Чем взаимодействует кислород реакции. Кислород – характеристика элемента, распространённость в природе, физические и химические свойства, получение

Химический элемент кислород может существовать в виде двух аллотропных модификаций, т.е. образует два простых вещества. Оба этих вещества имеют молекулярное строение. Одно из них имеет формулу O 2 и имеет название кислород, т.е. такое же, как и название химического элемента, которым оно образовано.

Другое простое вещество, образованное кислородом, называется озон. Озон в отличие от кислорода состоит из трехатомных молекул, т.е. имеет формулу O 3 .
Поскольку основной и наиболее распространенной формой кислорода является молекулярный кислород O 2 , прежде всего мы рассмотрим именно его химические свойства.

Химический элемент кислород находится на втором месте по значению электроотрицательности среди всех элементов и уступает лишь фтору. В связи с этим логично предположить высокую активность кислорода и наличие у него практически только окислительных свойств. Действительно, список простых и сложных веществ, с которыми может реагировать кислород огромен. Однако, следует отметить, что поскольку в молекуле кислорода имеет место прочная двойная связь, для осуществления большинства реакций с кислородом требуется прибегать к нагреванию. Чаще всего сильный нагрев требуется в самом начале реакции (поджиг) после чего многие реакции идут далее уже самостоятельно без подвода тепла извне.

Среди простых веществ не окисляются кислородом лишь благородные металлы (Ag, Pt, Au), галогены и инертные газы.

Сера сгорает в кислороде с образованием диоксида серы:

Фосфор в зависимости от избытка или недостатка кислорода может образовать как оксида фосфора (V), так и оксид фосфора (III):

Взаимодействие кислорода с азотом протекает в крайне жестких условиях, в виду того что энергии связи в молекулах кислорода и особенно азота очень велики. Также свой вклад в сложность протекания реакции делает высокая электроотрицательность обоих элементов. Реакция начинается лишь при температуре более 2000 o C и является обратимой:

Не все простые вещества, реагируя с кислородом образуют оксиды. Так, например, натрий, сгорая в кислороде образует пероксид:

а калий – надпероксид:

Чаще всего, при сгорании в кислороде сложных веществ образуется смесь оксидов элементов, которыми было образовано исходное вещество. Так, например:

Однако, при сгорании в кислороде азотсодержащих органических веществ вместо оксида азота образуется молекулярный азот N2. Например:

При сгорании в кислороде хлорпроизводных вместо оксидов хлора образуется хлороводород:

Химические свойства озона:

Озон является более сильным окислителем, чем кислород. Обусловлено это тем, что одна из кислород-кислородных связей в молекуле озона легко рвется и в результате образуется чрезвычайно активный атомарный кислород. Озон в отличие от кислорода не требует для проявления своих высоких окислительных свойств нагревания. Он проявляет свою активность при обычной и даже низкой температурах:

PbS + 4O 3 = PbSO 4 + 4O 2

Как было сказано выше, серебро с кислородом не реагирует, однако, реагирует с озоном:

2Ag + O 3 = Ag 2 O + O 2

Качественной реакцией на наличие озона является то, что при пропускании исследуемого газа через раствор иодида калия наблюдается образование йода:

2KI + O 3 + H 2 O = I 2 ↓ + O 2 + 2KOH

Химические свойства серы

Сера как химический элемент может существовать в нескольких аллотропных модификациях. Различают ромбическую, моноклинную и пластическую серу. Моноклинная сера может быть получена при медленном охлаждении расплава ромбической серы, а пластическая напротив получается при резком охлаждении расплава серы, предварительно доведенного до кипения. Пластическая сера обладает редким для неорганических веществ свойством эластичности – она способна обратимо растягиваться под действием внешнего усилия, возвращаясь в исходную форму при прекращении этого воздействия. Наиболее устойчива в обычных условиях ромбическая сера и все иные аллотропные модификации со временем переходят в нее.

Молекулы ромбической серы состоят из восьми атомов, т.е. ее формулу можно записать как S 8 . Однако, поскольку химические свойства всех модификаций достаточно схожи, чтобы не затруднять запись уравнений реакций любую серу обозначают просто символом S.

Сера может взаимодействовать и с простыми и со сложными веществами. В химических реакциях проявлет как окислительные, так и восстановительные свойства.

Окислительные свойства серы проявляются при ее взаимодействии с металлами, а также неметаллами, образованными атомами менее электроотрицательного элемента (водород, углерод, фосфор):




Как восстановитель сера выступает при взаимодействии с неметаллами, образованными более электроотрицательными элементами (кислород, галогены), а также сложными веществами с ярко выраженной окислительной функцией, например, серной и азотной концентрированной кислотами:

Также сера взаимодействует при кипячении с концентрированными водными растворами щелочей. Взаимодействие протекает по типу диспропорционирования, т.е. сера одновременно и понижает, и повышает свою степень окисления.

Кислород (лат. Oxygenium), О, химический элемент VI группы периодической системы Менделеева; атомный номер 8, атомная масса 15,9994. При нормальных условиях Кислород газ без цвета, запаха и вкуса. Трудно назвать другой элемент, который играл бы на нашей планете такую важную роль, как Кислород.

Историческая справка. Процессы горения и дыхания издавна привлекали внимание ученых. Первые указания на то, что не весь воздух, а лишь «активная» его часть поддерживает горение, обнаружены в китайских рукописях 8 века. Много позже Леонардо да Винчи (1452-1519) рассматривал воздух как смесь двух газов, лишь один из которых расходуется при горении и дыхании. Окончательное открытие двух главных составных частей воздуха - азота и Кислорода, сделавшее эпоху в науке, произошло только в конце 18 века. Кислород получили почти одновременно К. Шееле (1769-70) путем прокаливания селитр (KNO3, NaNO3), двуокиси марганца МnО2 и других веществ и Дж. Пристли (1774) при нагревании сурика Рb3О4 и оксида ртути HgO. В 1772 году Д. Резерфорд открыл азот. В 1775 году А. Лавуазье, произведя количественный анализ воздуха, нашел, что он «состоит из двух (газов) различного и, так сказать, противоположного характера», то есть из Кислорода и азота. На основе широких экспериментальных исследований Лавуазье правильно объяснил горение и дыхание как процессы взаимодействия веществ с Кислородом. Поскольку Кислород входит в состав кислот, Лавуазье назвал его oxygene, то есть «образующий кислоты» (от греч. oxys - кислый и gennao - рождаю; отсюда и русское название «кислород»).

Распространение Кислорода в природе. Кислород - самый распространенный химический элемент на Земле. Связанный Кислород составляет около 6/7 массы водной оболочки Земли - гидросферы (85,82% по массе), почти половину литосферы (47% по массе), и только в атмосфере, где Кислород находится в свободном состоянии, он занимает второе место (23,15% по массе) после азота.

Кислород стоит на первом месте и по числу образуемых им минералов (1364); среди минералов, содержащих Кислород, преобладают силикаты (полевые шпаты, слюды и другие), кварц, оксиды железа, карбонаты и сульфаты. В живых организмах в среднем около 70% Кислорода; он входит в состав большинства важнейших органических соединений (белков, жиров, углеводов и т.д.) и в состав неорганических соединений скелета. Исключительно велика роль свободного Кислород в биохимических и физиологических процессах, особенно в дыхании. За исключением некоторых микроорганизмов-анаэробов, все животные и растения получают необходимую для жизнедеятельности энергию за счет биологического окисления различных веществ с помощью Кислорода.

Вся масса свободного Кислорода Земли возникла и сохраняется благодаря жизнедеятельности зеленых растений суши и Мирового океана, выделяющих Кислород в процессе фотосинтеза. На земной поверхности, где протекает фотосинтез и господствует свободный Кислород, формируются резко окислительные условия. Напротив, в магме, а также глубоких горизонтах подземных вод, в илах морей и озер, в болотах, где свободный Кислород отсутствует, формируется восстановительная среда. Окислительно-восстановительные процессы с участием Кислорода определяют концентрацию многих элементов и образование месторождений полезных ископаемых - угля, нефти, серы, руд железа, меди и т.д. Изменения в круговороте Кислорода вносит и хозяйственная деятельность человека. В некоторых промышленных странах при сгорании топлива расходуется Кислорода больше, чем его выделяют растения при фотосинтезе. Всего же на сжигание топлива в мире ежегодно потребляется около 9·109 т Кислорода.

Изотопы, атом и молекула Кислорода. Кислород имеет три устойчивых изотопа: 16О, 17О и 18О, среднее содержание которых составляет соответственно 99,759%, 0,037% и 0,204% от общего числа атомов Кислорода на Земле. Резкое преобладание в смеси изотопов наиболее легкого из них 16О связано с тем, что ядро атома 16О состоит из 8 протонов и 8 нейтронов. А такие ядра, как следует из теории атомного ядра, обладают особой устойчивостью.

В соответствии с положением Кислорода в периодической системе элементов Менделеева электроны атома Кислорода располагаются на двух оболочках: 2 - на внутренней и 6 - на внешней (конфигурация 1s22s22p4). Поскольку внешняя оболочка атома Кислорода не заполнена, а потенциал ионизации и сродство к электрону составляют соответственно 13,61 и 1,46 эв, атом Кислорода в химических соединениях обычно приобретает электроны и имеет отрицательный эффективный заряд. Напротив, крайне редки соединения, в которых электроны отрываются (точнее оттягиваются) от атома Кислород (таковы, например, F2O, F2О3). Раньше, исходя единственно из положения Кислорода в периодической системе, атому Кислорода в оксидах и в большинстве других соединений приписывали отрицательный заряд (-2). Однако, как показывают экспериментальные данные, ион О2 - не существует ни в свободном состоянии, ни в соединениях, и отрицательный эффективный заряд атома Кислорода практически никогда существенно не превышает единицы.

В обычных условиях молекула Кислорода двухатомна (О2); в тихом электрическом разряде образуется также трехатомная молекула О3 - озон; при высоких давлениях обнаружены в небольших количествах молекулы О4. Электронное строение О2 представляет большой теоретический интерес. В основном состоянии молекула О2 имеет два неспаренных электрона; для нее неприменима «обычная» классическая структурная формула О=О с двумя двухэлектронными связями. Исчерпывающее объяснение этого факта дано в рамках теории молекулярных орбиталей. Энергия ионизации молекулы Кислорода (О2 - е > О2+) составляет 12,2 эв, а сродство к электрону (О2 + е > О2-) - 0,94 эв. Диссоциация молекулярного Кислорода на атомы при обычной температуре ничтожно мала, она становится заметной лишь при 1500°С; при 5000°С молекулы Кислорода почти полностью диссоциированы на атомы.

Физические свойства Кислорода. Кислород бесцветный газ, сгущающийся при -182,9°С и нормальном давлении в бледно-синюю жидкость, которая при -218,7°С затвердевает, образуя синие кристаллы. Плотность газообразного Кислорода (при 0°С и нормальном давлении) 1,42897 г./л. Критическая температура Кислорода довольно низка (Ткрит = -118,84°С), то есть ниже, чем у Cl2, СО2, SO2 и некоторых других газов; Ткрит = 4,97 Мн/м2 (49,71 ат). Теплопроводность (при 0°С) 23,86·10-3 вт/(м·К). Молярная теплоемкость (при 0°С) в дж/(моль·К) Сp = 28,9, Сv = 20,5, Сp/Сv = 1,403. Диэлектрическая проницаемость газообразного Кислорода 1,000547 (0°С), жидкого 1,491. Вязкость 189 мпуаз (0°С). Кислород мало растворим в воде: при 20°С и 1 ат в 1 м 3 воды растворяется 0,031 м 3 , а при 0°С - 0,049 м 3 Кислорода. Хорошими твердыми поглотителями Кислорода являются платиновая чернь и активный древесный уголь.

Химические свойства Кислорода. Кислород образует химические соединения со всеми элементами, кроме легких инертных газов. Будучи наиболее активным (после фтора) неметаллом, Кислород взаимодействует с большинством элементов непосредственно; исключение составляют тяжелые инертные газы, галогены, золото и платина; их соединения с Кислородом получают косвенным путем. Почти все реакции Кислорода с других веществами - реакции окисления экзотермичны, то есть сопровождаются выделением энергии. С водородом при обычных температурах Кислород реагирует крайне медленно, выше 550°С эта реакция идет со взрывом 2Н2+О2 = 2Н2О.

С серой, углеродом, азотом, фосфором Кислород взаимодействует при обычных условиях очень медленно. При повышении температуры скорость реакции возрастает и при некоторой, характерной для каждого элемента температуре воспламенения начинается горение. Реакция азота с Кислородом благодаря особой прочности молекулы N2 эндотермична и становится заметной лишь выше 1200°С или в электрическом разряде: N2 + О2 = 2NO. Кислород активно окисляет почти все металлы, особенно легко - щелочные и щелочноземельные. Активность взаимодействия металла с Кислородом зависит от многих факторов - состояния поверхности металла, степени измельчения, присутствия примесей.

В процессе взаимодействия вещества с Кислородом исключительно важна роль воды. Например, даже такой активный металл, как калий, с совершенно лишенным влаги Кислородом не реагирует, но воспламеняется в Кислороде при обычной температуре в присутствии даже ничтожных количеств паров воды. Подсчитано, что в результате коррозии ежегодно теряется до 10% всего производимого металла.

Оксиды некоторых металлов, присоединяя Кислород, образуют перекисные соединения, содержащие 2 или более связанных между собой атомов Кислорода. Так, пероксиды Na2O2 и ВаО2 включают пероксидный ион О22-, надпероксиды NaO2 и КО2 - ион О2-, а озониды NaO3, КО3, RbO3 и CsO3 - ион О3- Кислород экзотермически взаимодействует со многими сложными веществами. Так, аммиак горит в Кислороде в отсутствии катализаторов, реакция идет по уравнению: 4NH3 + ЗО2 = 2N2 + 6H2O. Окисление аммиака кислородом в присутствии катализатора дает NO (этот процесс используют при получении азотной кислоты). Особое значение имеет горение углеводородов (природного газа, бензина, керосина) - важнейший источник тепла в быту и промышленности, например СН4 + 2О2 = CO2 + 2H2O. Взаимодействие углеводородов с Кислородом лежит в основе многих важнейших производственных процессов - такова, например, так называемая конверсия метана, проводимая для получения водорода: 2СН4 + О2 + 2Н2О = 2СО2 + 6Н2. Многие органические соединения (углеводороды с двойной или тройной связью, альдегиды, фенолы, а также скипидар, высыхающие масла и другие) энергично присоединяют Кислород. Окисление Кислородом питательных веществ в клетках служит источником энергии живых организмов.

Получение Кислорода. Существует 3 основных способа получения Кислорода: химический, электролизный (электролиз воды) и физический (разделение воздуха).

Химический способ изобретен ранее других. Кислород можно получать, например, из бертолетовой соли КClОз, которая при нагревании разлагается, выделяя О2 в количестве 0,27 м 3 на 1 кг соли. Оксид бария ВаО при нагревании до 540°С сначала поглощает Кислород из воздуха, образуя пероксид ВаО2, а при последующем нагревании до 870°С ВаО2 разлагается, выделяя чистый Кислород. Его можно получать также из KMnO4, Ca2PbO4, К2Сг2О7 и других веществ при нагревании и добавлении катализаторов. Химический способ получения Кислорода малопроизводителен и дорог, промышленного значения не имеет и используется лишь в лабораторной практике.

Электролизный способ состоит в пропускании постоянного электрического тока через воду, в которую для повышения ее электропроводности добавлен раствор едкого натра NaOH. При этом вода разлагается на Кислород и водород. Кислород собирается около положительного электрода электролизера, а водород - около отрицательного. Этим способом Кислород добывают как побочный продукт при производстве водорода. Для получения 2 м 3 водорода и 1 м3Кислорода затрачивается 12-15 кВт·ч электроэнергии.

Разделение воздуха является основным способом получения Кислорода в современной технике. Осуществить разделение воздуха в нормальном газообразном состоянии очень трудно, поэтому воздух прежде сжижают, а уже затем разделяют на составные части. Такой способ получения Кислорода называется разделением воздуха методом глубокого охлаждения. Сначала воздух сжимается компрессором, затем, после прохождения теплообменников, расширяется в машине-детандере или дроссельном вентиле, в результате чего охлаждается до температуры 93 К (-180°С) и превращается в жидкий воздух. Дальнейшее разделение жидкого воздуха, состоящего в основном из жидкого азота и жидкого Кислород, основано на различии температуры кипения его компонентов [Ткип О2 90,18 К (-182,9°С), tкип N2 77,36 К (-195,8°С)]. При постепенном испарении жидкого воздуха сначала выпаривается преимущественно азот, а остающаяся жидкость все более обогащается Кислородом. Повторяя подобный процесс многократно на ректификационных тарелках воздухоразделительных колонн, получают жидкий Кислород нужной чистоты (концентрации). В СССР выпускают мелкие (на несколько литров) и самые крупные в мире кислородные воздухоразделительные установки (на 35000 м 3 /ч Кислорода). Эти установки производят технологический Кислород с концентрацией 95-98,5%, технический - с концентрацией 99,2-99,9% и более чистый, медицинский Кислород, выдавая продукцию в жидком и газообразном виде. Расход электрической энергии составляет от 0,41 до 1,6 квт·ч/м3.

Кислород можно получать также при разделении воздуха по методу избирательного проницания (диффузии) через перегородки-мембраны. Воздух под повышенным давлением пропускается через фторопластовые, стеклянные или пластиковые перегородки, структурная решетка которых способна пропускать молекулы одних компонентов и задерживать другие.

Газообразный Кислород хранят и транспортируют в стальных баллонах и ресиверах при давлении 15 и 42 Мн/м2 (соответственно 150 и 420 бар, или 150 и 420 ат), жидкий Кислород в металлических сосудах Дьюара или в специальных цистернах-танках. Для транспортировки жидкого и газообразного Кислорода используют также специальные трубопроводы. Кислородные баллоны окрашены в голубой цвет и имеют черную надпись «кислород».

Применение Кислорода. Технический Кислород используют в процессах газопламенной обработки металлов, в сварке, кислородной резке, поверхностной закалке, металлизации и других, а также в авиации, на подводных судах и прочее. Технологический Кислород применяют в химической промышленности при получении искусственного жидкого топлива, смазочных масел, азотной и серной кислот, метанола, аммиака и аммиачных удобрений, пероксидов металлов и других химических продуктов. Жидкий Кислород применяют при взрывных работах, в реактивных двигателях и в лабораторной практике в качестве хладагента.

Заключенный в баллоны чистый Кислород используют для дыхания на больших высотах, при космических полетах, при подводном плавании и других В медицине Кислород дают для вдыхания тяжело больным, применяют для приготовления кислородных, водяных и воздушных (в кислородных палатках) ванн, для внутримышечного введения и т.п.

Кислород в металлургии широко применяется для интенсификации ряда пирометаллургических процессов. Полная или частичная замена поступающего в металлургические агрегаты воздуха кислородом изменила химизм процессов, их теплотехнические параметры и технико-экономические показатели. Кислородное дутье позволило сократить потери тепла с уходящими газами, значительная часть которых при воздушном дутье составлял азот. Не принимая существенного участия в химических процессах, азот замедлял течение реакций, уменьшая концентрацию активных реагентов окислительно-восстановительной среды. При продувке Кислородом снижается расход топлива, улучшается качество металла, в металлургических агрегатах возможно получение новых видов продукции (например, шлаков и газов необычного для данного процесса состава, находящих специальное техническое применение) и др.

Первые опыты по применению дутья, обогащенного Кислородом, в доменном производстве для выплавки передельного чугуна и ферромарганца были проведены одновременно в СССР и Германии в 1932-33. Повышенное содержание Кислорода в доменном дутье сопровождается большим сокращением расхода последнего, при этом увеличивается содержание в доменном газе оксида углерода и повышается его теплота сгорания. Обогащение дутья Кислородом позволяет повысить производительность доменной печи, а в сочетании с газообразным и жидким топливом, подаваемым в горн, приводит к снижению расхода кокса. В этом случае на каждый дополнительный процент Кислорода в дутье производительность увеличивается примерно на 2,5%, а расход кокса снижается на 1%.

Кислород в мартеновском производстве в СССР сначала использовали для интенсификации сжигания топлива (в промышленном масштабе Кислород для этой цели впервые применили на заводах «Серп и молот» и «Красное Сормово» в 1932-33). В 1933 начали вдувать Кислород непосредственно в жидкую ванну с целью окисления примесей в период доводки. С повышением интенсивности продувки расплава на 1 м 3 /т за 1 ч производительность печи возрастает на 5-10%, расход топлива сокращается на 4-5%. Однако при продувке увеличиваются потери металла. При расходе Кислорода до 10 м 3 /т за 1 ч выход стали снижается незначительно (до 1%). В мартеновском производстве Кислород находит все большее распространение. Так, если в 1965 году с применением Кислорода в мартеновских печах было выплавлено 52,1% стали, то в 1970 уже 71%.

Опыты по применению Кислорода в электросталеплавильных печах в СССР были начаты в 1946 на заводе «Электросталь». Внедрение кислородного дутья позволило увеличить производительность печей на 25-30%, снизить удельный расход электроэнергии на 20-30%, повысить качество стали, сократить расход электродов и некоторых дефицитных легирующих добавок. Особенно эффективной оказалась подача Кислорода в электропечи при производстве нержавеющих сталей с низким содержанием углерода, выплавка которых сильно затрудняется вследствие науглероживающего действия электродов. Доля электростали, получаемой в СССР с использованием Кислорода, непрерывно росла и в 1970 составила 74,6% от общего производства стали.

В ваграночной плавке обогащенное Кислородом дутье применяется главным образом для высокого перегрева чугуна, что необходимо при производстве высококачественного, в частности высоколегированного, литья (кремнистого, хромистого и т.д.). В зависимости от степени обогащения Кислородом ваграночного дутья на 30-50% снижается расход топлива, на 30-40% уменьшается содержание серы в металле, на 80-100% увеличивается производительность вагранки и существенно (до 1500°С) повышается температура выпускаемого из нее чугуна.

Кислород в цветной металлургии получил распространение несколько позже, чем в черной. Обогащенное Кислородом дутье используется при конвертировании штейнов, в процессах шлаковозгонки, вельцевания, агломерации и при отражательной плавке медных концентратов. В свинцовом, медном и никелевом производстве кислородное дутье интенсифицировало процессы шахтной плавки, позволило снизить расход кокса на 10-20%, увеличить проплав на 15-20% и сократить количество флюсов в отдельных случаях в 2-3 раза. Обогащение Кислородом воздушного дутья до 30% при обжиге цинковых сульфидных концентратов увеличило производительность процесса на 70% и уменьшило объем отходящих газов на 30%.

кислород элемент изотоп свойство

>>

Химические свойства кислорода. Оксиды

В этом параграфе речь идет:

> о реакциях кислорода с простыми и сложными веществами;
> о реакциях соединения;
> о соединениях, которые называют оксидами.

Химические свойства каждого вещества проявляются в химических реакциях при его участии.

Кислород - один из наиболее активных неметаллов. Ho в обычных условиях он реагирует с немногими веществами. Его реакционная способность существенно возрастает с повышением температуры.

Реакции кислорода с простыми веществами.

Кислород реагирует, как правило, при нагревании, с большинством неметаллов и почти со всеми металлами.

Реакция с углем (углеродом). Известно, что уголь, нагретый на воздухе до высокой температуры, загорается. Это свидетельствует о протекании химической реакции вещества с кислородом. Теплоту, которая выделяется при этом, используют, например, для обогрева домов в сельской местности.

Основным продуктом сгорания угля является углекислый газ. Его химическая формула - CO 2 . Уголь - смесь многих веществ. Массовая доля Карбона в нем превышает 80 % . Считая, что уголь состоит только из атомов Карбона, напишем соответствующее химическое уравнение:

t
С + O 2 = CO 2 .

Карбон образует простые вещества - графит и алмаз. Они имеют общее название - углерод - и взаимодействуют с кислородом при нагревании согласно приведенному химическому уравнению 1 .

Реакции, при которых из нескольких веществ образуется одно, называют реакциями соединения.

Реакция с серой.

Это химическое превращение осуществляет каждый, когда зажигает спичку; сера входит в состав ее головки. В лаборатории реакцию серы с кислородом проводят в вытяжном шкафу. Небольшое количество серы (светло-желтый порошок или кристаллы) нагревают в железной ложке. Вещество сначала плавится, потом загорается в результате взаимодействия с кислородом воздуха и горит едва заметным синим пламенем (рис. 56, б). Появляется резкий запах продукта реакции - сернистого газа (этот запах мы ощущаем в момент загорания спички). Химическая формула сернистого газа - SO 2 , а уравнение реакции -
t
S + O 2 = SO 2 .

Рис. 56. Сера (а) и ее горение на воздухе (б) и в кислороде (в)

1 В случае недостаточного количества кислорода образуется другое соединение Карбона с Оксигеном - угарный газ
t
CO: 2С + O 2 = 2СО.



Рис. 57. Красный фосфор (а) и его горение на воздухе (б) и в кислороде (в)

Если ложку с горящей серой поместить в сосуд с кислородом, то сера будет гореть более ярким пламенем, чем на воздухе (рис. 56, в). Это можно объяснить тем, что молекул O 2 в чистом кислороде больше, чем в воздухе.

Реакция с фосфором. Фосфор, как и сера, горит в кислороде интенсивнее, чем на воздухе (рис. 57). Продуктом реакции является белое твердое вещество - фосфор(\/) оксид (его мелкие частицы образуют дым):
t
P + O 2 -> P 2 0 5 .

Превратите схему реакции в химическое уравнение.

Реакция с магнием.

Раньше эту реакцию использовали фотографы для создания яркого освещения («магниевая вспышка») при фотосъемке. В химической лаборатории соответствующий опыт проводят так. Металлическим пинцетом берут магниевую ленту и поджигают на воздухе. Магний сгорает ослепительно-белым пламенем (рис. 58, б); смотреть на него нельзя! В результате реакции образуется белое твердое вещество. Это соединение Магния с Оксигеном; его название - магний оксид.

Рис. 58. Магний (а) и его горение на воздухе (б)

Составьте уравнение реакции магния с кислородом.

Реакции кислорода со сложными веществами. Кислород может взаимодействовать с некоторыми оксигенсодержащими соединениями. Например, угарный газ CO горит на воздухе с образованием углекислого газа:

t
2СО + O 2 = 2С0 2 .

Немало реакций кислорода со сложными веществами мы осуществляем в повседневной жизни, сжигая природный газ (метан), спирт, древесину, бумагу, керосин и др. При их горении образуются углекислый газ и водяной пар:
t
CH 4 + 20 2 = CO 2 + 2Н 2 О;
метан
t
C 2 H 5 OH + 30 2 = 2С0 2 + 3H 2 О.
спирт


Оксиды.

Продуктами всех реакций, рассмотренных в параграфе, являются бинарные соединения элементов с Оксигеном.

Соединение, образованное двумя элементами, одним из которых является Оксиген, называют оксидом.

Общая формула оксидов - EnOm.

Каждый оксид имеет химическое название, а некоторые - еще и традиционные, или тривиальные 1 , названия (табл. 4). Химическое название оксида состоит из двух слов. Первым словом является название соответствующего элемента, а вторым - слово «оксид». Если элемент имеет переменную валентность, то он может образовывать несколько оксидов. Их названия должны отличаться. Для этого после названия элемента указывают (без отступа) римской цифрой в скобках значение его валентности в оксиде. Пример такого названия соединения: купрум(II) оксид (читается « купрум-два-оксид »).

Таблица 4

1 Термин происходит от латинского слова trivialis - обыкновенный.

Выводы

Кислород - химически активное вещество. Он взаимодействует с большинством простых веществ, а также со сложными веществами. Продуктами таких реакций являются соединения элементов с Оксигеном - оксиды.

Реакции, при которых из нескольких веществ образуется одно, называют реакциями соединения.

?
135. Чем различаются реакции соединения и разложения?

136. Превратите схемы реакций в химические уравнения:

а) Li + O 2 -> Li 2 O;
N2 + O 2 -> NO;

б) SO 2 + O 2 -> SO 3 ;
CrO + O 2 -> Cr 2 O 3 .

137. Выберите среди приведенных формул те, которые отвечают оксидам:

O 2 , NaOH, H 2 O, HCI, I 2 O 5 , FeO.

138. Дайте химические названия оксидам с такими формулами:

NO, Ti 2 O 3 , Cu 2 O, MnO 2 , CI 2 O 7 , V 2 O 5 , CrO 3 .

Примите во внимание, что элементы, которые образуют эти оксиды, имеют переменную валентность.

139. Запишите формулы: а) плюмбум(I\/) оксида; б) хром(III) оксида;
в) хлор(I) оксида; г) нитроген(I\/) оксида; д) осмий(\/III) оксида.

140. Допишите формулы простых веществ в схемах реакций и составьте химические уравнения:

а) ... + ... -> CaO;

б) NO + ... -> NO 2 ; ... + ... -> As 2 O 3 ; Mn 2 O 3 + ... -> MnO 2 .

141. Напишите уравнения реакций, с помощью которых можно осущест­вить такие «цепочки» превращений, т. е. из первого вещества полу­чить второе, из второго - третье:

а) С -> CO -> CO 2 ;
б) P -> P 2 0 3 -> P 2 0 5 ;
в) Cu -> Cu 2 O -> CuO.

142.. Составьте уравнения реакций, которые происходят при горении на воздухе ацетона (CH 3) 2 CO и эфира (C 2 H 5) 2 O. Продуктами каждой ре­акции являются углекислый газ и вода.

143. Массовая доля Оксигена в оксиде EO 2 равна 26 %. Определите элемент Е.

144. Две колбы заполнены кислородом. После их герметизации в одной колбе сожгли избыток магния, а в другой - избыток серы. В какой колбе образовался вакуум? Ответ объясните.

Попель П. П., Крикля Л. С., Хімія: Підруч. для 7 кл. загальноосвіт. навч. закл. - К.: ВЦ «Академія», 2008. - 136 с.: іл.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

Содержание статьи

КИСЛОРОД, O (oxygenium), химический элемент VIA подгруппы периодической системы элементов: O, S, Se, Te, Po – член семейства халькогенов. Это наиболее распространенный в природе элемент, его содержание составляет в атмосфере Земли 21% (об.), в земной коре в виде соединений ок. 50% (масс.) и в гидросфере 88,8% (масс.).

Кислород необходим для существования жизни на земле: животные и растения потребляют кислород в процессе дыхания, а растения выделяют кислород в процессе фотосинтеза. Живая материя содержит связанный кислород не только в составе жидкостей организма (в клетках крови и др.), но и в составе углеводов (сахар, целлюлоза, крахмал, гликоген), жиров и белков. Глины, горные породы состоят из силикатов и других кислородсодержащих неорганических соединений, таких, как оксиды, гидроксиды, карбонаты, сульфаты и нитраты.

Историческая справка.

Первые сведения о кислороде стали известны в Европе из китайских рукописей 8 в. В начале 16 в. Леонардо да Винчи опубликовал данные, связанные с химией кислорода, не зная еще, что кислород – элемент. Реакции присоединения кислорода описаны в научных трудах С.Гейлса (1731) и П.Байена (1774). Заслуживают особого внимания исследования К.Шееле в 1771–1773 взаимодействия металлов и фосфора с кислородом. Дж.Пристли сообщил об открытии кислорода как элемента в 1774, спустя несколько месяцев после сообщения Байена о реакциях с воздухом. Название oxygenium («кислород») дано этому элементу вскоре после его открытия Пристли и происходит от греческих слов, обозначающих «рождающий кислоту»; это связано с ошибочным представлением о том, что кислород присутствует во всех кислотах. Объяснение роли кислорода в процессах дыхания и горения, однако, принадлежит А.Лавуазье (1777).

Строение атома.

Любой природный атом кислорода содержит 8 протонов в ядре, но число нейтронов может быть равно 8, 9 или 10. Наиболее распространенный из трех изотопов кислорода (99,76%) – это 16 8 O (8 протонов и 8 нейтронов). Содержание другого изотопа, 18 8 O (8 протонов и 10 нейтронов), составляет всего 0,2%. Этот изотоп используется как метка или для идентификации некоторых молекул, а также для проведения биохимических и медико-химических исследований (метод изучения нерадиоактивных следов). Третий нерадиоактивный изотоп кислорода 17 8 O (0,04%) содержит 9 нейтронов и имеет массовое число 17. После того как в 1961 масса изотопа углерода 12 6 C была принята Международной комиссией за стандартную атомную массу, средневзвешенная атомная масса кислорода стала равна 15,9994. До 1961 стандартной единицей атомной массы химики считали атомную массу кислорода, принятую для смеси трех природных изотопов кислорода равной 16,000. Физики за стандартную единицу атомной массы принимали массовое число изотопа кислорода 16 8 O, поэтому по физической шкале средняя атомная масса кислорода составляла 16,0044 .

В атоме кислорода 8 электронов, при этом 2 электрона находятся на внутреннем уровне, а 6 электронов – на внешнем. Поэтому в химических реакциях кислород может принимать от доноров до двух электронов, достраивая свою внешнюю оболочку до 8 электронов и образуя избыточный отрицательный заряд .

Молекулярный кислород.

Как большинство других элементов, у атомов которых для достройки внешней оболочки из 8 электронов не хватает 1–2 электронов, кислород образует двухатомную молекулу. В этом процессе выделяется много энергии (~490 кДж/моль) и соответственно столько же энергии необходимо затратить для обратного процесса диссоциации молекулы на атомы. Прочность связи O–O настолько высока, что при 2300° С только 1% молекул кислорода диссоциирует на атомы. (Примечательно, что при образовании молекулы азота N 2 прочность связи N–N еще выше, ~710 кДж/моль.)

Электронная структура.

В электронной структуре молекулы кислорода не реализуется, как можно было ожидать, распределение электронов октетом вокруг каждого атома, а имеются неспаренные электроны, и кислород проявляет свойства, типичные для такого строения (например, взаимодействует с магнитным полем, являясь парамагнетиком).

Реакции.

В соответствующих условиях молекулярный кислород реагирует практически с любым элементом, кроме благородных газов. Однако при комнатных условиях только наиболее активные элементы реагируют с кислородом достаточно быстро. Вероятно, большинство реакций протекает только после диссоциации кислорода на атомы, а диссоциация происходит лишь при очень высоких температурах. Однако катализаторы или другие вещества в реагирующей системе могут способствовать диссоциации O 2 . Известно, что щелочные (Li, Na, K) и щелочноземельные (Ca, Sr, Ba) металлы реагируют с молекулярным кислородом с образованием пероксидов:

Получение и применение.

Благодаря наличию свободного кислорода в атмосфере наиболее эффективным методом его извлечения является сжижение воздуха, из которого удаляют примеси, CO 2 , пыль и т.д. химическими и физическими методами. Циклический процесс включает сжатие, охлаждение и расширение, что и приводит к сжижению воздуха. При медленном подъеме температуры (метод фракционной дистилляции) из жидкого воздуха испаряются сначала благородные газы (наиболее трудно сжижаемые), затем азот и остается жидкий кислород. В результате жидкий кислород содержит следы благородных газов и относительно большой процент азота. Для многих областей применения эти примеси не мешают. Однако для получения кислорода особой чистоты процесс дистилляции необходимо повторять. Кислород хранят в танках и баллонах. Он используется в больших количествах как окислитель керосина и других горючих в ракетах и космических аппаратах. Сталелитейная промышленность потребляет газообразный кислород для продувки через расплав чугуна по методу Бессемера для быстрого и эффективного удаления примесей C, S и P. Сталь при кислородном дутье получается быстрее и качественнее, чем при воздушном. Кислород используется также для сварки и резки металлов (кислородно-ацетиленовое пламя). Применяют кислород и в медицине, например, для обогащения дыхательной среды пациентов с затрудненном дыханием. Кислород можно получать различными химическими методами, и некоторые из них применяют для получения малых количеств чистого кислорода в лабораторной практике.

Электролиз.

Один из методов получения кислорода – электролиз воды, содержащей небольшие добавки NaOH или H 2 SO 4 в качестве катализатора: 2H 2 O ® 2H 2 + O 2 . При этом образуются небольшие примеси водорода. С помощью разрядного устройства следы водорода в газовой смеси вновь превращают в воду, пары которой удаляют вымораживанием или адсорбцией.

Термическая диссоциация.

Важный лабораторный метод получения кислорода, предложенный Дж.Пристли, заключается в термическом разложении оксидов тяжелых металлов: 2HgO ® 2Hg + O 2 . Пристли для этого фокусировал солнечные лучи на порошок оксида ртути. Известным лабораторным методом является также термическая диссоциация оксосолей, например хлората калия в присутствии катализатора – диоксида марганца:

Диоксид марганца, добавляемый в небольших количествах перед прокаливанием, позволяет поддерживать требуемую температуру и скорость диссоциации, причем сам MnO 2 в процессе не изменяется.

Используются также способы термического разложения нитратов:

а также пероксидов некоторых активных металлов, например:

2BaO 2 ® 2BaO + O 2

Последний способ одно время широко использовался для извлечения кислорода из атмосферы и заключался в нагревании BaO на воздухе до образования BaO 2 с последующим термическим разложением пероксида. Способ термического разложения сохраняет свое значение для получения пероксида водорода.

НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА КИСЛОРОДА
Атомный номер 8
Атомная масса 15,9994
Температура плавления, °С –218,4
Температура кипения, °С –183,0
Плотность
твердый, г/см 3 (при t пл) 1,27
жидкий г/см 3 (при t кип) 1,14
газообразный, г/дм 3 (при 0° С) 1,429
относительная по воздуху 1,105
критическая а, г/см 3 0,430
Критическая температура а, °С –118,8
Критическое давление а, атм 49,7
Растворимость, см 3 /100 мл растворителя
в воде (0° С) 4,89
в воде (100° С) 1,7
в спирте (25° С) 2,78
Радиус, Å 0,74
ковалентный 0,66
ионный (О 2–) 1,40
Потенциал ионизации, В
первый 13,614
второй 35,146
Электроотрицательность (F = 4) 3,5
а Температура и давление, при которых плотность газа и жидкости одинаковы.

Физические свойства.

Кислород при нормальных условиях – бесцветный газ без запаха и вкуса. Жидкий кислород имеет бледно-голубой цвет. Твердый кислород существует по крайней мере в трех кристаллических модификациях. Газообразный кислород растворим в воде и, вероятно, образует непрочные соединения типа O 2 Ч H 2 O, а возможно, и O 2 Ч 2H 2 O.

Химические свойства.

Как уже упоминалось, химическая активность кислорода определяется его способностью диссоциировать на атомы O, которые и отличаются высокой реакционной способностью. Только наиболее активные металлы и минералы реагируют с O 2 c высокой скоростью при низких температурах. Наиболее активные щелочные (IA подгруппы) и некоторые щелочноземельные (IIA подгруппы) металлы образуют с O 2 пероксиды типа NaO 2 и BaO 2 . Другие же элементы и соединения реагируют только с продуктом диссоциации O 2 . В подходящих условиях все элементы, исключая благородные газы и металлы Pt, Ag, Au, реагируют с кислородом. Эти металлы тоже образуют оксиды, но при особых условиях.

Электронная структура кислорода (1s 2 2s 2 2p 4) такова, что атом O принимает для образования устойчивой внешней электронной оболочки два электрона на внешний уровень, образуя ион O 2– . В оксидах щелочных металлов образуется преимущественно ионная связь. Можно полагать, что электроны этих металлов практически целиком оттянуты к кислороду. В оксидах менее активных металлов и неметаллов переход электронов неполный, и плотность отрицательного заряда на кислороде менее выражена, поэтому связь менее ионная или более ковалентная.

При окислении металлов кислородом происходит выделение тепла, величина которого коррелирует с прочностью связи M–O. При окислении некоторых неметаллов происходит поглощение тепла, что свидетельствует об их менее прочных связях с кислородом. Такие оксиды термически неустойчивы (или менее стабильны, чем оксиды с ионной связью) и часто отличаются высокой химической активностью. В таблице приведены для сравнения значения энтальпий образования оксидов наиболее типичных металлов, переходных металлов и неметаллов, элементов A- и B-подгрупп (знак минус означает выделение тепла).

О свойствах оксидов можно сделать несколько общих выводов:

1. Температуры плавления оксидов щелочных металлов уменьшаются с ростом атомного радиуса металла; так, t пл (Cs 2 O) t пл (Na 2 O). Оксиды, в которых преобладает ионная связь, имеют более высокие температуры плавления, чем температуры плавления ковалентных оксидов: t пл (Na 2 O) > t пл (SO 2).

2. Оксиды химически активных металлов (IA–IIIA подгрупп) более термически стабильны, чем оксиды переходных металлов и неметаллов. Оксиды тяжелых металлов в высшей степени окисления при термической диссоциации образуют оксиды с более низкими степенями окисления (например, 2Hg 2+ O ® (Hg +) 2 O + 0,5O 2 ® 2Hg 0 + O 2). Такие оксиды в высоких степенях окисления могут быть хорошими окислителями.

3. Наиболее активные металлы взаимодействуют с молекулярным кислородом при повышенных температурах с образованием пероксидов:

Sr + O 2 ® SrO 2 .

4. Оксиды активных металлов образуют бесцветные растворы, тогда как оксиды большинства переходных металлов окрашены и практически нерастворимы. Водные растворы оксидов металлов проявляют основные свойства и являются гидроксидами, содержащими OH-группы, а оксиды неметаллов в водных растворах образуют кислоты, содержащие ион H + .

5. Металлы и неметаллы A-подгрупп образуют оксиды со степенью окисления, соответствующей номеру группы, например, Na, Be и B образуют Na 1 2 O, Be II O и B 2 III O 3 , а неметаллы IVA–VIIA подгрупп C, N, S, Cl образуют C IV O 2 , N V 2 O 5 , S VI O 3 , Cl VII 2 O 7 . Номер группы элемента коррелирует только с максимальной степенью окисления, так как возможны оксиды и с более низкими степенями окисления элементов. В процессах горения соединений типичными продуктами являются оксиды, например:

2H 2 S + 3O 2 ® 2SO 2 + 2H 2 O

Углеродсодержащие вещества и углеводороды при слабом нагревании окисляются (сгорают) до CO 2 и H 2 O. Примерами таких веществ являются топлива – древесина, нефть, спирты (а также углерод – каменный уголь, кокс и древесный уголь). Тепло от процесса горения утилизируется на производство пара (а далее электричества или идет на силовые установки), а также на отопление домов. Типичные уравнения для процессов горения таковы:

а) древесина (целлюлоза):

(C 6 H 10 O 5) n + 6n O 2 ® 6n CO 2 + 5n H 2 O + тепловая энергия

б) нефть или газ (бензин C 8 H 18 или природный газ CH 4):

2C 8 H 18 + 25O 2 ® 16CO 2 + 18H 2 O + тепловая энергия

CH 4 + 2O 2 ® CO 2 + 2H 2 O + тепловая энергия

C 2 H 5 OH + 3O 2 ® 2CO 2 + 3H 2 O + тепловая энергия

г) углерод (каменный или древесный уголь, кокс):

2C + O 2 ® 2CO + тепловая энергия

2CO + O 2 ® 2CO 2 + тепловая энергия

Горению подвержены также ряд C-, H-, N-, O-содержащих соединений с высоким запасом энергии. Кислород для окисления может использоваться не только из атмосферы (как в предыдущих реакциях), но и из самого вещества. Для инициирования реакции достаточно небольшого активирования реакции, например удара или встряски. При этих реакциях продуктами горения также являются оксиды, но все они газообразны и быстро расширяются при высокой конечной температуре процесса. Поэтому такие вещества являются взрывчатыми. Примерами взрывчатых веществ служат тринитроглицерин (или нитроглицерин) C 3 H 5 (NO 3) 3 и тринитротолуол (или ТНТ) C 7 H 5 (NO 2) 3 .

Оксиды металлов или неметаллов с низшими степенями окисления элемента реагируют с кислородом с образованием оксидов высоких степеней окисления этого элемента:

Оксиды природные, полученные из руд или синтезированные, служат сырьем для получения многих важных металлов, например, железа из Fe 2 O 3 (гематит) и Fe 3 O 4 (магнетит), алюминия из Al 2 O 3 (глинозем), магния из MgO (магнезия). Оксиды легких металлов используются в химической промышленности для получения щелочей или оснований. Пероксид калия KO 2 находит необычное применение, так как в присутствии влаги и в результате реакции с ней выделяет кислород. Поэтому KO 2 применяют в респираторах для получения кислорода. Влага из выдыхаемого воздуха выделяет в респираторе кислород, а KOH поглощает CO 2 . Получение оксида CaO и гидроксида кальция Ca(OH) 2 – многотоннажное производство в технологии керамики и цемента.

Вода (оксид водорода).

Важность воды H 2 O как в лабораторной практике для химических реакций, так и в процессах жизнедеятельности требует особого рассмотрения этого вещества ВОДА, ЛЕД И ПАР) . Как уже упоминалось, при прямом взаимодействии кислорода и водорода в условиях, например, искрового разряда происходят взрыв и образование воды, при этом выделяется 143 кДж/(моль H 2 O).

Молекула воды имеет почти тетраэдрическое строение, угол H–O–H равен 104° 30ў . Связи в молекуле частично ионные (30%) и частично ковалентные с высокой плотностью отрицательного заряда у кислорода и соответственно положительных зарядов у водорода:

Из-за высокой прочности связей H–O водород с трудом отщепляется от кислорода и вода проявляет очень слабые кислотные свойства. Многие свойства воды определяются распределением зарядов. Например, молекула воды образует с ионом металла гидрат:

Одну электронную пару вода отдает акцептору, которым может быть H + :

Оксоанионы и оксокатионы

– кислородсодержащие частицы, имеющие остаточный отрицательный (оксоанионы) или остаточный положительный (оксокатионы) заряд. Ион O 2– имеет высокое сродство (высокую реакционную способность) к положительно заряженным частицам типа H + . Простейшим представителем стабильных оксоанионов является гидроксид-ион OH – . Это объясняет неустойчивость атомов с высокой зарядовой плотностью и их частичную стабилизацию в результате присоединения частицы с положительным зарядом. Поэтому при действии активного металла (или его оксида) на воду образуется OH – , а не O 2– :

2Na + 2H 2 O ® 2Na + + 2OH – + H 2

Na 2 O + H 2 O ® 2Na + + 2OH –

Более сложные оксоанионы образуются из кислорода с ионом металла или неметаллической частицей, имеющей большой положительный заряд, в результате получается низкозаряженная частица, обладающая большей стабильностью, например:

° С образуется темнопурпуровая твердая фаза. Жидкий озон слаборастворим в жидком кислороде, а в 100 г воды при 0° С растворяется 49 см 3 O 3 . По химическим свойствам озон намного активнее кислорода и по окислительным свойствам уступает только O, F 2 и OF 2 (дифториду кислорода). При обычном окислении образуются оксид и молекулярный кислород O 2 . При действии озона на активные металлы в особых условиях образуются озониды состава K + O 3 – . Озон получают в промышленности для специальных целей, он является хорошим дезинфицирующим средством и используется для очистки воды и как отбеливатель, улучшает состояние атмосферы в закрытых системах, дезинфицирует предметы и пищу, ускоряет созревание зерна и фруктов. В химической лаборатории часто используют озонатор для получения озона, необходимого для некоторых методов химического анализа и синтеза. Каучук легко разрушается даже под действием малых концентраций озона. В некоторых промышленных городах значительная концентрация озона в воздухе приводит к быстрой порче резиновых изделий, если они не защищены антиоксидантами. Озон очень токсичен. Постоянное вдыхание воздуха даже с очень низкими концентрациями озона вызывает головную боль, тошноту и другие неприятные состояния.

Открытие кислорода произошло дважды, во второй половине XVIII столетия с разницей в несколько лет. В 1771 году кислород получил швед Карл Шееле, нагревая селитру и серную кислоту. Полученный газ был назван «огненным воздухом». В 1774 английский химик Джозеф Пристли проводил процесс разложения оксида ртути в полностью закрытом сосуде и открыл кислород, но принял его за ингредиент воздуха. Только после того, как Пристли поделился своей находкой с французом Антуаном Лавуазье, стало понятно, что открыт новый элемент (calorizator). Пальма первенства данного открытия принадлежит Пристли потому, что Шееле опубликовал свой научный труд с описанием открытия лишь в 1777 году.

Кислород является элементом XVI группы II периода периодической системы химических элементов Д.И. Менделеева, имеет атомный номер 8 и атомную массу 15,9994. Принято обозначать кислород символом О (от латинского Oxygenium - порождающий кислоту). В русском языке название кислород стало производным от кислоты , термина, который был введён М.В. Ломоносовым.

Нахождение в природе

Кислород является самым распространённым элементом по нахождению в земной коре и Мировом океане. Соединения кислорода (в основном - силикаты) составляют не менее 47% массы земной коры, кислород вырабатывается в процессе фотосинтеза лесами и всеми зелёными растениями, большая часть приходится на фитопланктон морских и пресных вод. Кислород - обязательная составная часть любых живых клеток, также находится в большинстве веществ органического происхождения.

Физические и химические свойства

Кислород - лёгкий неметалл, состоит в группе халькогенов, имеет высокую химическую активность. Кислород, как простое вещество, представляет собой газ без цвета, запаха и вкуса, имеет жидкое состояние - светло-голубая прозрачная жидкость и твёрдое - светло-синие кристаллы. Состоит из двух атомов кислорода (обозначается формулой О₂).

Кислород участвует в окислительно-восстановительных реакциях. Живые существа дышат кислородом воздуха. Широко используется кислород в медицине. При сердечнососудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»). Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене. Для обеззараживания и дезодорации воздуха и очистки питьевой воды применяют искусственное обогащение озоном.

Кислород - основа основ жизнедеятельности всех живых организмов на Земле, является основным биогенным элементом. Находится в составе молекул всех важнейших веществ, которые отвечают за структуру и функции клеток (липиды, белки, углеводы, нуклеиновые кислоты). Каждый живой организм содержит гораздо больше кислорода, чем какого-либо элемента (до 70%). Для примера, организм взрослого среднестатического человека массой 70 кг содержит 43 кг кислорода.

Кислород поступает в живые организмы (растения, животные и человек) благодаря органам дыхания и поступлению воды. Помня о том, что в организме человека самый главный орган дыхания - это кожа, становится понятно, сколько кислорода может получать человек, особенно летом на берегу водоёма. Определить потребность человека в кислороде достаточно сложно, ведь она зависит от многих факторов - возраст, пол, масса и поверхность тела, система питания, внешняя среда и т.д.

Применение кислорода в жизни

Кислород применяется практически повсеместно - от металлургии до производства ракетного топлива и взрывчатых веществ, применяемых для дорожных работах в горах; от медицины до пищевой промышленности.

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки , как пропеллент и упаковочный газ.



Случайные статьи

Вверх