Что такое фильтрация текстур в играх. Фильтрация анизотропная. Практическое использование расширений: анизотропная фильтрация

В современных играх используется все больше графических эффектов и технологий, улучшающих картинку. При этом разработчики обычно не утруждают себя объяснением, что же именно они делают. Когда в наличии не самый производительный компьютер, частью возможностей приходится жертвовать. Попробуем рассмотреть, что обозначают наиболее распространенные графические опции, чтобы лучше понимать, как освободить ресурсы ПК с минимальными последствиями для графики.

Анизотропная фильтрация

Когда любая текстура отображается на мониторе не в своем исходном размере, в нее необходимо вставлять дополнительные пикселы или, наоборот, убирать лишние. Для этого применяется техника, называемая фильтрацией.

Билинейная фильтрация является самым простым алгоритмом и требует меньше вычислительной мощности, однако и дает наихудший результат. Трилинейная добавляет четкости, но по-прежнему генерирует артефакты. Наиболее продвинутым способом, устраняющим заметные искажения на объектах, сильно наклоненных относительно камеры, считается анизо-тропная фильтрация. В отличие от двух предыдущих методов она успешно борется с эффектом ступенчатости (когда одни части текстуры размываются сильнее других, и граница между ними становится явно заметной). При использовании билинейной или трилинейной фильтрации с увеличением расстояния текстура становится все более размытой, анизотропная же этого недостатка лишена.

Учитывая объем обрабатываемых данных (а в сцене может быть множество 32-битовых текстур высокого разрешения), анизотропная фильтрация особенно требовательна к пропускной способности памяти. Уменьшить трафик можно в первую очередь за счет компрессии текстур, которая сейчас применяется повсеместно. Ранее, когда она практиковалась не так часто, а пропуская способность видеопамяти была гораздо ниже, анизотропная фильтрация ощутимо снижала количество кадров. На современных же видеокартах она почти не влияет на fps.

Анизотропная фильтрация имеет лишь одну настройку - коэффициент фильтрации (2x, 4x, 8x, 16x). Чем он выше, тем четче и естественнее выглядят текстуры. Обычно при высоком значении небольшие артефакты заметны лишь на самых удаленных пикселах наклоненных текстур. Значений 4x и 8x, как правило, вполне достаточно для избавления от львиной доли визуальных искажений. Интересно, что при переходе от 8x к 16x снижение производительности будет довольно слабым даже в теории, поскольку дополнительная обработка понадобится лишь для малого числа ранее не фильтрованных пикселов.

Шейдеры

Шейдеры - это небольшие программы, которые могут производить определенные манипуляции с 3D-сценой, например, изменять освещенность, накладывать текстуру, добавлять постобработку и другие эффекты.

Шейдеры делятся на три типа: вершинные (Vertex Shader) оперируют координатами, геометрические (Geometry Shader) могут обрабатывать не только отдельные вершины, но и целые геометрические фигуры, состоящие максимум из 6 вершин, пиксельные (Pixel Shader) работают с отдельными пикселами и их параметрами.

Шейдеры в основном применяются для создания новых эффектов. Без них набор операций, которые разработчики могли бы использовать в играх, весьма ограничен. Иными словами, добавление шейдеров позволило получать новые эффекты, по умолчанию не заложенные в видеокарте.

Шейдеры очень продуктивно работают в параллельном режиме, и именно поэтому в современных графических адаптерах так много потоковых процессоров, которые тоже называют шейдерами. Например, в GeForce GTX 580 их целых 512 штук.

Parallax mapping

Parallax mapping - это модифицированная версия известной техники bumpmapping, используемой для придания текстурам рельефности. Parallax mapping не создает 3D-объектов в обычном понимании этого слова. Например, пол или стена в игровой сцене будут выглядеть шероховатыми, оставаясь на самом деле абсолютно плоскими. Эффект рельефности здесь достигается лишь за счет манипуляций с текстурами.

Исходный объект не обязательно должен быть плоским. Метод работает на разных игровых предметах, однако его применение желательно лишь в тех случаях, когда высота поверхности изменяется плавно. Резкие перепады обрабатываются неверно, и на объекте появляются артефакты.

Parallax mapping существенно экономит вычислительные ресурсы компьютера, поскольку при использовании объектов-аналогов со столь же детальной 3D-структурой производительности видеоадаптеров не хватало бы для просчета сцен в режиме реального времени.

Эффект чаще всего применяется для каменных мостовых, стен, кирпичей и плитки.

Anti-Aliasing

До появления DirectX 8 сглаживание в играх осуществлялось методом SuperSampling Anti-Aliasing (SSAA), известным также как Full-Scene Anti-Aliasing (FSAA). Его применение приводило к значительному снижению быстродействия, поэтому с выходом DX8 от него тут же отказались и заменили на Multisample Аnti-Аliasing (MSAA). Несмотря на то что данный способ давал худшие результаты, он был гораздо производительнее своего предшественника. С тех пор появились и более продвинутые алгоритмы, например CSAA.

Учитывая, что за последние несколько лет быстродействие видеокарт заметно увеличилось, как AMD, так и NVIDIA вновь вернули в свои ускорители поддержку технологии SSAA. Тем не менее использовать ее даже сейчас в современных играх не получится, поскольку количество кадров/с будет очень низким. SSAA окажется эффективной лишь в проектах предыдущих лет, либо в нынешних, но со скромными настройками других графических параметров. AMD реализовала поддержку SSAA только для DX9-игр, а вот в NVIDIA SSAA функционирует также в режимах DX10 и DX11.

Принцип работы сглаживания очень прост. До вывода кадра на экран определенная информация рассчитывается не в родном разрешении, а увеличенном и кратном двум. Затем результат уменьшают до требуемых размеров, и тогда «лесенка» по краям объекта становится не такой заметной. Чем выше исходное изображение и коэффициент сглаживания (2x, 4x, 8x, 16x, 32x), тем меньше ступенек будет на моделях. MSAA в отличие от FSAA сглаживает лишь края объектов, что значительно экономит ресурсы видеокарты, однако такая техника может оставлять артефакты внутри полигонов.

Раньше Anti-Aliasing всегда существенно снижал fps в играх, однако теперь влияет на количество кадров незначительно, а иногда и вовсе никак не cказывается.

Тесселяция

С помощью тесселяции в компьютерной модели повышается количество полигонов в произвольное число раз. Для этого каждый полигон разбивается на несколько новых, которые располагаются приблизительно так же, как и исходная поверхность. Такой способ позволяет легко увеличивать детализацию простых 3D-объектов. При этом, однако, нагрузка на компьютер тоже возрастет, и в ряде случаев даже не исключены небольшие артефакты.

На первый взгляд, тесселяцию можно спутать с Parallax mapping. Хотя это совершенно разные эффекты, поскольку тесселяция реально изменяет геометрическую форму предмета, а не просто симулирует рельефность. Помимо этого, ее можно применять практически для любых объектов, в то время как использование Parallax mapping сильно ограничено.

Технология тесселяции известна в кинематографе еще с 80-х го-дов, однако в играх она стала поддерживаться лишь недавно, а точнее после того, как графические ускорители наконец достигли необходимого уровня производительности, при котором она может выполняться в режиме реального времени.

Чтобы игра могла использовать тесселяцию, ей требуется видеокарта с поддержкой DirectX 11.

Вертикальная синхронизация

V-Sync - это синхронизация кадров игры с частотой вертикальной развертки монитора. Ее суть заключается в том, что полностью просчитанный игровой кадр выводится на экран в момент обновления на нем картинки. Важно, что очередной кадр (если он уже готов) также появится не позже и не раньше, чем закончится вывод предыдущего и начнется следующего.

Если частота обновления монитора составляет 60 Гц, и видео-карта успевает просчитывать 3D-сцену как минимум с таким же количеством кадров, то каждое обновление монитора будет отображать новый кадр. Другими словами, с интервалом 16,66 мс пользователь будет видеть полное обновление игровой сцены на экране.

Следует понимать, что при включенной вертикальной синхронизации fps в игре не может превышать частоту вертикальной развертки монитора. Если же число кадров ниже этого значения (в нашем случае меньше, чем 60 Гц), то во избежание потерь производительности необходимо активировать тройную буферизацию, при которой кадры просчитываются заранее и хранятся в трех раздельных буферах, что позволяет чаще отправлять их на экран.

Главной задачей вертикальной синхронизации является устранение эффекта сдвинутого кадра, возникающего, когда нижняя часть дисплея заполнена одним кадром, а верхняя - уже другим, сдвинутым относительно предыдущего.

Post-processing

Это общее название всех эффектов, которые накладываются на уже готовый кадр полностью просчитанной 3D-сцены (иными словами, на двухмерное изображение) для улучшения качества финальной картинки. Постпроцессинг использует пиксельные шейдеры, и к нему прибегают в тех случаях, когда для дополнительных эффектов требуется полная информация обо всей сцене. Изолированно к отдельным 3D-объектам такие приемы не могут быть применены без появления в кадре артефактов.

High dynamic range (HDR)

Эффект, часто используемый в игровых сценах с контрастным освещением. Если одна область экрана является очень яркой, а другая, наоборот, затемненной, многие детали в каждой из них теряются, и они выглядят монотонными. HDR добавляет больше градаций в кадр и позволяет детализировать сцену. Для его применения обычно приходится работать с более широким диапазоном оттенков, чем может обеспечить стандартная 24-битовая точность. Предварительные просчеты происходят в повышенной точности (64 или 96 бит), и лишь на финальной стадии изображение подгоняется под 24 бита.

HDR часто применяется для реализации эффекта приспособления зрения, когда герой в играх выходит из темного туннеля на хорошо освещенную поверхность.

Bloom

Bloom нередко применяется совместно с HDR, а еще у него есть довольно близкий родственник - Glow, именно поэтому эти три техники часто путают.

Bloom симулирует эффект, который можно наблюдать при съемке очень ярких сцен обычными камерами. На полученном изображении кажется, что интенсивный свет занимает больше объема, чем должен, и «залазит» на объекты, хотя и находится позади них. При использовании Bloom на границах предметов могут появляться дополнительные артефакты в виде цветных линий.

Film Grain

Зернистость - артефакт, возникающий в аналоговом ТВ при плохом сигнале, на старых магнитных видеокассетах или фотографиях (в частности, цифровых изображениях, сделанных при недостаточном освещении). Игроки часто отключают данный эффект, поскольку он в определенной мере портит картинку, а не улучшает ее. Чтобы понять это, можно запустить Mass Effect в каждом из режимов. В некоторых «ужастиках», например Silent Hill, шум на экране, наоборот, добавляет атмосферности.

Motion Blur

Motion Blur - эффект смазывания изображения при быстром перемещении камеры. Может быть удачно применен, когда сцене следует придать больше динамики и скорости, поэтому особенно востребован в гоночных играх. В шутерах же использование размытия не всегда воспринимается однозначно. Правильное применение Motion Blur способно добавить кинематографичности в происходящее на экране.

Эффект также поможет при необходимости завуалировать низкую частоту смены кадров и добавить плавности в игровой процесс.

SSAO

Ambient occlusion - техника, применяемая для придания сцене фотореалистичности за счет создания более правдоподобного освещения находящихся в ней объектов, при котором учитывается наличие поблизости других предметов со своими характеристиками поглощения и отражения света.

Screen Space Ambient Occlusion является модифицированной версией Ambient Occlusion и тоже имитирует непрямое освещение и затенение. Появление SSAO было обусловлено тем, что при современном уровне быстродействия GPU Ambient Occlusion не мог использоваться для просчета сцен в режиме реального времени. За повышенную производительность в SSAO приходится расплачиваться более низким качеством, однако даже его хватает для улучшения реалистичности картинки.

SSAO работает по упрощенной схеме, но у него есть множество преимуществ: метод не зависит от сложности сцены, не использует оперативную память, может функционировать в динамичных сценах, не требует предварительной обработки кадра и нагружает только графический адаптер, не потребляя ресурсов CPU.

Cel shading

Игры с эффектом Cel shading начали делать с 2000 г., причем в первую очередь они появились на консолях. На ПК по-настоящему популярной данная техника стала лишь через пару лет, после выхода нашумевшего шутера XIII. С помощью Cel shading каждый кадр практически превращается в рисунок, сделанный от руки, или фрагмент из детского мультика.

В похожем стиле создают комиксы, поэтому прием часто используют именно в играх, имеющих к ним отношение. Из последних известных релизов можно назвать шутер Borderlands, где Cel shading заметен невооруженным глазом.

Особенностями технологии является применение ограниченного набора цветов, а также отсутствие плавных градиентов. Название эффекта происходит от слова Cel (Celluloid), т. е. прозрачного материала (пленки), на котором рисуют анимационные фильмы.

Depth of field

Глубина резкости - это расстояние между ближней и дальней границей пространства, в пределах которого все объекты будут в фокусе, в то время как остальная сцена окажется размытой.

В определенной мере глубину резкости можно наблюдать, просто сосредоточившись на близко расположенном перед глазами предмете. Все, что находится позади него, будет размываться. Верно и обратное: если фокусироваться на удаленных объектах, то все, что размещено перед ними, получится нечетким.

Лицезреть эффект глубины резкости в гипертрофированной форме можно на некоторых фотографиях. Именно такую степень размытия часто и пытаются симулировать в 3D-сценах.

В играх с использованием Depth of field геймер обычно сильнее ощущает эффект присутствия. Например, заглядывая куда-то через траву или кусты, он видит в фокусе лишь небольшие фрагменты сцены, что создает иллюзию присутствия.

Влияние на производительность

Чтобы выяснить, как включение тех или иных опций сказывается на производительности, мы воспользовались игровым бенчмарком Heaven DX11 Benchmark 2.5. Все тесты проводились на системе Intel Core2 Duo e6300, GeForce GTX460 в разрешении 1280×800 точек (за исключением вертикальной синхронизации, где разрешение составляло 1680×1050).

Как уже упоминалось, анизо-тропная фильтрация практически не влияет на количество кадров. Разница между отключенной анизотропией и 16x составляет всего лишь 2 кадра, поэтому рекомендуем ее всегда ставить на максимум.

Сглаживание в Heaven Benchmark снизило fps существеннее, чем мы того ожидали, особенно в самом тяжелом режиме 8x. Тем не менее, поскольку для ощутимого улучшения картинки достаточно и 2x, советуем выбирать именно такой вариант, если на более высоких играть некомфортно.

Тесселяция в отличие от предыдущих параметров может принимать произвольное значение в каждой отдельной игре. В Heaven Benchmark картинка без нее существенно ухудшается, а на максимальном уровне, наоборот, становится немного нереалистичной. Поэтому следует устанавливать промежуточные значения - moderate или normal.

Для вертикальной синхронизации было выбрано более высокое разрешение, чтобы fps не ограничивался вертикальной частотой развертки экрана. Как и предполагалось, количество кадров на протяжении почти всего теста при включенной синхронизации держалось четко на отметке 20 или 30 кадров/с. Это связано с тем, что они выводятся одновременно с обновлением экрана, и при частоте развертки 60 Гц это удается сделать не с каждым импульсом, а лишь с каждым вторым (60/2 = 30 кадров/с) или третьим (60/3 = 20 кадров/с). При отключении V-Sync число кадров увеличилось, однако на экране появились характерные артефакты. Тройная буферизация не оказала никакого положительного эффекта на плавность сцены. Возможно, это связано с тем, что в настройках драйвера видеокарты нет опции принудительного отключения буферизации, а обычное деактивирование игнорируется бенчмарком, и он все равно использует эту функцию.

Если бы Heaven Benchmark был игрой, то на максимальных настройках (1280×800; AA - 8x; AF - 16x; Tessellation Extreme) в нее было бы некомфортно играть, поскольку 24 кадров для этого явно недостаточно. С минимальной потерей качества (1280×800; AA - 2x; AF - 16x, Tessellation Normal) можно добиться более приемлемого показателя в 45 кадров/с.

Описание алгоритмов текстурирования: фильтрация текстур

Фильтрация текстур

В последнее время компании, занимающиеся разработкой компьютерной 3D графики, постоянно стремятся увеличить детальность и качество изображения в компьютерной прорисовке. Новые технологии и архитектуры 3D прорисовки безостановочно разрабатываются, улучшаются и модернизируются алгоритмы сжатия для увеличения пропускной способности памяти, претерпевает изменения и архитектура памяти. К сожалению, отрыв передовых идей в 3D графике от обычных ПК довольно велик: реалистичность в современных играх и т.п. сделана с помощью технологий, разработанных 1-2 года назад. Кроме того, мощность обычных ПК очень ограничена, именно поэтому для игр используются довольно простые алгоритмы, о которых мы и расскажем в этой статье: это текстурирование, и более подробно - фильтрация текстур.

Имея идеальный компьютер с производительностью, намного превосходящей существующую, мы бы получили возможность отображать в реальном времени картинку с очень реалистичной прорисовкой. Можно было бы просчитывать миллионы, даже миллиарды пикселей, для каждого их них задавать свой собственный цвет - в таком случае картинку просто нельзя будет отличить от реального видео. Но к сожалению, пока это только мечты: для существующих компьютеров пока что слишком сложно одновременно обрабатывать прорисовку объектов при движении, и т.п. Кроме того, пока что катастрофически не хватает пропускной способности памяти. Для обеспечения хорошего качества в 3D приложениях и разрабатываются технологии, упрощающие процесс прорисовки изображения.

Одной из наиболее используемых технологий, упрощающих расчет изображения при достаточно хорошем качестве, является текстурирование. Текстура - это 2D изображение, накладываемое на 3D объект, или какую-либо поверхность. В качестве примера возьмем следующую ситуацию: вы - разработчик, и необходимо, чтобы пользователь увидел кирпичную стену. Создается 3D каркас стены, причем можно выделить кирпичи отдельно. Теперь берем 2D картинку кирпича и накладываем ее на кирпич в 3D каркасе, и так - всю стену. В результате получилась нормальная 3D стена, причем графическому чипу нет необходимости прорисовывать и просчитывать каждый пиксель - он просчитывает координаты 3D каркаса, к которым привязано 2D изображение.

Есть еще одно понятие в текстурировании, о котором следует рассказать. При наложении 2D изображения, оно разбивается на множество цветных фрагментов. Это сделано для масштабирования объекта - текстура 2-х мерная, а 3-х мерный объект при приближении или удалении должен меняться. Текстура для сохранения реалистичности и качества также должна меняться. Итак, текстура разбивается на множество цветных фрагментов, которые называются тексели (texels - texture elements). В дальнейшем, к примеру, при приближении к объекту, нет необходимости заново загружать новую текстуру: берутся тексели из оригинальной текстуры и увеличиваются. Конечно же, качество теряется, но оно остается на достаточно высоком уровне, кроме того, при таком подходе значительно разгружается графический процессор и память.

Mip-Mapping (мип-маппинг)

Движение - это характеристика всех отображаемых объектов; даже если сам объект неподвижен, он все равно меняется при изменении угла зрения персонажа вследствии его движения. Поэтому текстура, помещенная на объект, также должна двигаться - это влечет за собой некоторые осложнения и дополнительную обработку. А что если мы смотрим на объект под каким-то углом, к примеру, на пол? Пол может занимать большую площадь, и для сохранения реалистичности, чем дальше он от нас, тем меньше его составляющие (к примеру, плитка). Для обеспечения этого, текстура должна определенным образом уменьшаться. К сожалению, простое изменение разрешения текстур, может повлечь за собой довольно неприятный эффект, когда одна текстура визуально как бы сливается с другой. Другой неприятный эффект может возникнуть, если тексель больше размером, чем требуемое количество пикселей. Это происходит, когда смотришь на текстуру, находящуюся на очень большом расстоянии. Обе ситуации возникают при применении традиционного сглаживания. А вот и реальные примеры этих случаев: в данном реферате нету

Для смягчения таких ситуаций и был создан mip-mapping (мип-маппинг). Эта технология работает очень просто: оригинальная текстура генерируется в различных ситуациях таким образом, чтобы корректно отображать текстуру на разных расстояниях и при разных углах зрения. При приближении к объекту показывается текстура с более высоким разрешением, а при отдалении - с низким. Таким образом, mip-mapping улучшает качество изображения и уменьшает неровности. Ниже представлены те же картинки, только со включенным mip-mapping: в данном реферате картинок нету.

Заметили улучшение качества? Оно особенно заметно на второй картинке с желто-красным рисунком. Обратите внимание: улучшилось качество не только дальних текстур: ближние также выглядят гораздо лучше. В целом изображение с mip-mapping смотрится гораздо лучше, чем без него: отсутствуют многочисленные искажения и искривления, заметные при обычном отображении.

Фильтрация

Точечное текстурирование является, пожалуй, основным видом текстурирования. При точечном текстурировании выбиравется отдельный фрагмент текстуры (тексель) и используется, как цветовое значения для пискелей. Дело в том, что этот способ влечет за собой некоторую неаккуратность и как следствие этого, ухудшение качества изображения. Такое изображение при существующих стандартах уже просто неприемлемо. Ниже представлена текстура, которая была обработана точечным текстурированием (нижняя часть картинки). Картинка отображает теоретическое ухудшение качества при выборе слишком большого размера текселя.

Билинейная фильтрация (Bilineat Filtration)

Другой метод текстурирования - это билинейная фильтрация. Принцип действия этого метода текстурирования очень похож на точечный метод, но в отличие от него для выбора цвета пикселей используется не полное изображение, а блок из 4 текселей. Таким образом, повышается аккуратность при выборе цвета пикселя и достигается лучшая прорисовка отдельных мелких деталей изображения.

На этой картинке пример прорисовки изображения, используя билинейную фильтрацию и mip-mapping.

Трилинейная фильтрация

Второе рождение билинейная фильтрация получила в виде трилинейной фильтрации, принцип действия которой точно такой же, но используется улучшенный алгоритм расчета, который увеличивает точность прорисовки. Трилиниейная фильтрация, как и билинейная, использует блоки из 4 текселей, также как и в билинейной фильтрации, нормализуется изображение, затем нормализуется изображение из граничного блока из 4 текселей. Последним этапом производится анализ границы обоих блоков, в результате которого исправляются возможные ошибки и несоответствия на границе этих 2 блоков. В билинейной фильтрации достаточно часто можно увидеть линии, возникающие на границах блоков, которые исчезают при использовании трилинейной фильтрации. Кроме того, при использовании трилинейной фильтрации лучше убираются искажения и неровности при движении и при изменении угла зрения. Ниже показана схема использования трилинейной фильтрации, и она в действии.

Следует обратить внимание, что некоторые дефекты на приличной дистанции возникают даже при использовании трилинейной фильтрации. Это происходит оттого, что она изначально разрабатывалась для уменьшения искажений между mip-map уровнями.

Изображение получается очень качественно только при более прямых углах зрения, при реальной же прорисовке, геометрические формы объекта могут быть нарушены. Посмотрите на картинку от SGI:

Анизотропная фильтрация (Anisotropic filtering)

Форма текстурированных объектов как при билинейной, так и при трилинейной фильтрации может искажаться, т.к. обе эти фильтрации являются изотропными - изображение фильтруется в определенной форме - в форме квадрата. Большинство же формируемых объектов не подходят под эту определенную и неизменную форму: для их качественной обработки необходимо использовать другой тип фильтрации - анизотропный. Анизотропия состоит из нескольких слов на латыни и означает буквально "Ани" - не, "изо" - определенная форма и "тропия" - модель - т.е. модели неопределенной формы. Название этой технологии отражает ее техническую реализацию. Анизотропная фильтрация обычно оперирует не менее чем 8 текселями, во все стороны mip-map уровней, при этом используется модель неопределенной заранее формы. В результате убираются шумы и искажения объектов, а изображение в целом получается более качественным.

Сравните две картинки: на одной использовалась анизотропная фильтрация 16-текселей, с помощью которой исчезли искажения между mip-map уровнями и шум изображения, на второй картинке анизотропная фильтрация была выключена.

Обратите внимание на дальние дистанции изображения: различия между анизотропной и изотропной фильтрацией очевидны. Качество текстуры при анизотропной фильтрации даже на дальних дистанциях остается схожей с оригинальным; при изотропной фильтрации же видна тенденция в "сглаживанию" изображения, в результате теряется качество. Анизотропная фильтрация, как и трилинейная, уменьшает неровность текстур. Но при использовании анизотропной фильтрации качество получается все равно лучшим, т.к. для используется гораздо большее количество блоков для сравнения. Вот еще один пример, показывающий анизотропную фильтрацию в действии:

Долгое время графические платы потребительского уровня не показывали то качество изображения, которое возможно при использовании анизотропной фильтрации. С появлением таких графических чипов, как NVIDIA GeForce2 и ATI Radeon, стало возможным использование анизотропной фильтрации, которая аппаратно анализирует блоки из 16 текселей. Видеокарты GeForce3 и Radeon 8500 используют уже 32 тексельную анизотропную фильтрацию. Картинка ниже показывает изображение, прближенное к тому, которое будет получено с помощью профессиональной 64 тексельной анизотропной фильтрации:

Будущее…

В ближайшем будущем анизотропная фильтрация будет применяться все чаще и чаще. Для графических чипов следующего поколения уже разрабатываются новые технологии устранения неровностей и угловатостей объектов. В скором будущем мы увидим изображение, обрабатываемое используя мультитексельные блоки. Появятся видеокарты, способные аппаратно поддерживать анизотропную фильтрацию, использующую 128 тексельные блоки. Качество изображения при этом намного улучшится, а производительность - увеличится.

Дополнительно:

Антиалиасинг и анизотропная фильтрация сегодня: что, где и почём? Часть первая

На самом деле, статью с таким заголовком можно было бы начать с какой-либо банальности, вроде «каждый пользователь компьютера когда-либо мог наблюдать работу таких техник улучшения трехмёрного изображения, как антиалиасинг или анизотропная фильтрация». Либо такой: «пока наши корабли бороздят космические просторы, программисты NVIDIA и ATI ищут способы, чтобы улучшить работу известных техник улучшений изображения». Вторая банальность имеет куда больше шансов на жизнь в том плане, что она уже интригует неким подобием того, что мы будем заниматься расследованием вопроса о том, кто и каким образом «наоптимизировал» в своих драйверах.

Однако мы, пожалуй, обойдёмся вовсе без банальностей. Потому что куда более интересно порассуждать на тему того, насколько же стали доступны сейчас техники улучшения изображения для простого пользователя или, правильнее будет сказать, для простого геймера. Именно геймеры на сегодняшний день являются наиболее активными потребителями всех новых технологий и нововведений в 3D. По большому счёту, мощный 3D-акселератор на сегодняшний день нужен исключительно для игры в последние компьютерные игры с мощными 3D-движками, оперирующие сложными шейдерами различных версий. Сейчас никого уже не удивишь игрой с пиксельными шейдерами версии 2.0 – в игровом мире такие забавы потихоньку становятся повседневным явлением. Большинство игр по-прежнему выпускается на основе шейдерной модели 1.1 ввиду того, что для разработчиков игр наиболее важно добиться, чтобы их игра сносно работала на железе, которое стоит у подавляющего большинства игроков. Делать супернавороченный движок сейчас – это большое расточительство и даже риск. Судите сами: разработка движка класса «Doom 3» или «Half-Life 2» (ну и приплюсуем сюда первопроходца шейдеров 2.0 во всей красе, детище Crytek – «FarCry», чтобы получилась истинная вездесущая троица) занимает огромное количество времени, что привносит в разработку дополнительные трудности – необходимо разработать движок в такие сроки, чтобы нововведения и оригинальные наработки не устарели во время создания движка.

Если вы сомневаетесь в том, что такое может быть, то совершенно зря – в случае с «Half-Life 2» всё именно так и было (да и «Doom 3» разрабатывался с оглядкой на GeForce 3, а вышел тогда, когда вовсю продавались GeForce FX). Также разработка движков подобного класса сопряжена с большими затратами на разработку: талантливые программисты стоят сегодня недёшево. А ещё в последнее время много внимания (даже больше, чем нужно) уделяется, если можно так выразиться, «политике» в отношении игровых движителей.

Да-да, именно так, вы не ослышались, в сфере 3D уже давно есть своя политика, основанная, естественно, на интересах двух грандов строения графических процессоров: ATI и NVIDIA. Суровая Канада уже давно ведет борьбу против солнечной Калифорнии, и пока конца этому противостоянию не видно, что нам, простым потребителям, конечно, только на руку. Теперь разработать классный движок мало – чтобы иметь успех, нужно заручиться поддержкой либо калифорнийской дивы NVIDIA, либо канадской ATI, благо, теперь и у первой, и у второй есть свои партнёрские программы для разработчиков игр. У NVIDIA такая программа называется «The way it"s meant to be played», а у ATI – «Get it in the game». Всё достаточно красноречиво и понятно: NVIDIA говорит, что «играть нужно так», а совсем не эдак, а ATI уверяет, что всё, что мы только ни пожелаем, мы обязательно получим в самой игре. Достаточно заманчиво, не правда ли? Движки же класса «Doom 3» и «Half-Life 2» (в случае последней движок называется Source, однако для простоты восприятия мы будем называть его именно «Half-Life 2», чтобы сохранить правильную ассоциацию) и вовсе изначально разрабатываются в тесном сотрудничестве с инженерами производителей графических чипов, чтобы игры лучше работали именно на GPU какого-то одного производителя.

Поэтому, как мы можем видеть, революции в области новых графических 3D-движков делать весьма проблематично, и поэтому случаются эти самые перевороты в мире игровых движков не так уж и часто. Однако улучшать качество изображения каким-то образом нужно. Если просто увеличивать количество полигонов в кадре, тем самым получая визуально более красивую для восприятия картинку, то в итоге мы придём к тому, что акселератор не сможет обрабатывать сцену с приемлемым уровнем частоты кадров, но в картинке всё равно будет чего-то не хватать. Лесенки из пикселей всё равно останутся, да и качество текстур не улучшится. Остаются менее явные способы по улучшению качества трёхмерной картинки на мониторе – это анизотропная фильтрация и антиалиасинг. Непосредственно к самому 3D-движку эти техники улучшения изображения не имеют никакого отношения, и сделать сам движок более красивым они, естественно, не могут, однако они могут работать с текстурами и изображением таким образом, что на выходе, то есть на мониторе, мы можем видеть визуально более красивую и мягкую картинку.

Именно на поприще анизотропной фильтрации и антиалиасинга проходит колоссальнейшее количество оптимизаций драйверов как со стороны NVIDIA, так и со стороны ATI. У компаний различные подходы и политика в отношении этих самых оптимизаций, порой не совсем справедливая по отношению к пользователям. Однако наша статья как раз и призвана разобраться с тем, что же хорошего и что же плохого в подходах обеих компаний-производителей GPU и что на сегодняшний день может улучшить качество изображения в 3D-играх.

Что такое антиалиасинг и с чем его едят?

Перед тем как начать вдаваться в подробности относительно такой животрепещущей темы, как оптимизации антиалиасинга и различного типа фильтрации текстур, не помешает (и даже скажем больше – необходимо) приобрести некоторую порцию теоретических знаний по предмету нашего сегодняшнего разговора.

Итак, антиалиасинг – что же это такое и зачем он нужен. В первую очередь, в слове «антиалиасинг» необходимо выделить часть его – «анти». Предельно ясно, что это часть слова подразумевает то, что само явление «антиалиасинга» направлено на борьбу с чем-то. Как несложно догадаться, в нашем случае – с «алиасингом». Поэтому для нас на данный момент важно чётко разобраться в том, что же представляет из себя пресловутый «алиасинг».

Для начала нужно чётко понимать, что изображение, которое мы с вами можем ежедневно наблюдать на экранах наших с вами мониторов, состоит из так называемых мелких частичек, которые принято называть пикселями. Хорошей аналогией в этом смысле может послужить пример с бумагой в клеточку. Изображение на мониторе – это та же бумага в клеточку, только они в данном случае очень и очень мелкие. Если говорят, что разрешение экрана составляет 1024х768 при 32-битном цвете, то это означает, что по горизонтали на мониторе умещается 1024 точек, а по вертикали – 768. При этом каждая точка может быть закрашена одним цветом из доступных в 32-битной палитре. На данный момент 32-битный цвет – это предел того, чего мы можем добиться на экране компьютера. Лучшие умы человечества (тот же Кармак) уже поговаривают о необходимости перехода на 64-битный цвет и указывают на явные минусы 32-битной палитры. В своё время при переходе с 16-битного на 32-битный цвет данная необходимость была достаточно чётко обоснована и виделись реальные причины, по которым стоило бы перейти на 32 бит. Переход же на 64-битный цвет на сегодняшний день – это скорее излишество. Так же как и в случае с 16 и 32 битами, в своё время придётся достаточно долго ждать, когда акселераторы всех уровней смогут с приемлемой скоростью обрабатывать 64-битный цвет.

Подавляющее большинство статей, в которых затрагиваются тем или иным образом принципы построения изображений в 3D и где ведётся разговор об антиалиасинге, изобилуют простым, но вместе с тем наиболее действенным примером, на котором можно достаточно хорошо понять, что же такое антиалиасинг. Посмотрите на увеличенную надпись «Апгрейд», сделанную в Word’e, а затем просто увеличенную в фотошопе. Не очень хорошо выглядит, не правда ли? По бокам букв видна так называемая гребёнка или, как её ещё называют, «лесенка». В сущности, эта самая «гребёнка» или «лесенка» и есть алиасинг. Можно представить и другой пример в виде геометрического объекта, например, пирамиды. По её краям также хорошо видна всё та же «гребёнка». А теперь посмотрите на другое изображение той же пирамиды, но с увеличенным вдвое разрешением. Выглядит уже значительно лучше, и «гребёнка» практически незаметна. Как уже было сказано выше, данный эффект, сглаживающий «гребёнку», был достигнут за счёт того, что мы увеличили разрешение в 2 раза.

Что это означает? Предположим, у нас была отрендерена пирамида с разрешением 200х200 пикселей (выше мы уже подробно прояснили вопрос о том, что такое пиксели и зачем они нужны). Мы увеличили количество точек по вертикали и по горизонтали ровно в 2 раза, то есть получили изображение с разрешением 400 точек по вертикали и 400 точек по горизонтали. Это также означает, что количество точек на нашем объекте, который находился на сцене, увеличилось вдвое. Что это дало применительно к нашему эффекту алиасинга? Очевидно, что он стал минимален, то есть сгладился – ведь количество точек по краям объекта также возросло вдвое. Именно слово «сгладился» является здесь ключевым. Ведь антиалиасинг по-иному называют сглаживанием, что отражает самую суть технологии, которая сглаживает ту самую «лесенку» по краям трёхмерных объектов.

На самом деле, после увеличения разрешения «лесенка» с края пирамиды никуда не делась – она остаётся там по-прежнему. Однако за счёт того, что мы увеличили разрешение (что означает увеличение точек, которые расходуются на отображение пирамиды), эффект «лесенки» сгладился благодаря особенностям человеческого зрения, которое уже менее чётко видит пиксели на крае объекта. Абсолютно понятно, что если увеличивать разрешение ещё и ещё, то эффект алиасинга будет наблюдаться всё в меньшей и меньшей степени. Точнее, человеческий глаз станет замечать его всё в меньшей и меньшей степени, поскольку сам эффект алиасинга никуда не денется. Но так же абсолютно понятно и то, что до бесконечности увеличивать разрешение не получится, ведь мониторы, пусть даже и самые современные, имеют конечные разрешения, причём не такие уж и большие, что не позволит нам постоянно увеличивать количество точек. Проще говоря, простейшего эффекта антиалиасинга можно добиться, всего лишь увеличив разрешение экрана, однако разрешение не может расти до бесконечности. Казалось бы, выхода нет? Однако в действительности он был найден, и основан он всё на той же особенности зрения человека.

Этого удалось достичь благодаря плавным переходам цветов на изображении. Фактически визуальное улучшение изображения производится не за счёт физического увеличения разрешения, а за счёт, если можно так выразиться, цветового увеличения разрешения. В данной статье мы не будем описывать алгоритмы вычисления этих точек и не будем вдаваться в глубины математических вычислений, а расскажем лишь о принципе работы такого антиалиасинга. Лесенка на границах объектов видна лишь потому, что чаще всего края трёхмерных объектов довольно сильно выделяются по цвету от остальной картинки и представляют собой тонкие линии в один пиксель. Это можно компенсировать, поставив некоторое количество точек с цветами, вычисляемыми по формуле из значений цвета самого края и точек рядом с этим краем. То есть, если край объекта чёрный, а фон белый, то дополнительная точка рядом с чёрной линией края станет серой. Чем больше этих дополнительных точек около края любого 3D-объекта, тем более гладко выглядят его края и тем меньше заметна лесенка. Данный способ называется краевым антиалиасингом. Качество антиалиасинга, задаваемое в драйвере видеокарты, как то: 2x, 4x, 6x, 8x означает количество проставляемых дополнительных пикселей вокруг линии, нуждающейся в сглаживании.

Анизотропная фильтрация: мини-ликбез для начинающих

Для того чтобы понять, что такое фильтрация, необходимо обладать некоторыми основными знаниями. Мы уже выяснили, что изображение на экране состоит из множества пикселей, количество которых определяется разрешением. Для вывода цветного изображения ваша видеокарта должна определять цвет каждого пикселя. Определяется его цвет посредством наложения текстурных изображений на полигоны, которые расположены в трёхмерном пространстве. Текстурные изображения состоят из пикселей, вернее, текселей, то есть тексель – это пиксель двухмерного изображения, наложенного на 3D-поверхность. Главная дилемма заключается в следующем: какой тексель или тексели определяют цвет пикселя на экране. Для представления проблемы фильтрации давайте представим одну картину. Допустим, что ваш экран – это плита с множеством круглых отверстий, каждое из которых является пикселем. Для того чтобы определить, какой цвет имеет пиксель относительно трёхмерной сцены, расположенной за плитой, достаточно просто посмотреть в одно из отверстий.

А теперь представим луч света, который проходит через одно из отверстий и попадает на наш текстурированный полигон. Если последний расположен параллельно относительно отверстия, через которое проходит световой луч, то световое пятно будет иметь форму окружности. В противном случае, если полигон расположен не параллельно к отверстию, световое пятно искажается и имеет эллиптическую форму. Мы думаем, что многие читатели в это время задаются одним вопросом: «как связаны все эти плиты, отверстие, луч света с проблемой определения цвета пикселя?» Внимание! Ключевая фраза: все полигоны, расположенные в световом пятне, определяют цвет пикселя. Всё вышеизложенное и есть те необходимые базовые знания, которые нужны для того, чтобы понять различные алгоритмы фильтрации.

А теперь, чтобы вы лучше поняли, для чего нужна фильтрация, рассмотрим происходящие процессы на примере легендарной «Quake 3 Arena». Представьте какой какой-нибудь коридор с множеством квадратов и различных орнаментов (благо, в «Quake 3 Arena» этого хватает). Орнамент в начале коридора сильно детализирован, а ближе к концу коридора (горизонту) элементы орнамента становятся всё меньше и меньше, т.е. они отображаются меньшим числом пикселей. В результате теряются детали типа швов между элементами орнамента, что, соответственно, приводит к ухудшению качества изображения.

Проблема заключается в том, что драйвер графической карты не знает, какие детали в текстуре являются важными.

Point Sampling

Point Sampling (поточечная выборка) – самый простой способ определения цвета пикселя. Этот алгоритм основан на текстурном изображении: выбирается всего один тексель, который ближе всех расположен к центру светового пятна, и по нему происходит определение цвета пикселя. Нетрудно догадаться, что это совершенно не верно. Во-первых, цвет пикселя определяется несколькими текселями, а мы выбрали только один. Во-вторых, форма светового пятна может измениться, а алгоритм не принимает это во внимание. А зря!

Главным недостатком поточной выборки является тот факт, что когда полигон расположен близко к экрану, количество пикселей будет значительно выше, чем текселей, из-за чего качество изображения очень сильно пострадает. Так называемый эффект блочности, как мы полагаем, многие могли наблюдать в старых компьютерных играх, например, в том же легендарном «Doom».

У Point Sampling есть преимущество. Из-за того, что определение цвета пикселя осуществляется всего по одному текселю, данный метод не критичен к пропускной способности памяти, а это автоматически даёт данному способу фильтрации колоссальные диведенды в том плане, что на фильтрацию по данной схеме затрачивается очень мало ресурсов 3D-акселератора.

Bi-Linear Filtering

Bi-Linear Filtering – билинейная фильтрация, основанная на методе использования интерполяционной техники. Для определения нужных текселей используется основная форма светового пятна, то есть круг. В нашем примере с кругом последний аппроксимируется 4 текселями. Как видим, здесь дела обстоят несколько лучше, чем с Point Sampling. Билинейная фильтрация использует уже 4 текселя.

Изображение получается более качественным, блочность отсутствует, однако близкие к экрану полигоны выглядят расплывчато, и связано это с тем, что для интерполяции необходимо большее количество текселей, нежели доступные четыре.

Расплывчатость – отнюдь не самая главная проблема билинейной фильтрации. Дело в том, что аппроксимация выполняется корректно лишь для объектов, расположенных параллельно экрану или точке наблюдения, в то время как 99% объектов в любой компьютерной игре расположены непараллельно к точке наблюдения. Отсюда можно сделать вывод, что 99% объектов будут аппроксимироваться неправильно. Возьмём, к примеру, наш круг – полигон расположен непараллельно относительно точки наблюдения, стало быть, мы должны аппроксимировать эллипс, а мы аппроксимируем круг, что крайне неверно. Ко всему прочему билинейная фильтрация значительно требовательней к пропускной полосе данных памяти, что, в общем-то, более чем логично, учитывая то, что билинейная фильтрация использует уже 4 текселя для определения цвета пикселя.

Текстурирование является важнейшим элементом сегодняшних 3D приложений, без него многие трехмерные модели теряют значительную часть своей визуальной привлекательности. Однако процесс нанесения текстур на поверхности не обходится без артефактов и соответствующих методов их подавления. В мире трехмерных игр то и дело встречаются специализированные термины типа "мип-мэппинг", "трилинейная фильтрация" и т.п., которые как раз и относятся к этим методам.

Частным случаем эффекта ступенчатости, рассмотренным ранее, является эффект ступенчатости текстурированных поверхностей, который, к сожалению, нельзя убрать методами мульти- или суперсэмплинга, описанными выше.

Представьте себе черно-белую шахматную доску большого, практически бесконечного размера. Допустим, мы рисуем эту доску на экране и смотрим на нее под небольшим углом. Для достаточно удаленных участков доски размеры клеток неизбежно начнут уменьшаться до размера одного пикселя и меньше. Это так называемое оптическое уменьшение текстуры (minification). Между пикселями текстуры начнется "борьба" за обладание пикселями экрана, что приведет к неприятному мельтешению, что является одной из разновидностей эффекта ступенчатости. Увеличение экранного разрешения (реального или эффективного) помогает только немного, потому что для достаточно удаленных объектов детали текстур все равно становятся меньше пикселей.

С другой стороны, наиболее ближние к нам части доски занимают большую экранную площадь, и можно наблюдать огромные пиксели текстуры. Это называется оптическим увеличением текстуры (magnification). Хотя эта проблема стоит не так остро, для уменьшения негативного эффекта с ней тоже необходимо бороться.

Для решения проблем текстурирования применяется так называемая фильтрация текстур. Если разобраться в процессе рисования трехмерного объекта с наложенной текстурой, можно увидеть, что вычисление цвета пикселя идет как бы "наоборот", - сначала находится пиксель экрана, куда будет спроецирована некоторая точка объекта, а затем для этой точки находятся все пиксели текстуры, попадающие в нее. Выбор пикселей текстуры и их комбинация (усреднение) для получения финального цвета пикселя экрана и называется фильтрацией текстуры.

В процессе текстурирования каждому пикселю экрана ставится в соответствие координата внутри текстуры, причем эта координата не обязательно целочисленная. Более того, пикселю соответствует некоторая область в изображении текстуры, в которую могут попадать несколько пикселей из текстуры. Будем называть эту область образом пикселя в текстуре. Для ближних частей нашей доски пиксель экрана становится значительно меньше пикселя текстуры и как бы находится внутри него (образ содержится внутри пикселя текстуры). Для удаленных, наоборот, в каждый пиксель попадает большое количество точек текстуры (образ содержит в себе несколько точек текстуры). Образ пикселя может иметь различную форму и в общем случае представляет собой произвольный четырехугольник.

Рассмотрим различные методы фильтрации текстур и их вариации.

Ближайший сосед (nearest neighbor)

В этом, наиболее простом, методе в качестве цвета пикселя просто выбирается цвет ближайшего соответствующего пикселя текстуры. Этот метод самый быстрый, но и наименее качественный. По сути, это даже не специальный метод фильтрации, а просто способ выбрать хоть какой-то пиксель текстуры, соответствующий экранному пикселю. Он широко применялся до появления аппаратных ускорителей, вместе с широким распространением которых появилась возможность использовать более качественные методы.

Билинейная фильтрация (bilinear)

Билинейная фильтрация находит четыре пикселя текстуры, ближайшие к текущей точке экрана и результирующий цвет определяется как результат смешения цветов этих пикселей в некоторой пропорции.

Фильтрация методом ближайшего соседа и билинейная фильтрация работают достаточно хорошо когда, во-первых, степень уменьшения текстуры невелика, а во-вторых, когда мы видим текстуру под прямым углом, т.е. фронтально. С чем это связано?

Если рассмотреть, как описывалось выше, "образ" пикселя экрана в текстуре, то для случая сильного уменьшения он будет включать в себя очень много пикселей текстуры (вплоть до всех пикселей!). Кроме того, если мы смотрим на текстуру под углом, этот образ будет сильно вытянут. В обоих случаях описанные методы будут работать плохо, поскольку фильтр не будет "захватывать" соответствующие пиксели текстуры.

Для решения этих проблем применяют так называемый мип-мэппинг и анизотропную фильтрацию.

Мип-мэппинг

При значительном оптическом уменьшении точке экрана может соответствовать достаточно много пикселей текстуры. Это значит, что реализация даже самого хорошего фильтра будет требовать достаточно много времени для усреднения всех точек. Однако проблему можно решить, если создавать и хранить версии текстуры, в которых значения будут усреднены заранее. А на этапе визуализации для пикселя искать нужную версию исходной текстуры и брать значение из нее.

Термин mipmap произошел от латинского multum in parvo - многое в малом. При использовании этой технологии в памяти графического ускорителя в дополнение к изображению текстуры хранится набор ее уменьшенных копий, причем каждая новая ровно в два раза меньше предыдущей. Т.е. для текстуры размером 256x256 дополнительно хранятся изображения 128x128, 64x64 и т.д, вплоть до 1x1.

Далее для каждого пикселя выбирается подходящий уровень мипмапа (чем больше размер "образа" пикселя в текстуре, тем меньший мипмап берется). Далее значения в мипмапе могут усредняться билинейно или методом ближайшего соседа (как описано выше) и дополнительно происходит фильтрация между соседними уровнями мипмапа. Такая фильтрация называется трилинейной. Она дает весьма качественные результаты и широко используется на практике.


Рисунок 9. Уровни мипмапа

Однако проблема с "вытянутым" образом пикселя в текстуре остается. Как раз по этой причине наша доска на большом расстоянии выглядит очень нечеткой.

Анизотропная фильтрация

Анизотропная фильтрация - это процесс фильтрации текстуры, специально учитывающий случай вытянутого образа пикселя в текстуре. Фактически, вместо квадратного фильтра (как в билинейной фильтрации), используется вытянутый, что позволяет более качественно выбрать нужный цвет для экранного пикселя. Такая фильтрация используется вместе с мипмэппингом и дает весьма качественные результаты. Однако, существуют и недостатки: реализация анизотропной фильтрации достаточно сложна и при ее включении скорость рисования значительно падает. Анизотропная фильтрация поддерживается последними поколениями графических процессоров NVidia и ATI. Причем с различным уровнем анизотропии - чем больше этот уровень, чем более "вытянутые" образы пикселей можно корректно обрабатывать и тем лучше качество.

Сравнение фильтраций

Итог следующий: для подавления артефактов алиасинга текстур аппаратно поддерживаются несколько методов фильтрации, различающиеся по своему качеству и скорости работы. Наиболее простой метод фильтрации - метод ближайшего соседа (который фактически не борется с артефактами, а просто заполняет пиксели). Сейчас чаще всего используется билинейная фильтрация вместе с мип-мэппингом или трилинейная фильтрация. В последнее время графические процессоры начали поддерживать наиболее качественный режим фильтрации - анизотропную фильтрацию.

Бамп-мэппинг (Bump mapping)

Бамп-мэппинг (bump mapping) - это тип графических спецэффектов, который призван создавать впечатление "шершавых" или бугристых поверхностей. В последнее время использование бамп-мэппинга стало чуть ли не стандартом игровых приложений.

Основная идея бамп-мэппинга - использование текстур для управления взаимодействием света с поверхностью объекта. Это позволяет добавлять мелкие детали без увеличения количества треугольников. В природе мы различаем мелкие неровности поверхностей по теням: любой бугорок будет с одной стороны светлым, а с другой - темным. Фактически, глаз может и не различать изменения в форме поверхности. Этот эффект и используется в технологии бамп-мэппинга. Одна или несколько дополнительных текстур накладываются на поверхность объекта и используются для вычисления освещенности точек объекта. Т.е. поверхность объекта не меняется вовсе, только создается иллюзия неровностей.

Существует несколько методов бамп-мэппинга, но прежде чем мы перейдем к их рассмотрению, необходимо выяснить, собственно как задать неровности на поверхности. Как уже говорилось выше, для этого используются дополнительные текстуры, причем они могут быть разных видов:

Карта нормалей. В этом случае каждый пиксель дополнительной текстуры хранит вектор, перпендикулярный поверхности (нормаль), закодированный в виде цвета. Нормали используются для вычисления освещенности.

Карта смещений. Карта смещений представляет собой текстуру в градациях серого, в каждом пикселе которой хранится смещение от оригинальной поверхности.

Эти текстуры готовятся дизайнерами трехмерных моделей вместе с геометрией и основными текстурами. Существуют и программы, позволяющие получать карты нормалей или смещений автоматически

Препроцессированный бамп-мэппинг (Pre-calculated bump mapping)

Текстуры, которые будут хранить информацию о поверхности объекта, создаются заранее, до этапа визуализации, путем затемнения некоторых точек текстуры (и, следовательно, самой поверхности) объекта и высветления других. Далее во время рисования используется обычная текстура.

Этот метод не требует никаких алгоритмических ухищрений во время рисования, но, к сожалению, изменений в освещении поверхностей при изменении положений источников света или движения объекта не происходит. А без этого действительно успешной симуляции неровной поверхности не создать. Подобные методы используются для статических частей сцены, часто для архитектуры уровней и т.п

Бамп-мэппинг с помощью тиснения (Emboss bump mapping)

Эта технология применялась на первых графических процессорах (NVidia TNT, TNT2, GeForce). Для объекта создается карта смещений. Рисование происходит в два этапа. На первом этапе карта смещений попиксельно складывается сама с собой. При этом вторая копия сдвигается на небольшое расстояние в направлении источника света. При этом получается следующий эффект: положительные значения разницы определяют освещенные пиксели, отрицательные - пиксели в тени. Эта информация используется для соответствующего изменения цвета пикселей основной текстуры.

Бамп-мэппинг с помощью тиснения не требует аппаратуры, поддерживающей пиксельные шейдеры, однако он плохо работает для относительно крупных неровностей поверхности. Также объекты не всегда выглядят убедительно, это сильно зависит от того, под каким углом смотреть на поверхность.

Пиксельный бамп-мэппинг (Pixel bump mapping)

Пиксельный бамп-мэппинг - на данный момент вершина развития подобных технологий. В этой технологии все вычисляется максимально честно. На вход пиксельному шейдеру дается карта нормалей, из которой берутся значения нормали для каждой точки объекта. Затем значение нормали сравнивается с направлением на источник света и вычисляется значение цвета.

Эта технология поддерживается в аппаратуре начиная с видеокарт уровня GeForce2.

Итак, мы увидели, каким образом можно использовать особенности человеческого восприятия мира для улучшения качества изображений, создаваемый 3D-играми. Счастливые обладатели последнего поколения видеокарт NVidia GeForce, ATI Radeon (впрочем, и не только последнего) могут самостоятельно поиграть с некоторыми их описанных эффектов, благо настройки устранения ступенчатости и анизотропной фильтрации доступны из опций драйверов. Эти и другие методы, оставшиеся за рамками данной статьи, успешно внедряются разработчиками игр в новые продукты. В общем, жизнь становится лучше. То-то еще будет!

Фильтрация текстур.

Фильтрация решает задачи определения цвета пикселя на базе имеющихся текселей из текстурного изображения.

Простейший метод наложения текстур называется поточечная выборка (single point-sampling). Суть его в том, что для каждого пикселя, составляющего полигон, выбирается один тексель из текстурного изображения, ближе всех расположенный к центру светового пятна. Совершается ошибка, так как цвет пикселя определяют несколько текселей, а выбран был только один.

Этот метод очень неточен и результатом его применения является появление неровностей. А именно, всякий раз, когда пиксели больше по размеру, чем тексели, наблюдается эффект мерцания. Этот эффект имеет место, если часть полигона достаточно удалена от точки наблюдения, так, что сразу много текселей накладываются на пространство, занимаемое одним пикселем. Заметим, что если полигон расположен очень близко к точке наблюдения и тексели больше по размеру, чем пиксели, наблюдается другой тип ухудшения качества изображения. В данном случае, изображение начинает выглядеть блочным. Этот эффект имеет место, когда текстура может быть достаточно большой, но ограничение в виде доступного разрешения экрана не дает возможности правильно представить исходное изображение.

Второй метод - билинейная фильтрация (Bi-Linear Filtering) состоит в использовании интерполяционной техники. Для определения текселей, которые должны быть задействованы для интерполяции, используется основная форма светового пятна -- круг. По существу, круг аппроксимируется 4 текселями. Билинейная фильтрация - это техника устранения искажений изображения (фильтрация), таких, как "блочности" текстур при их увеличении. При медленном вращении или движении объекта (приближение/удаление) могут быть заметны "перескакивания" пикселов с одного места на другое, т.е. появляется блочность. Во избежании этого эффекта применяют билинейную фильтрацию, при использовании которой для определения цвета каждого пикселя берется взвешенное среднее значение цвета четырех смежных текселей и в результате определяется цвет накладываемой текстуры. Результирующий цвет пикселя определяется после осуществления трех операций смешивания: сначала смешиваются цвета двух пар текселей, а потом смешиваются два полученных цвета.

Главный недостаток билинейной фильтрации в том, что аппроксимация выполняется корректно только для полигонов, которые расположены параллельно экрану или точке наблюдения. Если полигон развернут под углом (а это в 99% случаев), используется неправильная аппроксимация, так как должен аппроксимироваться эллипс.

Ошибки "depth aliasing" возникают в результате того факта, что объекты более отдаленные от точки наблюдения, выглядят более маленькими на экране. Если объект двигается и удаляется от точки наблюдения, текстурное изображение, наложенное на уменьшившийся в размерах объект становится все более и более сжатым. В конечном счете, текстурное изображение, наложенное на объект, становится настолько сжатым, что появляются ошибки визуализации. Эти ошибки визуализации особенно нежелательны в анимации, где такие артефакты во время движения становятся причиной мерцания и эффекта медленного движения в той части изображения, которая должна быть неподвижной и стабильной.

В качестве иллюстрации к описанному эффекту могут служить следующие прямоугольники с билинейным текстурированием:

Рис. 13.29. Закраска объекта методом билинейной фильтрации. Появление артефактов "depth-aliasing", выражающихся в том, что несколько квадратов сливаются в один.

Для избежания ошибок и имитации того факта, что объекты на расстоянии выглядят менее детализированными, чем те, что находятся ближе к точке наблюдения, используется техника, известная как mip-mapping . Если говорить кратко, то mip-mapping - наложение текстур, имеющих разную степень или уровень детализации, когда в зависимости от расстояния до точки наблюдения выбирается текстура с необходимой детализацией.

Mip-текстура (mip-map) состоит из набора заранее отфильтрованных и масштабированных изображений. В изображении, связанном с уровнем mip-map, пиксель представляется в виде среднего четырех пикселей из предыдущего уровня с более высоким разрешением. Отсюда, изображение связанное с каждым уровнем mip-текстуры в четыре раза меньше по размеру предыдущего mip-map уровня.

Рис. 13.30. Изображения, связанные с каждым mip-map уровнем волнообразной текстуры.

Слева направо мы имеем mip-map уровни 0, 1, 2 и т.д. Чем меньше становится изображение, тем больше теряется деталей, вплоть до приближения к концу, когда не видно ничего, кроме расплывающегося пятна из серых пикселей.

Степень или уровень детализации - Level of Detail или просто LOD, используются для определения, какой mip-map уровень (или какую степень детализации) следует выбрать для наложения текстуры на объект. LOD должен соответствовать числу текселей накладываемых на пиксель. Например, если текстурирование происходит с соотношением близким к 1:1, то LOD будет 0, а значит и будет использоваться mip-map уровень с самым высоким разрешением. Если 4 текселя накладываются на один пиксель, то LOD будет 1 и будет использоваться следующий mip уровень с меньшим разрешением. Обычно, при удалении от точки наблюдения, объект, заслуживающий наибольшего внимания имеет более высокое значение LOD.

В то время, как mip-текстурирование решает проблему ошибок "depth-aliasing", его использование может стать причиной появления других артефактов. При удалении объекта все дальше от точки наблюдения, происходит переход от низкого mip-map уровня к высокому. В момент нахождения объекта в переходном состоянии от одного mip-map уровня к другому, появляется особый тип ошибок визуализации, известных под названием "mip-banding" - полосатость или слоеность, т.е. явно различимые границы перехода от одного mip-map уровня к другому.

Рис. 13.31. Прямоугольная лента состоит из двух треугольников, текстурированных волнообразным изображением, где "mip-banding" артефакты обозначены красными стрелками.

Особенно остро проблема наличия ошибок "mip-banding" стоит в анимации, за счет того, что человеческий глаз очень чувствителен к смещениям и может легко заметить место резкого перехода между уровнями фильтрации при движении вокруг объекта.

Трилинейная фильтрация (trilinear filtering) представляет собой третий метод, который удаляет артефакты "mip-banding", возникающие при использовании mip-текстурирования. При трилинейной фильтрации для определения цвета пикселя берется среднее значение цвета восьми текселей, по четыре из двух соседних текстур и в результате семи операций смешивания определяется цвет пикселя. При использовании трилинейной фильтрации возможен вывод на экран текстурированного объекта с плавно выполненными переходами от одного mip уровня к следующему, что достигается за счет определения LOD путем интерполяции двух соседних mip-map уровней. Таким образом решая большинство проблем, связанных с mip-текстурированием и ошибками из-за неправильного расчета глубины сцены ("depth aliasing").

Рис. 13.32. Пирамидальность MIP-map

Пример использования трилинейной фильтрации приведен ниже. Здесь опять используется все тот же прямоугольник, текстурированный волнообразным изображением, но с плавными переходами от одного mip уровня к следующему за счет использования трилинейной фильтрации. Обратите внимание на отсутствие каких-либо заметных ошибок визуализации.

Рис. 13.33. Прямоугольник, текстурированный волнообразным изображением, выведен на экран с использованием mip-текстурирования и трилинейной фильтрации.

Существует несколько способов генерации MIP текстур. Один из них - просто подготовить их заранее, используя графические пакеты типа Adobe PhotoShop. Другой способ - генерация MIP текстур на "лету", т.е. в процессе выполнения программы. Заранее подготовленные MIP текстуры означают дополнительные 30% дискового пространства для текстур в базовой поставке инсталляции игры, но позволяют применять более гибкие методы управления их созданием и позволяют добавлять различные эффекты и дополнительные детали различным MIP уровням.

Получается, что трилинейный мипмеппинг это лучшее, что может быть?

Нет конечно. Видно, что проблема не только в соотношении размеров пикселя и текселя, но также и в форме каждого из них (или, что бы быть более точными, в соотношениях форм).

Метод mip-текстурирования лучше всего работает для полигонов расположенных прямо "лицом к лицу" к точке наблюдения. Однако, полигоны, косонаправленные по отношению к точке наблюдения искривляют накладываемую текстуру так, что на пикселы могут накладываться различного вида и квадратичные по форме области текстурного изображения. Метод mip-текстурирования не принимает это во внимание и в результате наблюдается эффект слишком сильного размытия текстурного изображения, так, будто использованы неправильно выбранные тексели. Для решения этой проблемы нужно делать выборку из большего количества текселей, составляющих текстуру, и выбирать эти тексели следует принимая во внимание "отображенную" форму пикселя в текстурном пространстве. Этот метод называется анизотропная фильтрация ("anisotropic filtering"). Обычное mip-текстурирование называется "isotropic" (изотропное или однородное), потому что мы всегда фильтруем вместе квадратные области, состоящие из текселей. Анизотропная фильтрация означает, что форма области из текселей, которую мы используем меняется в зависимости от обстоятельств.

Если судить по информации на форумах и из статей в Интернете, то ATi хитрит с трилинейной фильтрацией текстур на новом графическом процессоре X800. Впрочем, находятся и яростно защищающие ATi. Вообще, подобные дискуссии напоминают нам скандал годовалой давности, связанный с nVidia.

Поводом для столь горячего обсуждения стала статья на немецком сайте Computerbase. В ней было показано, как ATi использует оптимизированную трилинейную фильтрацию текстур, часто называемую "брилинейной" (brilinear) из-за смеси билинейной и трилинейной фильтраций, в графических процессорах Radeon 9600 и X800. Новость действительно стала ошеломляющей, ведь ATi всегда твердила о использовании настоящей трилинейной фильтрации.

Но как ситуация выглядит на самом деле? Это - оптимизация, хитрость или просто разумное решение? Чтобы судить, нам необходимо углубиться в технологии различных способов фильтрации. И первая часть статьи будет посвящена именно этому, причём, некоторые технологии мы изложим весьма упрощённо, чтобы уложиться в несколько страниц. Итак, давайте взглянем на базовые и принципиальные функции фильтрации.

Будет ли продолжение? Возможно, поскольку спор по поводу недавно открытой брилинейной фильтрации на картах Radeon 9600 и X800 не утихает. ATi следует отдать должное за то, что качество картинки карт визуально не страдает из-за этой фильтрации. По крайней мере, у нас нет примеров, говорящих об обратном. Пока брилинейная фильтрация проявляет себя при искусственно созданных лабораторных условиях. В то же время, ATi не позволяет включить полную трилинейную фильтрацию для упомянутых карт, будь она адаптивной или нет. Из-за новой фильтрации значения производительности в тестах не демонстрируют всего настоящего потенциала X800, поскольку значения FPS получены после оптимизации, влияние которой на скорость оценить сложно. Да и слово "адаптивная" оставляет горькое послевкусие. ATi не предоставила нам информацию о механизме работы драйвера и много раз заявляла, что карта даёт полную трилинейную фильтрацию. Лишь после упомянутого разоблачения ATi признала, что фильтрация оптимизирована. Будем надеяться, что в других местах драйвера подобной "адаптивности" нет.

Впрочем, производители медленно, но уверенно, двигаются к тому моменту, когда уровень терпимости будет преодолён. "Адаптивность" или определение запускаемого приложения не позволяют тестовым программам показать действительную производительность карты в играх. Качество картинки в игре может отличаться от одного драйвера к другому. Производители могут свободно развлекаться с драйвером, в зависимости от того, какая производительность нужна отделу маркетинга на данный момент. Ну, а право потребителя знать, что он, собственно, покупает, здесь уже никого не интересует. Всё это оставлено средствам массовой информации - пусть они выполняют свою образовательную миссию. И трюки с фильтрацией, которые мы обсудили в нашей статье, являются лишь самыми известными такими случаями. Что ещё скрыто от нашего внимания, остаётся лишь догадываться.

Каждый производитель решает сам, какой уровень качества изображения он будет обеспечивать стандартно. Однако производителям следует документировать используемые оптимизации, особенно если они скрыты от известных тестов, как в свежем примере с ATi. Решение очевидно: дайте возможность выключать оптимизации! Тогда потребитель сможет сам решать, что ему важнее - больше FPS или лучшее качество. На Microsoft, как на третейского судью, рассчитывать тоже не приходится. Тесты WHQL не позволяют определить многие вещи, да и их можно легко обойти: значение слова "адаптивная" вам знакомо?

Известные на сегодня оптимизации фильтрации
ATi nVidia
Трилинейная
оптимизация
R9600
X800
GF FX5xxx
(GF 6xxx)*
Угловая оптимизация
анизотропной фильтрации
R9xxx
X800
GF 6xxx
Адаптивная
анизотропная фильтрация
R9xxx
X800
GF FX5xxx
GF 6xxx
Оптимизация ступени R9xxx
X800
GF FX5xxx
Оптимизация LOD R9xxx
X800(?)

В целом, подобные дискуссии имеют свои преимущества: покупатели и, возможно, OEM-клиенты начинают прислушиваться к проблеме. Мы не сомневаемся, что мания необузданных оптимизаций будет продолжаться. Однако в тёмном царстве появился луч света, что наглядно продемонстрировала nVidia со своей трилинейной оптимизацией. Будем надеяться и на следующие подобные шаги!



Случайные статьи

Вверх