммуноглобулинами классов М и G, связанными с антигенами. Гексамерный C1q по форме напоминает букет нераскрытых тюльпанов, «бутоны» которого могут связываться с участком антител. Для инициации этого пути достаточно единственной молекулы IgM , активация молекулами IgG менее эффективна и требует больше молекул IgG.

С1q связывается прямо с поверхностью патогена, это ведет к конформационным изменениям молекулы С1q, и вызывает активацию двух молекул сериновых протеаз С1r. Они расщепляют С1s (тоже сериновую протеазу). Потом комплекс С1 связывается с С4 и С2 и затем расщепляет их, образуя С2а и С4b. С4b и С2а связываются друг с другом на поверхности патогена, и образуют С3-конвертазу классического пути, С4b2а. Появление С3-конвертазы приводит к расщеплению С3 на С3а и С3b. С3b образует вместе с С2а и С4b С5-конвертазу классического пути. С5 расщепляется на C5a и C5b.C5b остается на мембране и соединяется с комплексом C4b2a3b.Потом соединяются С6, С7, С8 и С9,которая полимеризуется и возникает трубочка внутри мембраны. Тем самым нарушается осмотический баланс и в результате тургора бактерия лопается. Классический путь действует более точно, поскольку так уничтожается любая чужеродная клетка.

Альтернативный путь

Альтернативный путь запускается гидролизом C3 прямо на поверхности патогена. В альтернативном пути участвуют факторы В и D. С их помощью происходит образование фермента СЗbВb. Стабилизирует его и обеспечивает его длительное функционирование белок P. Далее РС3bВb активирует С3, в результате образуется С5-конвертаза и запускается образование мембраноатакующего комплекса. Дальнейшая активация терминальных компонентов комплемента происходит так же, как и по классическому пути активации комплемента. В жидкости в комплексе CЗbВb В заменяется Н фактором и под воздействием дезактивирующего соединения(Н) превращается в С3bi.Когда микробы попадают в организм комплекс СЗbВb начинает накапливаться на мембране. Он соединяется с С5, который расщепляется на C5a и C5b. C5b остается на мембране. Потом соединяются С6, С7, С8 и С9.После соединения С9 с С8, происходит полимеризация С9 (до 18 молекул сшиваются друг с другом) и образуется трубочка, которая пронизывает мембрану бактерии, начинается закачка воды и бактерия лопается.

Альтернативный путь отличается от классического следующим: при активации системы комплемента не нужно образование иммунных комплексов, он происходит без участия первых компонентов комплемента - С1, С2, С4. Он также отличается тем, что срабатывает сразу же после появления антигенов - его активаторами могут быть бактериальные полисахариды и липополисахариды(являются митогенами), вирусные частицы, опухолевые клетки.

Лектиновый (маннозный) путь активации системы комплемента

Лектиновый путь гомологичен классическому пути активации системы комплемента. Он использует лектин, связывающий маннозу, (MBL) - белок, подобный C1q классического пути активации, который связывается с маннозными остатками и другими сахарами на мембране, что позволяет распознавать разнообразные болезнетворные микроорганизмы. MBL - сывороточный белок, принадлежащий к группе белков коллектинов, который синтезируется преимущественно в печени и может активировать каскад комплемента, непосредственно связываясь с поверхностью патогена.

В сыворотке крови MBL формирует комплекс с MASP-I и MASP-II (Mannan-binding lectin Associated Serine Protease, связывающие MBL сериновые протеазы). MASP-I и MASP-II весьма схожи с C1r и C1s классического пути активации и, возможно, имеют общего эволюционного предшественника. Когда несколько активных центров MBL связываются с определенным образом ориентированными маннозными остатками на фосфолипидном бислое болезнетворного микроорганизма, MASP-I и MASP-II активируются и расщепляют белок C4 на C4a и C4b, а белок С2 на C2a и C2b. Затем C4b и C2a объединяются на поверхности болезнетворного микроорганизма, формируя C3-конвертазу, а C4a и C2b действуют как хемоаттрактанты для клеток иммунной системы.

Регуляция системы комплемента

Система комплемента может быть очень опасной для тканей хозяина, поэтому ее активация должна хорошо регулироваться. Большинство компонентов активны только в составе комплекса, при этом их активные формы способны существовать очень короткое время. Если в течение этого времени они не встретятся со следующим компонентом комплекса, то активные формы теряют связь с комплексом и становятся неактивными. Если концентрация какого-то из компонентов ниже пороговой (критической), то работа системы комплемента не приведет к физиологическим последствиям. Система комплемента регулируется специальными белками, которые находятся в плазме крови даже в большей концентрации, чем сами белки системы комплемента. Эти же белки представлены на мембранах собственных клеток организма, предохраняя их от атаки со стороны белков системы комплемента.

Регуляторные механизмы в основном действуют в трех точках.

  1. С1. Ингибитор С1 контролирует классический и лектиновый пути активации. Действует двумя путями: ограничивает действие С4 и С2 с помощью связывания C1r- и С1s-протеаз и подобным образом выключает лектиновый путь, удаляя ферменты MASP из MBP-комплекса.
  2. С3-конвертаза. Время жизни С3-конвертазы уменьшают факторы ускорения распада. Некоторые из них находятся на поверхности собственных клеток (например, DAF и CR1). Они действуют на С3-конвертазы и классического, и альтернативного путей активации. DAF ускоряет распад С3-конвертазы альтернативного пути. СR1 (C3b/C4b receptor) расположен главным образом на поверхности эритроцитов и отвечает за удаление из плазмы крови опсонизированных иммунных комплексов. Другие регуляторные белки производятся печенью и в неактивном состоянии растворены в плазме крови. Фактор I - сериновая протеаза, расщепляющая C3b и C4b. С4-связывающий белок (C4BP) расщепляет С4 и помогает фактору I расщеплять C4b.Фактор H связывается с гликозаминогликанами, которые есть на собственных клетках, но не на клетках патогенов. Этот белок является кофактором фактора I, а также ингибирует активность C3bBb.
  3. С9. CD59 и Гомологичный Фактор Ограничения ингибируют полимеризацию С9 во время образования мембраноатакующего комплекса, не давая ему сформироваться.

Роль системы комплемента при болезнях

Система комплемента играет большую роль во многих болезнях, связанных с иммунитетом.

ЗАОЧНАЯ АКАДЕМИЯ ПОСЛЕДИПЛОМНОГО ОБРАЗОВАНИЯ

ЗАОЧНАЯ АКАДЕМИЯ ПОСЛЕДИПЛОМНОГО ОБРАЗОВАНИЯ

К. П. Кашкин, Л. Н. Дмитриева

БЕЛКИ СИСТЕМЫ КОМПЛЕМЕНТА: СВОЙСТВА И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ (Лекция)

Кафедра иммунологии Российской медицинской академии последипломного образования Минздрава РФ, Москва

Защита организма от чужеродных агентов осу­ществляется с участием множества так называе­мых антигеннеспецифиче-ских клеточных и гумо­ральных факторов имму­нитета. Последние пред­ставлены различными бел­ками и пептидами крови. присутствующими также и в других жидкостях орга­низма. Гуморальные анти-геннеспецифические фак­торы иммунитета или са­ми обладают антимикроб­ными свойствами или спо­собны активировать дру­гие гуморальные и клеточ­ные механизмы иммунной защиты организма.

В 1894 г. В. И. Исаев и Р. Пфейффер показали, что свежая сыворотка крови иммунизированных животных обладает бакте-риолитическими свойствами. Позднее этот антимикробный сы-вороточный фактор был назван алексином (греческий alexo - защищаю, отражаю), или комплементом и охарактеризован как термолабильный фактор, обеспечивающий лизис микробов в иммунной сыворотке, а также лизис сенсибилизированных ан­тителами эритроцитов.

Согласно современным представлениям, комплемент - это система сывороточных белков, которая может активиро­ваться в результате взаимодействия некоторых инициальных компонентов системы с комплексами антиген-антитело или с другими активирующими систему молекулами.

Белки системы комплемента представлены 13 гликопротеи-нами плазмы крови. Регуляция системы осуществляется семью белками плазмы крови и множеством связанных с мембранами клеток белков и рецепторов.

В литературе систему комплемента обозначают латинской буквой С", отдельные же компоненты - дополнительно араб­скими цифрами (Cl, C2, СЗ и т. д.) или заглавными буквами (факторы: В, D): субъединицы комплемента, а также продукты расщепления или активации белков системы - дополнительно малыми латинскими буквами (например: Clq, СЗа, СЗЬ и т. д.);

активированные формы компонентов комплемента могут обозна­чаться штрихом сверху (Cl , СЗ, В и т. д.). Нумерация компо­нентов С" соответствует хронологии их открытия и не всегда сов­падает с последовательностью вовлечения компонентов в реак­цию активации системы комплемента.

Активация системы комплемента происходит в результате взаимодействия некоторых циркулирующих в крови белков системы комплемента с активирующими систему агентами. Та­кое взаимодействие изменяет конформационную структуру мо­лекул соответствующих компонентов комплемента, так что у белковых молекул вскрываются участки, способные взаимодей­ствовать с последующими компонентами системы, фиксиро­вать их и иногда расщеплять.

Такой "каскадный" тип активации характерен как для системы комплемента, так и для многих других бел­ковых систем крови. При активации системы компле­мента происходят "потребле­ние" растворимых в плазме нативных белков компле­мента и их фиксация на раз­личных нерастворимых но­сителях (агрегаты молекул, поверхности клеток и т. д.).

Классический путь активации системы комплемента

Известны два главных пути активации компле­мента - классический, от­крытый первым, и альтер­нативный, установленный позднее. Классический путь отличается от альтернатив­ного тем, что активация системы инициируется Clq-субком-понснтом комплемента, в результате взаимодействия Clq с Fc-фрагментом конформационно измененных IgG и IgM крови. Конформационые изменения Fc-фрагментов у IgG и IgM воз­никают при взаимодействии этих иммуноглобулинов крови с антигенами, а также искусственно в результате термической (63°С, 10 мин) или химической (диазобензидин) обработки им­муноглобулинов.

В зависимости от той роли, которую играют отдельные компоненты комплемента в процессе активации и обеспече­нии функции системы, белки комплемента можно условно разделить на несколько блоков: распознающий (Cl), активи­рующий систему (C2, С4, СЗ) и атакующий мембраны клеток (С5, С6, С7, С8, С9). Свойства белков, входящих в эти блоки, суммированы в табл. I. Активация системы комплемента клас­сическим способом начинается с Clq-субкомпонента компле­мента, конформационные изменения молекул которого "запус­кают" этот процесс (рис. 1). Clq является сывороточным глико-протеином, построенным из 18 полипептидных цепей трех ти­пов: А, В и С. Цепи А, В и С со стороны N-концов цепочек собраны вместе, образуя шесть глобулярных головок. Сами А-, В- и С-цепочки с помощью дисульфидных связей удерживают­ся друг с другом, формируя шесть подобных коллагену трой­ных спиралей. С-концы полипептидных цепочек всех шести спи­ралей Clq удерживаются вместе. По форме молекула Clq напо­минает моллюска с шестью щупальцами (рис. 2). Как и у колла­гена, в составе Clq в больших количествах содержатся глицин, гидрооксипролин и гидрооксилизин. Около 8% массы Clq со­ставляют углеводы, среди которых доминируют гликозилгалак-тозильные остатки. Clq не обладает энзиматической активно­стью, но с помощью своих шести коллагеноподобных трехспи­ральных нитей - "щупалец" - взаимодействует как с циркули­рующими в крови комплексами из С1г- и Cls-субкомпонентов комплемента (участки нитей между глобулярными головками и центральной частью молекулы Clq), так и с Fc-участками кон­формационно измененных молекул IgG и IgM (глобулярные го­ловки на свободных концах шести нитей Clq). Изолированный из крови Clr-компонент комплемента представляет собой ди-мер (С1Гз), При рН 5,0 диссоциирующий на две мономерные молекулы С1г. Каждый мономер С1г представлен полипептид-ной цепью из 688 аминокислотных остатков. Полипептидная цепь мономера образует на конечных участках молекулы по одному домену. При димеризации участок контактного связы­вания мономеров располагается между этими доменами так, что димер С1гз имеет форму асимметричной "X". Активированный С1г2 является сериновой протеазой и в построении активного

Рис. 1. Классический путь активации системы комплемента.

а - компоненты комплементз в водной фазе; б - компоненты комплемента, иммобилизованные на мембранах клеток; Аг - антигены на мембране клеток; at - антитела к соответствующим антигенам классов IgM и IgG; МАК. - мембраноатакующий комплекс.

Термин «комплемент» впервые был предложен Borclet в результате наблюдения, что для реализации ряда иммунологических эффектов (гемолиз, бактерицидность) наряду с антителами необходим сывороточный фактор, разрушающийся при нагревании до +56°С. За 70 лет изучения комплемента было установлено, что он представляет собой сложную систему из 11 сывороточных белков, активность которых регулируется по меньшей мере таким же количеством факторов. Комплемент представляет собой систему каскадно действующих высокоэффективных протеаз, которые последовательно активируются за счет отщепления или присоединения пептидных фрагментов и в конечном счете приводит к бактериолизису или цитолизу. По сложности система комплемента сопоставима с системой свертывания крови, с которой связана, как и с системой кининов, функциональными связями. В филогенезе система комплемента появилась раньше иммунной системы. Онтогенетически это проявляется в том, что уже 6-недельный плод способен синтезировать отдельные компоненты системы, а с 10-й недели можно выявить гемолитическую активность синтезированных факторов, хотя нормальные концентрации всех С-компонентов определяются только в течение первого года после рождения. Из общего количества сывороточных белков на систему комплемента приходится около 10%. Она является основой защитных сил организма. Функциональные дефекты системы комплемента могут приводить к тяжелым рецидивирующим инфекциям и патологическим состояниям, обусловленным иммунными комплексами. Существует прямая функциональная связь между системой комплемента и фагоцитарной системой, поскольку прямое или опосредованное через антитела связывание компонентов комплемента с бактериями является необходимым условием фагоцитоза (опсонизация микроорганизмов). Комплемент - это доминирующий гуморальный компонент реакции воспаления, поскольку его продукты являются хемотаксинами и анафила-токсинами, оказывающими выраженное воздействие на фагоциты, обмен веществ и систему свертывания крови. Таким образом, комплемент относят к важным элементам системы резистентности, а также эффективного звена гуморального иммунитета. Кроме того, система комплемента включает важные факторы регуляции иммунного ответа.

Синтез и метаболизм С-факторов . Образование С-факторов происходит преимущественно в печени, костном мозге и селезенке. Особое положение занимает С1, который синтезируется, по-видимому, в эпителии тонкого кишечника. Макрофаги играют определяющую роль в синтезе компонентов комплемента, что отражает тесную филогенетическую связь между этими двумя системами. Непрерывное использование С-факторов в организме и высокий уровень их катаболизма определяют необходимость их непрерывного синтеза, причем скорость синтеза относительно высока. Для С3, например, ежечасно синтезируется 0,5-1,0 мг белка на 1 кг веса. Как активация и ингибирование, так и потребление и синтез находятся в лабильном равновесии. При этом сывороточные концентрации отдельных факторов, с одной стороны, и содержание фрагментов и продуктов расщепления - с другой, дают возможность оценить состояние и уровень активации всей системы.

С-факторы состоят, как правило, из нескольких полипептидных цепей. С3, С4 и С5 синтезируются в виде одной полипептидной цепи, в результате протеолитического расщепления которой образуются либо С3 и С5, либо только С4. Полипептидные цепи С1 и С8 синтезируются раздельно. Глюкозилирование осуществляется непосредственно перед секрецией и является необходимой предпосылкой этого процесса.

Снижение синтеза компонентов комплемента наблюдается при тяжелых заболеваниях печени, уремии и использовании высоких концентраций кортикостероидов, затрагивая преимущественно С3, С4 и С5. Сниженная концентрация С3 в сыворотке определяется также при хронической иммунокомплексной патологии за счет активации альтернативного пути с усиленным расходом этого компонента. Одновременно может происходить снижение синтеза этого компонента, что свидетельствует о существовании отрицательной обратной связи регуляции его синтеза через C3d.

Механизмы активации системы комплемента . Активация после начального этапа может развиваться в нескольких направлениях:

Классический путь активации комплемента, начиная с С1;

Альтернативный путь активации комплемента, начиная с С3;

Специфическая активация комплемента с образованием различных продуктов расщепления.

I. Классический путь активации системы комплемента. Классический путь активации комплемента - это иммунологически обусловленный процесс, инициированный антителами. Иммунологическая специфичность обеспечивается взаимодействием антител с антигенами бактерий, вирусов и клеток. Реакция антиген-антитело связана с изменением конфигурации иммуноглобулина, что приводит к формированию места связывания для Clq на Fc-фрагменте вблизи шарнирного участка. Связываться с С1 могут иммуноглобулины. Активация С1 происходит исключительно между двумя Fc-фрагментами. Поэтому каскад активации может быть индуцирован даже одной молекулой IgM. В случае антител IgG необходимо соседство двух молекул антител, что накладывает жесткие ограничения на плотность эпитопов антигенов. В связи с этим IgM является гораздо более эффективным инициатором цитолиза и иммунной опсонизации, чем IgG. Количественно эта оценка соответствует величине 800:1. Сам процесс активации комплемента можно разделить на определенные этапы:
1- распознавание иммунных комплексов и образование С1;
2 - образование С3-конвертазы и С5-конвертазы;
3 - образование термостабильного комплекса С5b, 6,7;
4 - перфорация мембраны.

Перфорация мембраны . Каждый образовавшийся комплекс С5b, 6,7 независимо от связывания с мембраной или экранировки S-белком соединяется с 1 молекулой С8 и 3 молекулами С9. Свободный С5b-С9-комплекс действует гемолитически, тогда как комплекс с S-белком этим действием не обладает. Два ассоциированных с мембраной С5b-С9-комплекса образуют в мембране кольцевую пару, что приводит к резкому изменению осмотического давления в клетке. Если эритроциты высокочувствительны к образованию такого дефекта мембраны, то ядросодержащие клетки способны к репарации дефектов этого типа и обладают определенной резистентностью к атаке комплемента. В связи с этим определяющим при взаимодействии комплемента с мембраной является общее количество связавшихся с клеткой молекул Clg, которое зависит от количества и класса связавшихся с клеткой антител. Среди бактерий существуют виды, устойчивые к действию комплемента. В этом случае решающим оказывается эффект опсонизации микроорганизмов с последующим фагоцитозом. Определенную роль при атаке комплементом грамотрицательных бактерий играет лизоцим. Некоторые особенности активации комплемента вытекают из общих закономерностей и определяются начальной активацией С1 растворимыми или преципитированными иммунными комплексами. Реакция протекает идентично вплоть до образования комплекса С5b, 6,7, что приводит к продукции хемотаксических факторов и анафилатоксинов. Аналогичные процессы происходят при внутривенном введении агрегированного IgG. Клинические проявления при этом могут варьировать от сывороточной болезни до анафилактического шока. Сочетание в составе растворимых иммунных комплексов Fc-фрагментов с адгезивными компонентами С5b, 6,7 может приводить к их отложению на клетках эндотелия и ассоциации с клетками крови, обусловливая целый ряд системных поражений. Такие иммунокомплексные механизмы создают основу для аллергических реакций типа III, каскада реакций активации комплемента, лавинообразному вовлечению в реакцию компонентов комплемента с нарастанием количества фармакологически активных фрагментов.

Альтернативный путь активации комплемента . При альтернативном пути активации комплемента в реакциях не участвуют факторы С1, С4, С2. Активация начинается при расщеплении С3 на фрагменты С3а и С3b. Дальнейшее течение процесса идентично классическому пути.

Pillemer впервые описал Mg+ зависимую «систему пропердина», в которой С3 был активирован зимозаном (полисахаридом) без участия антител. Другие нерастворимые полисахариды также могут выступать в роли активаторов (инулин, высокомолекулярный декстран), кроме того, активаторами могут служить бактериальные эндотоксины, агрегированные IgG4, IgA и IgE, иммунные комплексы с F фрагментами, протеазы (плазмин, трипсин), фактор яда кобры, С3b. При альтернативном пути активации действуют две С3-конвертазы. С3Вb обладает незначительной активностью и появляется при взаимодействии С3 с В, D и пропердином. С3Вb отделяет незначительное количество С3b, которое ведет к образованию высокоактивной конвертазы С3b, результатом действия которой является С3b. Возникает положительная обратная связь, значительно усиливающая реакцию. Подавление такого самопроизвольного усиления осуществляется за счет С3b-INA, который ингибирует образующийся в растворимой форме С3b. Фактор яда кобры является функциональным и структурным аналогом С3b, однако не ингибируется С3b-INA. Эндотоксины и полисахариды активируют пропердин и тем самым создают условия для связывания и стабилизации С3b, который ингибируется С3b-INA только в свободном состоянии. Определяющим этапом в альтернативном пути активации является образование С3b, который переносится на активированную поверхность. Процесс начинается связыванием С3b с В, причем этот этап зависит от присутствия Mg2+. С3bВ активируется за счет D в комплекс С3b Вb. Пропердин связывает С3b и таким образом стабилизирует спонтанно диссоциирующий комплекс Вb. Специфическим ингибитором альтернативного пути является В1Н. Он конкурирует с фактором В за связь С3b, вытесняя его из комплекса С3bВ и делая С3b доступным для действия С3b-INA. Цитолитическая активность альтернативного пути полностью определяется свойствами оболочки микроорганизмов и клеточной мембраны. Гликопротеины и гликолипиды, содержащие концевые остатки сиаловой кислоты придают мембране устойчивость к действию активированного по альтернативному пути комплементу, тогда как обработка нейраминидазой отменяет эту резистентность и делает клетки высокочувствительными. Сиаловые кислоты играют важную роль в резистентности микроорганизмов. Большинство видов бактерий не содержит в составе оболочки сиаловых кислот, однако многие патогенные виды их имеют. Антитела могут изменять свойства поверхности и таким образом повышать чувствительность мишеней к комплементу. Важным этапом в активации поверхности является связывание пропердина, в результате чего возникает высокоаффинный рецептор для С3b и одновременно образуется стабильный комплекс С3Вb. В связи с этим различают два вида активаторов альтернативного пути: 1) пропердинзависимые активаторы (полисахариды, эндотоксины, антитела); 2) пропердиннезависимые активаторы (фактор яда кобры, протеазы).

С5-конвертаза альтернативного пути активации возникает в результате связывания С3b с комплексом С3Вb в рамках механизма усиления, а последующее течение процесса соответствует классическому пути активации.

Альтернативная активация комплемента - это важный компонент системы неспецифической резистентности к бактериям, вирусам и одноклеточным микроорганизмам. Переход от неспецифической защиты к реакциям, опосредованным антителами, осуществляется плавно, либо оба процесса протекают параллельно. В качестве патогенетического звена альтернативная активация комплемента принимает участие во многих заболеваниях. Примерами могут служить:
- мембранопролиферативные нефриты с гипокомплементемией;
- острый гломерулонефрит после стрептококковой инфекции ;
- нефриты при СКВ ;
- болезнь голубеводов;
- грибковые инфекции;
- септицемии с шоком, обусловленным эндотоксинами;
- ночная пароксизмальная гемоглобинурия;
- парциальная липодистрофия.

Альтернативный путь наблюдается также в части случаев активации комплемента по классическому пути. При нефритах выявляется фактор C3NeF, который представляет собой комплекс аутоантител с С3bВb, резистентный к действию р1Н и функционирующий как С3-конвертаза. Эндотоксины за счет липида А являются эффективными активаторами не только альтернативного пути активации комплемента, но и системы свертывания, а также кининовой системы. Активация фактора XII играет при этом определяющую роль.

Неспецифическая активация комплемента . Неспецифическая активация комплемента может осуществляться протеазами (трипсин, плазмин, калликреин, лизосомные протеазы и бактериальные ферменты) на каждой стадии от С1 доС5. Исходный активированный фактор является гораздо более эффективным по сравнению с индуцирующей протеазой, причем при активации в жидкой фазе активация может начаться сразу в нескольких процессах. Возникают анафилатоксины, которые, помимо гемолитического действия, дают полную картину шока при остром панкреатите и тяжелых инфекциях. Неспецифическая активация является одним из компонентов острого воспаления.

Механизмы регуляции системы активации комплемента

I. Ингибирующие механизмы . Каждый этап каскада активации комплемента находится в равновесии с неактивированным состоянием. Ярко выраженные фармакологические эффекты продуктов активации требуют регуляции на различных уровнях.

В качестве лимитирующего фактора в системе активации по классическому пути выступает С2, который присутствует в наиболее низкой концентрации.

Другой ограничивающей группой факторов служит необходимость взаимодействия Clq с двумя Fc-фрагментами антител и возможность доступа к образовавшимся участкам связывания активаторов и субстратов реакции (С2а, С4b, С3b, и т. д. до С9). Нестабильность С2а, С4b, С5b и Вb в жидкой фазе препятствует неограниченному развитию реакции и обусловливает концентрацию процесса на активированной поверхности. Описаны специфические ингибиторы для Clr, Cls, C4b, С2, С3b, С6, С5b-6-7, Вb, С3а и С5а.

II. Стимулирующие механизмы . Наиболее важным механизмом усиления активации комплемента является положительная обратная связь, в результате которой появление С3b приводит к значительному ускорению образования этого продукта активации. Активированный пропердин стабилизирует Вb. Аналогичным образом реализуется эффект патологических аутоантител.

Биологические эффекты системы комплемента

I. Цитолиз и бактерицидность . Цитолиз и бактерицидность могут быть индуцированы следующим образом:
- иммунный цитолиз, обусловленный антителами IgM и IgG;
- СРВ (С-реактивный белок) - связь с последующей активацией комплемента;
- прямая активация пропердина через альтернативный путь активации клетками и бактериями;
- побочные эффекты при реакции иммунных комплексов;
- участие активированных фагоцитов.

II. Образование анафилатоксинов . Понятие «анафилатоксин» было впервые введено Friedberger. В данном случае имелся ввиду фрагмент С3а и фрагмент С5а, которые связываются на соответствующих рецепторах клеточной мембраны и обладают сходными фармакологическими эффектами:
- высвобождение гистамина и других медиаторов из тучных клеток и базофилов (С5а более эффективен по сравнению с С3а);
- сокращение гладкой мускулатуры и воздействие на микроциркуляцию (С3а эффективнее по сравнению с С5а);
- активация фагоцитов и секреция лизосомных ферментов (эффективность С3а и С5а сопоставима).

Нейтрализация вирусов . Система комплемента представляет собой важный фактор естественной резистентности против вирусной инфекции. Некоторые РНК-содержащие онкогенные вирусы способны непосредственно связывать Clq. Классическая активация комплемента в данном случае ведет к лизису инфекционного агента. Некоторые другие вирусы взаимодействуют с комплементом через СРВ. Кроме того, комплемент способен инактивировать вирус, находящийся в растворимом иммунном комплексе, что приводит к его опсонизации и фагоцитозу.

Противовирусное действие комплемента обусловлено следующими процессами:
- лизисом вируса за счет фрагментов от С1 до С9;
- агрегацией вируса за счет иммунных конглютининов;
- опсонизацией и фагоцитозом;
- блокадой вирусных лиганд для соответствующих рецепторов клеточной мембраны;
- блокадой пенетрации вируса в клетку.

Сам по себе комплемент не способен инактивировать пораженную вирусом клетку.

Разрушение иммунных комплексов . Появление иммунных комплексов, содержащих антитела класса IgG и IgM, связано с постоянной активацией комплемента. Активированные компоненты комплемента связываются с компонентами иммунных комплексов, включая как антитела, так и антигены, препятствуя тем самым образованию крупных агрегатов за счет стерических эффектов. Поскольку активация комплемента связана с появлением протеазной активности, происходит частичное разрыхление и расщепление образовавшихся агрегатов. Удаление продуктов распада из кровотока осуществляется благодаря опсонизации при помощи иммунофагоцитоза и иммуноэндоцитоза, в связи с чем важную роль играет доступность к связыванию с клеточными рецепторами ассоциированного с комплексами С3b. Отложившиеся в тканях иммунные комплексы удаляются также путем фагоцитоза, причем существенную роль в этом процессе играют плазмин и лизосомные ферменты.

Комплемент, свертывание крови и система кининов . Комплемент, система свертывания крови и система кининов тесно связаны между собой функционально. Речь идет о сложном комплексе механизмов, активация каждого из которых приводит к активации всего комплекса. Это отчетливо прослеживается при индуцированной эндотоксином реакции Санарелли-Швартцманна и состояниях, обусловленных иммунными комплексами. Калликреин, плазмин и тромбин активируют С1 и расщепляют С3, С5 и фактор В. Фактор ХIIА также может активировать С1, причем С1 расщепляется сначала плазмином, а затем продукты расщепления используются калликреином и фактором ХIIА. Активация тромбоцитов осуществляется через взаимодействие С3, фактора В, пропердина, фибриногена и тромбина. Активированные макрофаги и фагоциты - это важные источники тканевых протеаз и тромбопластина при всех видах воспаления. Активация всех трех систем происходит через активацию фактора XII (фактор Хагемана). С другой стороны, С1 = 1NН ингибирует как калликреин, так и фактор ХIIА. Таким же действием обладают ингибиторы протеаз - антитрипсин, макроглобулин и антихимотрипсин. В результате складывается система со сложной динамикой, которая может не только выполнять защитные функции, но и участвовать в патологических процессах.

Комплемент и опосредованные Т-клетками иммунные реакции . Система комплемента оказывает регуляторное действие как на Т-систему, так и на В-лимфоциты, причем в качестве основных медиаторов выступают фрагменты С3, фактор В и В1Н. На цитотоксических лимфоцитах (ЦТЛ) были выявлены ассоциированные с мембраной факторы и компоненты комплемента С5, С6, С7, С8 и С9. С другой стороны, изучение клеток-мишеней ЦТЛ с помощью электронного микроскопа показало, что в участке межклеточного контакта определяются структуры, аналогичные порам, формируемым при действии на мембрану факторов системы комплемента.

Диагностическое значение системы комплемента . Оценка системы комплемента направлена на решение следующих практических вопросов:
- участвуют ли в патогенезе заболевания активированные компоненты системы комплемента?
- имеются ли дефекты системы комплемента?

Для ответа на эти вопросы сначала проводят определение общей активности комплемента с помощью эритроцитов барана и инактивированной антисыворотки. В качестве источника комплемента используют исследуемую сыворотку в серийных разведениях и определяют титр, соответствующий 50% гемолизу. Результаты выражают в единицах СН50. Эритроциты кролика могут прямо активировать альтернативный путь активации комплемента и в этом случае активность исследуемой сыворотки измеряют в единицах АР 50. При остром и прогрессирующем потреблении комплемента, а также его дефектах наблюдается снижение активности комплемента. Для выявления дефекта по определенному фактору используются сыворотки, не содержащие изучаемый фактор, которые добавляют к исследуемой пробе. Используется также иммунохимическое определение отдельных компонентов системы комплемента (рокет-электрофорез и радиальная иммунодиффузия), однако этот подход не может заменить функциональных тестов, поскольку функционально неактивные аномальные белки и неактивные продукты расщепления могут привести к ошибочным определениям. Все исследуемые пробы следует сохранять до момента использования при температуре -70 °С. Изучение потребления комплемента может осуществляться с помощью радиоиммунного и иммуноферментного методов определения продуктов расщепления С3, С4 и В. Особое значение имеет количественный РИА для определения концентрации С5а, служащего показателем анафилактических реакций. При выявлении первичных и вторичных дефектов комплемента рекомендуется использовать следующую программу исследований:
- определение СН50, а возможно и АР50 для скрининга;
- количественное определение С4 и С3 для уточнения роли классического и альтернативного пути активации;
- подробный анализ Clq, С5, Р и других факторов.

В острой фазе воспаления, при опухолях и в течении послеоперационного периода активность комплемента повышена.

Комплемент при заболеваниях иммунной системы . Система комплемента играет важную роль при аллергических заболеваниях типа II (цитотоксические антитела) и типа III (иммунокомплексная патология, феномен Артюса). Роль комплемента подтверждается следующими данными:
- выраженное потребление комплемента (СН50 снижен, активность и концентрации факторов ниже нормы);
- появление продуктов распада компонентов в сыворотке (С4а, фрагменты С3, С5а);
- определяемые с помощью иммуногистохимического анализа специфических антител (анти-С3, анти-С4 и т. д.) отложения комплемента в тканях;
- выработка цитотоксических антител;
- свидетельства хронически повышенного расхода комплемента.

Характерными примерами могут служить следующие заболевания:
- острые вирусные инфекции (особенно часто проявляются эффекты иммунных комплексов при краснухе , кори , гепатите В, инфекции ЕСНО-вирусом);
- острые бактериальные инфекции (активация комплемента иммунными комплексами при стрептококковых инфекциях, например, при скарлатине ; активация альтернативного пути при инфекции грамотрицательными микроорганизмами или эндотоксином);
- гломерулонефрит;
- аутоиммунные гемолитические анемии ;
иммунные тромбоцитопении;
- системная красная волчанка;
- реакция обусловленного антителами отторжения трансплантата;
- ревматоидный артрит;
- сывороточная болезнь ;
- криоглобулинемия, амилоидоз , плазмоцитома.

При всех этих заболеваниях оценка комплемента не вполне информативна, равно как и при широком спектре хронических заболеваний. Однако изучение этой системы позволяет сделать заключение об индивидуальной динамике течения заболевания. Исследование комплемента обязательно при наличии в анамнезе частых бактериальных инфекций в связи с возможностью генетически обусловленных аномалий. Это справедливо также для СКВ, которая часто ассоциирована с врожденными дефектами системы комплемента.

26.1. Общее понятие
Комплемент – сложный белковый комплекс сыворотки крови.
А. Система комплемента состоит из 30 белков (компонентов, или фракций, системы комплемента).
Б. Активируется система комплемента за счет каскадного процесса: продукт предыдущей реакции исполняет роль катализатора последующей реакции. Причем при активации фракции компонента происходит, у первых пяти компонентов, ее расщепление. Продукты этого расщепления и обозначаются как активные фракции системы комплемента.
1. Больший из фрагментов (обозначаемый буквой b), образовавшихся при расщеплении неактивной фракции, остается на поверхности клетки – активация комплемента всегда происходит на поверхности микробной клетки, но не собственных эукариотических клеток. Этот фрагмент приобретает свойства фермента и способность воздействовать на последующий компонент, активируя его.
2. Меньший фрагмент (обозначается буквой a) является растворимым и «уходит» в жидкую фазу, т.е. в сыворотку крови.
В. Фракции системы комплемента обозначаются по-разному.
1. Девять – открытых первыми – белков системы комплемента обозначаются буквой С (от английского слова complement) с соответствующей цифрой.
2. Остальные фракции системы комплемента обозначаются другими латинскими буквами или их сочетаниями.
Г. Значение комплемента для макроорганизма велико и разнообразно (подробнее – см. раздел 26.6).
1. Часть активных фракций системы комплемента являются протеазами.
2. Некоторые – связываются с комплексом антиген-антитело (иммунным комплексом).
3. Другие – активируют тучные клетки и, связанные с ними сосудистые реакции воспаления.
4. И, наконец, часть фракций комплемента осуществляет перфорацию оболочек бактериальных клеток.

26.2. Пути активации комплемента
Существуют три пути активации комплемента: классический, лектиновый и альтернативный.
А. Классический путь активации комплемента является основным. Участие в этом пути активации комплемента – главная функция антител.

Рис 26.2-2. Схема классического пути активации комплемента

1. Активацию комплемента по классическому пути запускает иммунный комплекс: комплекс антигена с иммуноглобулином (класса G – первых трех подклассов – или М). Место антитела может «занять» С-реактивный белок – такой комплекс также активирует комплемент по классическому пути.
2. Классический путь активации комплемента осуществляется следующим образом (рис 26.2-1).
а. Сначала активируется фракция С1: она собирается из трех субфракций (C1q, C1r, C1s) и превращается в фермент С1-эстеразу (С1qrs).
б. С1-эстераза расщепляет фракцию С4.
в. Активная фракция С4b ковалентно связывается с поверхностью микробных клеток (но не с собственными эукариотическими клетками макроорганизма) с здесь присоединяет к себе фракцию С2.
г. Фракция С2 в комплексе с фракцией С4b расщепляется С1-эстеразой с образованием активной фракции С2b.
д. Активные фракции С4b и С2b в один комплекс – С4bС2b – обладающий ферментативной активностью. Это так называемая С3-конвертаза классического пути.
е. С3-конвертаза расщепляет фракцию С3, нарабатываю большие количества активной фракции С3b.
ж. Активная фракция С3b присоединяется к комплексу С4bС2b и превращает его в С5-конвертазу (С4bС2bС3b).
з. С5-конвертаза расщепляет фракцию С5.
и. Появившаяся в результате этого активная фракция С5b присоединяет фракцию С6.
к. Комплекс С5bС6 присоединяет фракцию С7.
л. Комплекс С5bС6С7 встраивается в фосфолипидный бислой мембраны микробной клетки.
м. К этому комплексу присоединяется белок С8.
н. Будучи вместе со всем комплексом в фосфолипидный бислой мембраны микробной клетки, белок С8 катализирует полимеризацию 10 – 16 молекул белка С9. Данный полимер формирует в мембране микробной клетки неспадающую пору диаметром около 10 нм (рис 26.2-2)., что приводит к лизису микроба (так как на его поверхности образуется множество таких пор – «деятельность» одной единицы С3-конвертазы приводит к появлению около 1000 пор). Комплекс С5bС6С7С8С9, образующийся в результате активации комплемента, называется мемранатакующим комплексом (МАК).


Рис. 26.2-2. Схема образования МАК (слева) и результат активации комплемента – формирование поры в фосфолипидном бислое микробной мембраны, приводящей к осмотическому лизису микробной клетки (справа)


Рис 26.2-3. Схема лектинового пути активации комплемента

Б. Лектиновый путь активации комплемента запускается комплексом нормального белка сыворотки крови – маннансвязывающего лектина (МСЛ) – с углеводами поверхностных структур микробных клеток (с остатками маннозы). Активизирующаяся в результате этого процесса МСЛ-ассоциированная сериновая протеаза действует аналогично С1-эстеразе классического пути, по которому, собственно, и развиваются дальнейшие события, заканчивающиеся формированием МАК (рис. 26.2-3).
В. Альтернативный путь активации комплемента (рис. 26.2-4) начинается с ковалентного связывания активной фракции С3b – которая всегда присутствует в сыворотке крови в результате постоянно протекающего здесь спонтанного расщепления фракции С3 – с поверхностными молекулами не всех, но некоторых микроорганизмов.


Рис. 26.2-4. Схема альтернативного пути активации комплемента

1. Дальнейшие события развиваются следующим образом.
а. С3b связывает фактор В (который структурно и функционально гомологичен фактору С2), образуя комплекс С3bВ.
б. В связанном с С3b виде фактор В выступает в качестве сусбтрата для фактора D (сывороточной сериновой протеазы), которая расщепляет его с образованием активного комплекса С3bВb. Этот комплекс обладает ферментативной активностью, структурно и функционально гомологичен С3-конвертазе классического пути (С4bС2b) и называется С3-конвертазой альтернативного пути.
в. Сама по себе С3-конвертаза альтернативного пути нестабильна. Чтобы альтернативный путь активации комплемента успешно продолжался этот фермент стабилизируется фактором Р (пропердином).
г. То, что происходит дальше, аналогично классическому пути активации комплемента.
1. Нарабатывается много С3b и образуется комплекс С3bВbС3b, являющийся С5-конвертазой.
2. Активация С5 дает начало образованию мембранатакующего комплекса (см. разделы 26.2.А.2.и – 26.2.А.2.н).
2. Основное функциональное отличие альтернативного пути активации комплемента, по сравнению с классическим, заключается в быстроте ответа на патоген: так как не требуется время для накопления специфических антител и образования иммунных комплексов.
Г. Важно понимать, что и классический и альтернативный пути активации комплемента действуют параллельно, еще и амплифицируя (т.е. усиливая) друг друга. Другими словами комплемент активируется не «или по классическому или по альтернативному», а «и по классическому и по альтернативному» путям активации. Это, еще и с добавлением лектинового пути активации, – единый процесс (см. рис. 26.2-5), разные составляющие которого могут просто проявляться в разной степени.

26.3. Анафилотоксины
Активные фракции комплемента С3а и С5а называются анафилотоксинами, так как участвуют, помимо прочего, в аллергической реакции, называемой анафилаксия (см. ниже). Наиболее сильным анафилотоксином является С5а.
А. Анафилотоксины действуют на разные клетки и ткани макроорганизма.
1. Действие их на тучные клетки вызывает дегрануляцию последних.
2. Анафилотоксины действуют также на гладкие мышцы, вызывая их сокращение.
3. Действуют они и на стенку сосуда: вызывают активацию эндотелия и повышение его проницаемости, что создает условия для экстравазации из сосудистого русла жидкости и клеток крови в ходе развития воспалительной реакции.
Б. Корме того, анафилотоксины являются иммуномодуляторами, т.е. они выступают в роли регуляторов иммунного ответа.
1. С3а выступает в роли иммуносупрессора (т.е. подавляет иммунный ответ).
2. С5а является иммуностимулятором (т.е. усиливает иммунный ответ).


26.2-4. Общая схема активации комплемента


26.2-5. Схема, иллюстрирующая взаимосвязь путей активации комплемента

26.4. Рецепторы для компонентов комплемента
Фракции комплемента могут воздействовать на клетки макроорганизма лишь в том случае, если на последних существуют соответствующие рецепторы.
А. Фагоциты имеют рецептор для С3b. Этот рецептор обуславливает большую активности фагоцитов по отношению к опсонизированным микробами (а именно, к тем из них, на поверхности которых наличествует фракции С3b).
Б. Эритроциты обладают специфическими рецепторами для фракций С3b и С4b. Этими рецепторами эритроциты связывают соответствующие фракции комплемента в составе циркулирующих иммунных комплексов (ЦИК) и транспортируют эти комплексы к макрофагам селезенки и печени, которые, их уничтожают, осуществляя тем самым клиренс (т.е. очищение) крови от ЦИК.
В. На тучных клетках локализованы рецепторы к фракции С5а, через которые этот анафилатоксин активирует эти клетки и вызывает их дегрануляцию.
Г. Таким же рецептором обладают макрофаги, благодаря чему фракция С5а активирует и эти клетки.

26.5. Регуляция системы комплемента
В норме, в отсутствие во внутренней среде макроорганизма патогена, уровень спонтанной активности системы комплемента невысок. Каскадный механизм активации комплемента «запускается» активаторами, а регуляция его работы по типу «обратной связи» – ингибиторами, без которых каждый эпизод активации заканчивался бы полным истощением всей системы.
А. Активаторами системы комплемента являются молекулярные комплексы, располагающиеся на поверхности микроорганизма, и запускающие процесс активации комплемента по тому или иному пути. О них уже упоминалось выше (см. раздел 26.2).
1. Активаторами классического пути активации комплемента выступают два комплекса.
а. Иммунный комплекс (комплекс антиген-антитело).
б. Комплекс антигена с С-реактивным белком.
2. Активатором лектинового пути активации комплемента выступает комплекс нормального белка сыворотки крови – маннансвязывающего лектина (МСЛ) – с углеводами поверхностных структур микробных клеток (а именно – с остатками маннозы).
3. Активаторами альтернативного пути активации комплемента выступают два комплекса.
а. Комплекс (в результате ковалентного связывания) активной фракции С3b – которая всегда присутствует в сыворотке крови в результате постоянно протекающего здесь спонтанного расщепления фракции С3 – с поверхностными молекулами не всех, но некоторых микроорганизмов.
б. Агрегированные на поверхности микроба иммуноглобулины классов А и Е.
Б. Ингибиторы системы комплемента локализуются в сыворотке крови или на мембране клеток.
1. В сыворотке крови локализуются пять белков – ингибиторов системы комплемента.
а. С1-ингибитор (С1inh) инактивирует активную фракцию С1qrs (т.е. С1-эстеразу).
б. С4-связывающий протеин (C4BP) делает фактор С4b доступным для деградации фактором I.
в. Фактор Н – делает фактор С3b доступным для деградации фактором I.
г. Фактор I расщепляет С3b (в комплексе с фактором Н) и С4b (в комплексе с С4ВР).
д. Белок S связывается с комплексом С5bС6С7 и предотвращает дальнейшее образование мембранатакующего комплекса.
2. На клетках млекопитающих (и, соответственно человека) локализуются три белка – ингибитора системы комплемента.
а. DAF (decay-accelerating factor = фактор, ускоряющий распад) инактивирует С4bС2b (т.к. вместо С2 связывается с С4b).
б. МСР (мембранный кофактор протеолиза) делает фактор С3b доступным для деградации фактором I.
в. Протектин (обозначаемый также как молекула CD59) инактивирует белки мембранатакующего комплекса (препятствует С-опосредованному лизису собственных клеток)

26.6. Функции системы комплемента
Система комплемента играет очень важную роль в защите макроорганизма от патогенов.
А. Система комплемента участвует в инактивации микроорганизмов, в т.ч. опосредует действие на микробы антител.
Б. Активные фракции системы комплемента активируют фагоцитоз.
В. Активные фракции системы комплемента принимают участие в формировании воспалительной реакции.

26.7. Определение активности системы комплемента
Для определения активности комплемента в современных иммунологических лабораториях используют реакцию гемолиза и иммуноферментный анализ (ИФА), пришедший на смену реакции радиальной иммунодиффузии по Манчини.
А. Реакция гемолиза используется для определения титра комплемента и для измерения общей активности системы комплемента.
1. Титр комплемента определяется как максимальное разведение сыворотки крови, вызывающее лизис эритроцитов барана, нагруженных антиэритроцитарными антителами (так называемой гемсистемы).
2. Под общей активностью системы комплемента понимают количество комплемента, обеспечивающее лизис 50% эритроцитов гемсистемы (обозначается как СН50).
Б. Иммуноферментный анализ используется для определения концентрации в сыворотке крови отдельных компонентов системы комплемента (C1q, C1s, C2, C3, C4, C5, C6, C7, C8, C9, пропердина, фактора В, С1-ингибитора). Раньше концентрацию наиболее важных в функциональном отношении фракций системы комплемента (чаще – С3 и С4) определяли с помощью реакции иммунодиффузии по Манчини, но в современных лабораториях, оснащенных ИФА-анализаторами, с этой целью используют иммуноферментный анализ, значительно расширивший возможности оценки функционального состояния у пациента его системы комплемента.



Случайные статьи

Вверх