Что такое spo2 в медицине. Что такое сатурация кислорода. Ошибки при проведении пульсоксиметрии

Одно из важнейших потребностей человеческого организма – это непрерывное поступление кислорода. И это касается не только воздуха, поступающего в легкие путем вдыхания через нос или рот, но и поступления кислорода ко всем органам и тканям организма. Если кислород перестанет поступать в каждую клеточку тела, человек проживет всего несколько минут.

Что такое сатурация

За транспортировку кислорода по всему организму отвечает белок – гемоглобин, который содержится в красных кровяных тельцах – эритроцитах. Одна молекула гемоглобина может перенести 4 молекулы кислорода, если в организме человека так и происходит, то уровень сатурации составляет все 100%, о такого практически не бывает. Выражаясь более понятным языком, насыщение жидкости, то есть крови, - газами, то есть кислородом, - это и есть сатурация.

В медицине измерение сатурации происходит с помощью, так называемого индекса сатурации – усредненного процентного показателя, который определяется с помощью пульсоксиметрии. Специальный датчик сатурации – пульсоксиметр, который есть в каждой больнице, и на сегодняшний день его можно приобрести для использования в домашних условиях. Изображены на его мониторе сатурация – Spo2 и частота пульса - HR. Если показатели сатурации в норме, они просто появляются на экране и сопровождаются ровным звуковым сигналом, а когда у пациента определяется снижение сатурации, отсутствует пульс или наоборот – тахикардия, то аппарат измерения сатурации подаст тревожный звуковой сигнал. Чаще всего бывает низкая сатурация дыхания или дыхательная недостаточность при пневмонии (тяжелой формы), хронической обструктивной болезни легких, коме, апноэ, а также у экстремально недоношенных деток.

Определение сатурации необходимо для того, чтобы вовремя выявить отклонения этого показателя от нормы и избежать осложнений, которые может повлечь за собой недостаточное насыщение гемоглобина кислородом.

Как определить степень дыхательной недостаточности по сатурации

Нормальная сатурация легких у пожилых, взрослых, детей и новорожденных одинакова, и она составляет 95% - 98%. Сатурация легких на уровне ниже 90% является показанием для оксигенотерапии. Можно определить сатурацию пульсоксиметром двух типов – трансмиссионным или рефракционным. Первый измеряет сатурацию кислорода с помощью датчика, который закрепляется на подушечке пальца руки мочке уха и т. д., второй может определить этот показатель практически в любой части тела. Точность обоих приборов одинакова, а вот в использовании более удобна отраженная пульсоксиметрия. Сатурацию можно сопоставить с парциальным давлением:

  • SpO2 от 95% до 98% соответствует РаО2 на уровне 80-100 рт.ст.;
  • SpO2 от 90% до 95% соответствует РаО2 на уровне 60-80 рт.ст.;
  • SpO2 от 75% до 90% соответствует РаО2 на уровне 40-60 рт.ст.;

Очень часто падает сатурация у недоношенных детей. Как показала медицинская практика, процент смертности среди недоношенных детей с низкой сатурацией выше, чем процент смертности детей с показателем сатурации, которые находятся в пределах нормы.

При многих заболеваниях и неотложных состояниях измеряется сатурация кислорода в крови, норма показателя составляет 96-99%. В общем понимании сатурацией называется насыщение любой жидкости газами, Медицинское понятие включает насыщение крови кислородом. При его снижении усугубляется состояние человека, поскольку этот элемент участвует во всех процессах метаболизма. Неотъемлемой частью терапии таких заболеваний является повышение его уровня посредством применения кислородной маски или подушки.

Подробнее о сатурации

Используя научные данные, можно сказать, что определение сатурации крови кислородом происходит путем соотношения связанного гемоглобина к его общему количеству.

Обеспечение организма различными веществами и элементами происходит благодаря сложной системе всасывания нужных компонентов. Организация доставки необходимых веществ и выведения лишних происходит посредством системы кровообращения, по малому и большому кругу.

Процесс насыщения крови кислородом обеспечивается легкими, которые проводят воздух по дыхательной системе. Он содержит 18% кислорода, согревается в полости носа, затем проходит по глотке, трахее, бронхам, позже попадает в легкие. Структура органа включает альвеолы, где и происходит газообмен.

Процесс сатурации происходит по следующей цепочке:

  1. Сложная система капилляров и венул, окружающих альвеолы, переносит в пузырьки (альвеолы) газы из воздуха.
  2. Пришедшая сюда венозная кровь, бедная кислородом, идет по большому кругу, расходясь по органам и тканям. Углекислый газ из альвеол переходит назад в органы дыхания и выделяется наружу.
  3. Перенос молекул кислорода происходит при помощи гемоглобина, который содержится в эритроцитах.

Гемоглобин содержит железо (4 атома), поэтому одна белковая молекула способна присоединять 4 кислорода.

Причины снижения

Если сатурация кислорода в крови отличается от нормы (нормальный показатель – 96-99%), то это может происходить по следующим причинам:

  • снижается количество клеток, переносящих кислород (эритроцитов, гемоглобина);
  • нарушается процесс перехода кислорода в альвеолы;
  • изменяется способность сердца накачивать кровь в сосуды или переносить ее по кругам кровообращения.

Люди могут испытывать подобные трудности и из-за глобальной экологической проблемы. В крупных городах, где есть действующие промышленные предприятия, нередко поднимается вопрос, связанный с повышением уровня выхлопных газов в воздухе.

Из-за этого концентрация кислорода снижается, гемоглобин переносит молекулы отравляющих газов, вызывая медленную интоксикацию.

На практике эти нарушения проявляют себя следующими заболеваниями:

  • анемия;
  • аутоиммунные заболевания;
  • хронические процессы дыхательных путей (пневмония, бронхит);
  • обструктивные заболевания (муковисцидоз, бронхиальная астма);
  • сердечная недостаточность (пороки сердца, хронические застойные явления).

Измерение сатурации происходит во время операций и при введении наркоза, а также если необходим контроль состояния недоношенных новорожденных.

Недостаток кислорода имеет определенные признаки, они связаны с нарушением его пропорции с углекислым газом. Может возникать и обратная ситуация, когда поступление газа избыточно. Это тоже плохо для организма, поскольку вызывает интоксикацию. Такая ситуация возникает в случае долгого пребывания на свежем воздухе после продолжительного кислородного голодания.

Вероятность заполучить снижение сатурации зависит от образа жизни человека. Чем меньше он бывает на свежем воздухе, тем больше шанс патологии.

Определение параметра

Определение содержания кислорода – несложная процедура, она может проводиться несколькими методами, после забора крови или вообще без него:

  1. Неинвазивный метод исследования заключается в использовании прибора, электрод которого накладывается на палец или пояс, уже через минуту регистрирует результат. Инструмент называется пульсоксиметром, позволяет быстро провести исследование безопасным способом.
  2. Если использовать инвазивный метод, то производится забор артериальной крови, но для получения результата в таком случае требуется достаточно много времени.

Принцип работы пульсоксиметра заключается в том, что у жидкой среды организма с различной степенью насыщения кислородом отличается не только цвет, но и уровень поглощения инфракрасных волн. В артериальной, то есть насыщенной крови, поглощаются инфракрасные волны, а в венозной – красные. Поэтому пульсоксиметр регистрирует данные обоих кровотоков и на их основании высчитывает показатель сатурации.

Приборы могут быть стационарными и портативными, и если более старые устройства имеются в стационаре, то в условиях скорой помощи определить сатурацию кислорода раньше не представлялось возможным. Они обладали массой положительных сторон: большое количество датчиков, объем памяти, возможность распечатывания результата. Изобретение переносного аппарата дало возможность быстро сориентироваться в экстренной ситуации. Современные приборы могут регистрировать результат круглосуточно, включаясь тогда, когда пациент активен.

Ночной пульсоксиметр производит измерения во время пробуждения человека. Практически все виды пульсоксиметров выпускаются в различных ценовых категориях, что зависит от возможностей и потребностей покупателя.

Для нарушения сатурации характерны следующие проявления:

  1. Снижение активности человека, повышение утомляемости.
  2. Головокружение, слабость, сонливость.
  3. Появление одышки.
  4. Снижение артериального давления.

Если наблюдается избыточное насыщение крови кислородом, то признаками такого явления становится головная боль и тяжесть. Одновременно с тем могут возникать симптомы, аналогичные низкой насыщенности крови кислородом.

Лечение

Если кровь не может насыщаться кислородом, то необходимо найти причину такого явления и устранить её, а далее обогатить жидкую среду газом. Начинать беспокоиться нужно уже при показателе, содержание кислорода которого ниже 95%.

Вот последовательность плана лечения:

  1. Многие состояния, при которых снижается сатурация, являются сложными и запущенными, поэтому терапия основного заболевания является сложной задачей.
  2. В связи с этим увеличение способности крови насыщаться кислородом естественным способом затруднительно. Лечение низкой сатурации происходит путем назначения его ингаляции посредством маски или вдыхания кислородной подушки.
  3. Как правило, это происходит в условиях стационара, поэтому оксигенотерапия производится на период обострения патологии.

Если уровень кислорода снижен незначительно, то коррекция состояния возможна путем увеличения прогулок на свежем воздухе.

Спасибо

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Что такое пульсоксиметрия?

Пульсоксиметрия – это аппаратный метод исследования, позволяющий установить уровень насыщения крови кислородом. Параллельно с этим прибор считывает частоту сердечных сокращений пациента. Пульсоксиметрия является весьма распространенным методом, который применяют в основном для наблюдения за состоянием пациента в режиме реального времени. Аппарат считывает информацию в конкретный момент времени, но некоторые модели способны также сохранять данные и строить графики. Несколько реже пульсоксиметрию используют как отдельный диагностический метод. Данные, полученные с ее помощью, являются важным критерием при классификации некоторых патологий легких и сердца .
Чаще всего пульсоксиметрию проводят в следующих случаях:
  • При наркозе. Во время операции пациент находится без сознания и не может пожаловаться на ухудшение состояния. Пульсоксиметрия же дает объективные данные без его участия. Анестезиолог может следить за глубиной наркоза и, при необходимости, поддерживать жизненно важные процессы. Это особенно важно при сложных и рискованных операциях.
  • При операциях на конечностях. Операции на конечностях часто сопровождаются временной закупоркой сосудов, чтобы предотвратить сильные кровотечения . Пульсоксиметр прикрепляется на палец и позволяет контролировать кровообращение. Слишком слабое насыщение кислородом может привести к смерти тканей, из-за чего возникнут осложнения.
  • При транспортировке пациентов. Обычный пульсоксиметр портативен и не занимает много места, поэтому его удобно использовать для наблюдения за состоянием пациентов при их транспортировке. Пульсоксиметрами оборудованы многие машины скорой помощи, самолеты и вертолеты санитарного назначения.
  • В реанимации. В послеоперационном периоде и при тяжелых заболеваниях, угрожающих жизни, пациенты находятся в реанимации. Пульсоксиметрия в этих отделениях ведется непрерывно (по несколько дней и более ). Кроме того, используются аппараты, оповещающие медицинский персонал, когда жизненные показатели пациента снижаются.
  • При некоторых заболеваниях легких и сердца. При ряде патологий легких и болезнях сердца возникают проблемы с насыщением организма кислородом. Пульсоксиметрия помогает определить тяжесть заболевания и выбрать правильную тактику лечения. Кроме того, с ее помощью можно быстрее диагностировать приступы бронхиальной астмы , ночное апноэ (остановка дыхания ) и другие патологии, проявляющиеся в виде приступов.
  • При отравлении угарным газом и лечении кислородом. При ряде заболеваний пациентам назначают лечение смесью газов с высоким содержанием кислорода (смесь вдыхают через маску ). Это позволяет быстро повысить концентрацию кислорода в крови. Пульсоксиметрия определяет эффективность такого лечения и позволяет понять, когда состояние пациента вернется к норме.
  • При подготовке спортсменов. В данном случае пульсоксиметрия проводится не по медицинским показаниям. Профессиональные спортсмены здоровы, но данное исследование позволяет улучшить качество их подготовки. Тренеры и врачи контролируют насыщение крови кислородом при экстремальных нагрузках и делают необходимые поправки в методике тренировок.
Основным преимуществом пульсоксиметрии является простота выполнения процедуры. Она может быть выполнена практически в любых условиях и не имеет серьезных противопоказаний. Кроме того, пульсоксиметры весьма распространены, и стоимость разового исследования достаточно низкая.

Какие показатели отражает пульсоксиметрия? (сатурация, SpO2 и др. )

Обыкновенные пульсоксиметры, рассчитанные на применение в больницах и домашних условиях, могут регистрировать два основных показателя - сатурация (насыщение ) крови кислородом и частоту пульса. Во многих случаях уже эта информация дает общее представление о состоянии пациента, и грамотный специалист может сделать ценные выводы.

Показатели, которые регистрируют пульсоксиметры, имеют следующие особенности:

  • Насыщение крови кислородом. Насыщение периферической крови кислородом называется также сатурацией и обозначается SpO2. Этот показатель очень важен, так как указывает на проблемы с дыханием и сердечной деятельностью практически сразу (в процессе проверки ), до того как появятся косвенные признаки недостатка кислорода - посинение (цианоз ) кожных покровов и слизистых оболочек, изменение сердечного ритма, субъективный дискомфорт у пациента.
  • Частота пульса. Частота пульса отражает частоту сердечных сокращений, но не всегда совпадает с ней на сто процентов (то есть данные электрокардиографии и пульсоксиметрии могут отличаться ). Это объясняется разной эластичностью сосудов, свойством их стенок частично поглощать пульсацию, возможной закупоркой просвета сосуда. Однако пульсоксиметр в любом случае косвенно отражает работу сердца и помогает заподозрить некоторые нарушения. Для достоверного определения частоты пульса во время пульсоксиметрии аппарат должен правильно считывать данные как минимум на протяжении 15 – 20 секунд.

Пульсоксиметры, применяемые в условиях стационара (реанимация, операционная и др. ) часто «встроены» в более сложные аппараты и оснащены более широким набором функций. Они регистрируют те же показатели, но в сочетании с другими приборами компьютеры выдают более полную информацию о состоянии пациента (наполнение пульса, частота дыхания и др. ).

Норма пульсоксиметрии у взрослых, детей и новорожденных

Все пульсоксиметры регистрируют во время процедуры два основных показателя - сатурацию крови кислородом и частоту сердечных сокращений (пульс ). Эти данные сопоставляются с показателями нормы для различных возрастов, и врачи делают выводы о состоянии пациента.

Норма частоты сердечных сокращений в различном возрасте:

  • новорожденные и дети до 2 лет – 110 – 180 ударов в минуту;
  • дети 2 – 10 лет – 70 – 140 ударов в минуту;
  • подростки (старше 10 лет ) и взрослые – 60 – 90 ударов в минуту.
Следует отметить, что границы нормы рассчитаны для состояния покоя и при отсутствии каких-либо патологий. Например, частота пульса после физической нагрузки будет значительно повышена даже у здоровых людей. Именно поэтому пульсоксиметрию рекомендуется проводить в больнице, где врачи смогут учесть все факторы, влияющие на пациента, и правильно интерпретировать результаты.

Сатурация артериальной крови кислородом в норме всегда должна быть выше 95%. Более низкие показатели характерны для различных заболеваний, причем, чем ниже будет показатель, тем тяжелее состояние пациента. Насыщение крови кислородом меньше чем на 90% расценивается как угроза для жизни, и таким пациентам необходима срочная медицинская помощь.

Сатурация венозной крови кислородом измеряется значительно реже и не имеет такого большого практического значения. Ее норма составляет 75% и выше.

Какой врач назначает и выполняет пульсоксиметрию?

Чаще всего пульсоксиметрия используется в области анестезиологии и реаниматологии. Дело в том, что пациенты, попадающие в эти отделения, находятся обычно в тяжелом состоянии. Их заболевания могут быстро привести к нарушениям жизненно важных функций организма. Пульсоксиметрия же позволяет измерять частоту сердцебиений и насыщение крови кислородом длительное время. Врачи наблюдают за этими показателями, пока состояние пациента не стабилизируется и не исчезнет прямая угроза для жизни. В некоторых случаях к пульсоксиметрии прибегают и другие специалисты.

Назначают пульсоксиметрию обычно следующие врачи:

  • анестезиологи (записаться ) ;
  • реаниматологи ;
  • пульмонологи (записаться ) ;
  • фтизиатры (записаться ) ;
  • хирурги (записаться ) ;
  • терапевты (записаться ) и др.
Эти специалисты могут определить, нужна ли их пациенту пульсоксиметрия в принципе. Также они обладают информацией о заболевании и могут правильно интерпретировать результаты исследования.

Проведение же пульсоксиметрии не требует особых навыков или специальной подготовки. Как правило, готовят пациента и оборудование медсестры и младший медицинский персонал, ознакомленный с инструкциями. Врач может проводить исследование самостоятельно, если есть риск быстрого ухудшения состояния. Например, в операционной за показателями пульсоксиметра следит врач-анестезиолог .

Нужна ли специальная подготовка пациента перед пульсоксиметрией?

В принципе, специальной подготовки пациента для проведения пульсоксиметрии не требуется. Данный метод в любом случае отразит насыщение крови кислородом на данный конкретный момент времени. Тем не менее, для получения более объективных данных есть несколько общих правил, которых следует придерживаться перед процедурой.

В условную подготовку пациента к пульсоксиметрии входят следующие рекомендации:

  • Не употреблять стимулирующие вещества. Любые стимулирующие вещества (наркотические препараты, кофеин, энергетические напитки ) влияют на работу нервной системы и внутренних органов. Если употребить их перед процедурой, пульсоксиметрия даст объективную информацию, но состояние организма изменится по мере того как будет ослабевать действие стимуляторов.
  • Отказ от курения. Курение непосредственно перед процедурой может повлиять на глубину вдоха, частоту сердцебиения, тонус сосудов. Это изменения повлекут снижение насыщения крови кислородом, которое отразит пульсоксиметрия.
  • Отказ от алкоголя. Однократное употребление алкоголя не сильно исказит данные пульсоксиметрии. Но если пациент регулярно употреблял спиртные напитки за несколько дней до процедуры, это повлияет на работу печени . Печень ответственна за выработку многих компонентов крови и ферментов . Таким образом, результат пульсоксиметрии будет несколько искажен.
  • Не использовать крема для рук и лак для ногтей. В большинстве случаев датчик пульсоксиметра крепится на палец. Использование различных кремов для рук может повлиять на «прозрачность» кожи . Световые волны, которые должны определить насыщение крови кислородом, могут встретить препятствие, что отразится на результате исследования. Лаки для ногтей (особенно синий и фиолетовый цвета ) и вовсе делают палец непроницаемым для света, и прибор не будет работать.
  • Питаться в обычном режиме. Переедание или голодание накануне исследования могут несколько исказить результаты, так как в крови появится больше тех или иных веществ. Лучше всего питаться перед исследованием в обычном режиме, чтобы результат можно было интерпретировать как обычное состояние организма.
Разумеется, при поступлении пациентов в отделение реанимации или во время проведения срочной операции пульсоксиметрия является обязательным условием наблюдения за организмом, и ни о какой подготовке к данной процедуре не может быть и речи. Просто при интерпретации результата врачи будут учитывать факторы, которые могут влиять на состояние пациента.

Больно ли делать пульсоксиметрию?

Пульсоксиметрия является абсолютно безболезненной процедурой. Пациент, как правило, находится в лежачем положении, а датчик закрепляют на пальце или запястье. При надевании и снятии датчиков кожа не травмируется. Кроме того, прищепки или браслеты, которые служат креплением, даже нельзя сильно затягивать. Это может затруднить кровообращение в исследуемой зоне и исказить результаты исследования.

Таким образом, пациент находится в комфортном положении и не испытывает боли или каких-либо неприятных ощущений. Это позволяет проводить пульсоксиметрию даже маленьким детям и новорожденным. Для них существуют специальные конструкции датчиков с мягкими подушечками, чтобы датчик не натирал нежную кожу даже при длительном исследовании.

Сколько времени проводится пульсоксиметрия?

Длительность регистрации данных при проведении пульсоксиметрии может быть различной и зависит от цели, которую преследует данное исследование. Разовое определение насыщения крови кислородом занимает всего несколько минут. Аппарат определяет основные показатели, и специалист имеет представление о состоянии пациента в данный конкретный момент времени. Однако подобное исследование на практике встречается не так часто. Показатели, определяемые при пульсоксиметрии, могут быстро меняться. При внезапных нарушениях дыхания и сердцебиения насыщение крови кислородом может упасть до опасных пределов в течение нескольких минут. Поэтому разовое однократное получение данных не слишком информативно.

Чаще применяется мониторинг (наблюдение ) состояния пациента в течение длительного времени. Пульсоксиметр регистрирует данные о том, как менялись жизненные показатели пациента в течение ночи, суток или в определенных условиях.

Процедура может длиться несколько часов и более в следующих случаях:

  • в течение хирургической операции;
  • во время транспортировки пациента;
  • в послеоперационном периоде или у тяжелых пациентов в реанимации;
  • всю ночь при необходимости обнаружения приступов ночного апноэ (остановка дыхания );
  • на протяжении приступа бронхиальной астмы для объективного определения тяжести болезни;
  • в течение суток и более для регистрации приступов других заболеваний (на усмотрение лечащего врача ).
Каждый вид пульсоксиметрии имеет свою технику проведения и ориентировочное время исследования. Врач назначает процедуру и может сообщить пациенту ее ориентировочную длительность, исходя из предполагаемого диагноза.

Можно ли выполнять пульсоксиметрию самостоятельно в домашних условиях?

Пульсоксиметр является полностью безопасным прибором, работа с которым не требует особых навыков или специальной подготовки. Портативные аппараты для измерения насыщения крови кислородом можно приобрести самостоятельно во многих крупных аптеках и специализированных магазинах. Они предназначены для использования в домашних условиях.

Для получения достоверных данных пациенту достаточно следовать предписаниям в инструкции к аппарату. Если же у больного возникают дополнительные вопросы относительно интерпретации результатов, лучше обратиться к специалисту. В случае если пульсоксиметр в домашних условиях выдает сатурацию (насыщение кислородом ) менее 95%, следует срочно обратиться к врачу.

Что за аппарат пульсоксиметр?

Пульсоксиметром называется аппарат, позволяющий проводить пульсоксиметрию. Он является одним из основных приборов, которые используют в реанимации, анестезиологии и некоторых других областях медицины. Существуют различные модификации данного аппарата, каждая из которых выполняет определенные задачи и имеет свои преимущества.

Для получения достоверных результатов при использовании пульсоксиметра нужно придерживаться следующих рекомендаций:

  • Правильный выбор места исследования. Желательно проводить пульсоксиметрию в комнате с умеренным освещением. Тогда яркий свет не будет влиять на работу светочувствительных датчиков. Интенсивный свет (особенно красный, синий и других цветов ) может существенно исказить результаты исследования.
  • Правильное расположение пациента. Основным требованием во время пульсоксиметрии является статичное положение пациента. Желательно проводить процедуру лежа на кушетке с минимальным количеством движений. Быстрые и резкие движения могут привести к смещению датчика, ухудшению его контакта с телом и искажению результата.
  • Включение и питание прибора. Некоторые современные пульсоксиметры включаются автоматически после надевания датчика. В других моделях аппарат нужно включить самостоятельно. В любом случае, перед использованием пульсоксиметра, нужно проверить уровень зарядки (для моделей на аккумуляторах или батарейках ). Исследование может длиться довольно долго, в зависимости от информации, которую хочет получить врач. Если аппарат разрядится до окончания процедуры, ее придется повторить.
  • Прикрепление датчика. Датчик пульсоксиметра крепят на часть тела, указанную в инструкции. В любом случае он должен хорошо держаться, чтобы не упасть случайно при движениях пациента. Также датчик не должен слишком сильно зажимать палец или стягивать запястье.
  • Правильная интерпретация результатов. Пульсоксиметр выдает результаты в понятном для пациента виде. Обычно это частота сердечных сокращений и уровень насыщения крови кислородом. Однако грамотно интерпретировать результат может только лечащий врач. Он сопоставляет показатели с результатами других исследований и состоянием пациента.

В настоящее время портативные пульсоксиметры может приобрести практически каждый пациент себе домой. Это приобретение лучше согласовать с лечащим врачом. Далеко не всегда в нем есть необходимость. Чаще эти аппараты приобретают для лечения или ухода за тяжелобольными людьми в домашних условиях. Пульсоксиметр также может понадобиться, если есть трудности с транспортировкой пациента. Специальными моделями оснащено большинство современных машин скорой помощи.

Какие бывают пульсоксиметры?

В наши дни пациентам доступно большое количество пульсоксиметров от различных производителей. Основной функцией, объединяющей все аппараты, является возможность измерения сатурации (насыщения ) крови кислородом и частоты пульса. Однако многие современные модели обладают и другими удобными функциями.

Основными преимуществами, которые встречаются у разных моделей пульсоксиметров, являются:

  • Указание пределов нормы. Большинство современных пульсоксиметров сами могут определить границу нормы. Она отражается на экране рядом с показателями пациента. В некоторых случаях цифры на экране могут окрашиваться в красный цвет, если жизненные показатели падают.
  • Звуковой сигнал. Некоторые аппараты снабжены специальным датчиком, который реагирует на понижение сатурации крови кислородом и оповещает об этом, давая звуковой сигнал. Это позволяет врачам быстро отреагировать на проблему.
  • Портативность. Пульсоксиметры могут быть стационарными (для больниц ) и портативными (для домашнего использования и машин скорой помощи ).
  • Обработка информации. Большинство пульсоксиметров выводит на монитор данные в виде цифр. Однако некоторые могут распечатывать график изменений во времени, что очень удобно в случае длительного исследования.
  • Совместимость с другими приборами. Пульсоксиметры, применяемые в условиях реанимации в больницах, встроены в более сложные аппараты по поддержанию жизнедеятельности или могут к ним подключаться. У «домашних» портативных приборов такой функции нет.
Существуют и более специализированные модели с дополнительным набором функций для различных пациентов и отделений, однако они не так распространены.

Датчики пульсоксиметров (пальцевой, взрослый, детский и др. )

Существуют различные виды датчиков пульсоксиметров, каждый из которых имеет свое предназначение и особенности использования. Все датчики объединяет наличие источника света (с определенной длиной волны ) и воспринимающего устройства (детектора ). В датчиках-клипсах для трансмиссионной пульсоксиметрии эти компоненты располагают друг напротив друга. В датчиках для отраженной пульсоксиметрии они расположены рядом.

Все датчики пульсоксиметров соединяются гибким проводом с, собственно, пульсоксиметром. Здесь происходит обработка данных и их представление в удобной форме (обычно на экране в виде цифр или графика ).

Существуют следующие виды датчиков для пульсоксиметрии:

  • Клипсы. Такие датчики напоминают по форме прищепку, которую обычно фиксируют на указательном пальце или мочке уха пациента. Данный тип хорошо подходит взрослым и подросткам, когда пациента наблюдают короткое время. Носить клипсу при необходимости длительного измерения (несколько часов и более ) неудобно, так как она может смещаться во время движений, искажая результаты исследования.
  • Гибкие силиконовые датчики. Такие датчики чаще используют при проведении процедуры у новорожденных. Их обычно закрепляют на боковой стороне ноги, так как пальцы слишком малы для исследования, и на них тяжело хорошо зафиксировать датчик. Кроме того, силиконовые насадки не причиняют ребенку дискомфорта.
  • Силиконовые датчики для взрослых. Такие датчики используют при необходимости длительного наблюдения (более 3 – 4 часов ). Они хорошо фиксируются и не причиняют неудобства или дискомфорта. В зависимости от модели датчик может быть рассчитан на определенный диаметр пальца (например, в инструкции указано – при толщине пальца от 9 до 12 мм ). Этим параметром нельзя пренебрегать, так как в противном случае аппарат не просветит толщу тканей пальца, и результат исследования будет искажен.
  • Клипса на ухо. Такие датчики отличаются по форме от клипс на пальцы. Как правило, у них имеются удобные фиксаторы (наподобие наушника ), позволяющие хорошо закрепить их на ушной раковине. Световые элементы при этом располагаются так, чтобы просвечивать мочку уху. Используют ушные клипсы для продолжительного исследования, когда пациент занимается повседневными делами, и закрепить клипсу на палец просто не представляется возможным.
Большинство пульсоксиметров для домашнего использования снабжены самыми обычными датчиками-клипсами для быстрой проверки сатурации. Специальные датчики для детей и длительных исследований имеются в отделениях больниц и поликлиник. При желании пациент может приобрести другой тип датчика отдельно (при условии, что его технические характеристики подходят для данной модели пульсоксиметра ).

В некоторых клиниках используются одноразовые датчики для пульсоксиметрии, что является более гигиеничным для пациентов. Принципиального отличия в получении результатов при этом нет. Одноразовые датчики изготавливаются отдельно под каждую модель аппарата.

Куда можно закрепить датчик пульсоксиметра?

В подавляющем большинстве случаев местом прикрепления датчика пульсоксиметра служат подушечки пальцев, так как ткани в этом месте хорошо просвечиваются и погрешность будет минимальной. Несколько реже датчики закрепляют на мочку уха. Другие части тела хуже подходят для трансмиссионной пульсоксиметрии, так как там расположены более плотные ткани, через которые не так хорошо проходит свет.

В случае отраженной пульсоксиметрии возможностей больше, так как датчики можно закрепить на плоском участке кожи. Врачи чаще располагают такие датчики на конечностях, где имеются затруднения с кровообращением. Другими словами, место закрепления может быть практически любым, при условии, что там есть хорошая сосудистая сеть.

Техника, принцип и алгоритм проведения пульсоксиметрии

Пульсоксиметрия является относительно простой в выполнении техникой обследования. Принцип работы аппарата основан на способности веществ поглощать световые волны различной длины. Датчик пульсоксиметра любой модели имеет две основные части. Первая (источник света ) генерирует волны заданной длины, а вторая (детектор ) – их воспринимает. Аппарат обрабатывает данные о количестве света, прошедшем через ткани тела (или отраженном от тканей ) и измеряет полученную длину волны.

Количество кислорода в крови измеряется следующим образом. В эритроцитах (красных кровяных клетках ) содержится гемоглобин - вещество, способное присоединять атомы кислорода.
В здоровом организме одна молекула гемоглобина способна присоединить 4 молекулы кислорода. В таком виде он разносится к органам и тканям с артериальной кровью. В венозной крови количество растворенного кислорода меньше, так как часть молекул гемоглобина «занята» переносом углекислого газа от тканей к легким.

При пульсоксиметрии методом выборочного поглощения световых волн устанавливают количество кислорода, присоединенного к гемоглобину в артериальной крови (в форме оксигемоглобина ). Для этого ткани «просвечивают», чтобы волны поглотились капиллярами. Наиболее точные данные, соответственно, будут в тех областях, где кровеносная сеть более густая.

Техника проведения пульсоксиметрии включает следующие этапы:

  • пациента «готовят» к процедуре, объясняя, что и как будет происходить;
  • на палец, мочку уха или другую часть тела (по необходимости ) устанавливают датчик;
  • аппарат включают, и начинается, собственно, процесс измерения, который длится не менее 20 – 30 секунд;
  • аппарат выводит результат измерений на монитор в удобной для врача или пациента форме.
Попутно пульсоксиметры считывают и частоту сердечных сокращений (ЧСС ), регистрируя пульсацию сосудов. Алгоритм проведения процедуры может несколько отличаться в зависимости от типа аппарата, возраста пациента или конкретных показаний, но принцип работы при этом не меняется.

Что такое фетальная пульсоксиметрия?

Фетальной пульсоксиметрией называется диагностический метод, который направлен на оценку состояния кровотока плода до его рождения. Специальный аппарат с особыми датчиками располагается на животе матери. Данные получают косвенные, основанные на насыщении крови матери кислородом и интенсивности обмена веществ на уровне плаценты. Также аппарат регистрирует частоту сердечных сокращений у плода.

Данный метод исследования применяется в неонатологии и акушерстве. Для его проведения требуется специальное оборудование, которое есть далеко не во всех клиниках. Фетальная пульсоксиметрия бывает нужна при некоторых осложнениях беременности , пороках развития и других проблемах.

Ошибки при проведении пульсоксиметрии

Ошибки при проведении процедуры могут привести к появлению нежелательных искажений в результатах анализа. В медицине такие искажения называют артефактами. Как правило, большинство артефактов не оказывают существенного влияния на результаты, и отклонениями можно пренебречь. Кроме того, опытный специалист всегда может сопоставить полученные данные с состоянием пациента и обнаружить несоответствия.

Наиболее часто допускают следующие ошибки при проведении пульсоксиметрии:

  • наличие лака на ногтях;
  • неправильное прикрепление датчика (слабая фиксация, плохой контакт с тканями );
  • некоторые заболевания крови (о которых не знали до начала исследования );
  • движения пациента во время исследования;
  • использование датчиков неподходящей модели (по возрасту, весу и др. ).

Расшифровка и интерпретация результатов пульсоксиметрии

В принципе, пульсоксиметрия не требует каких-либо глубоких медицинских познаний для расшифровки результата. В подавляющем большинстве случаев он просто выводится на экран прибора, и пациент может сам сравнить показания с границами нормы. Интерпретация же результатов – несколько более сложный процесс, которым занимается лечащий врач. Она подразумевает обнаружение причин низкой сатурации или нестабильной частоты сердечных сокращений. Только хороший специалист может, основываясь на результатах пульсоксиметрии, назначить необходимое лечение.

Виды и методы проведения пульсоксиметрии

В настоящее время развитие биомедицинских технологий позволяет использовать пульсоксиметры самых разных моделей. В связи с этим появились и различные техники проведения данной процедуры. Каждая из них имеет свои показания и особенности проведения.

Компьютерная пульсоксиметрия

Компьютерная пульсоксиметрия подразумевает, что обработка данных от прибора происходит через микропроцессор, встроенный в аппарат. Такую конструкцию имеет большинство современных пульсоксиметров. Именно предварительная обработка информации позволяет выводить ее на экран в удобном виде, строить графики, сравнивать показатели с нормой.
Компьютерные пульсоксиметры по сравнению с более простыми моделями имеют следующие преимущества:
  • Возможность сохранения данных. Компьютер в состоянии хранить в памяти информацию об измерениях за определенное время. Это необходимо, например, при суточной пульсоксиметрии. Кроме того, по сохраненным данным компьютер может строить графики.
  • Устранение артефактов. Артефактами при пульсоксиметрии называются искажения, которые могут появляться при неправильном закреплении датчика и ряде других ошибок. Некоторые приборы могут отличать такие искажения и автоматически вносить корректировку в полученные данные.
  • Функция «сигнал тревоги». В компьютере хранятся данные о норме сатурации и частоты сердечных сокращений. Если показатели пациента сильно снижаются, пульсоксиметр уведомит об этом специальным сигналом. Такие модели очень удобны для реанимации или операционных, где лежат пациенты в тяжелом состоянии.
  • Совместимость с другими устройствами. Компьютер позволяет подключать пульсоксиметр к другим медицинским аппаратам, что бывает необходимо при более сложных диагностических тестах.
Относительным минусом компьютерных пульсоксиметров является несколько более высокая стоимость таких приборов. Однако цена все равно остается доступной для подавляющего большинства пациентов, и в настоящее время такие модели используются повсеместно.

Трансмиссионная пульсоксиметрия

Трансмиссионная пульсоксиметрия является наиболее распространенным методом исследования уровня оксигенации крови. Источник излучения и датчик приема располагаются с двух сторон от участка ткани, который может быть просвечен. Таким образом, обрабатывается информация о длине волны света, прошедшего ткани насквозь (отсюда название – трансмиссионная ). Метод является полностью безопасным для пациента и не имеет каких-либо противопоказаний.

Трансмиссионная пульсоксиметрия получила широкое распространение, в первую очередь, из-за относительно низкой стоимости аппарата и простоты проведения исследования. Все модели пульсоксиметров, предназначенных для домашнего использования, основаны на принципе трансмиссионной пульсоксиметрии.

Отраженная пульсоксиметрия

Отраженная пульсоксиметрия является более новым видом данной процедуры. Принципиальным отличием является конструкция датчика. В нем источник света и детектор располагаются с одной стороны, поэтому его форма плоская, а не «прищепка» или браслет. Световые волны в данном случае не просвечивают ткани насквозь, как при трансмиссионной пульсоксиметрии, а отражаются от тканей, богатых кровеносными сосудами. На практике это предоставляет врачам гораздо более широкие возможности. Датчик может быть закреплен не только на пальце или мочке уха, где свет легко проходит сквозь ткани, а практически в любой части тела. Чаще всего его закрепляют в области лба, так как это не ограничивает движения пациента, а область головы богата кровеносными сосудами, и результат будет достоверным.

Удобнее всего прибегать к отраженной пульсоксиметрии в следующих случаях:

  • при длительном наблюдении пациента;
  • в педиатрии и неонатологии (так как детям трудно объяснить, что нельзя резко двигаться );
  • в диагностике болезней некоторых органов (датчик закрепляют в области органа и получают косвенные данные о кровообращении );
  • в фитнес-центрах и при подготовке профессиональных спортсменов.
В принципе, у отраженной пульсоксиметрии нет существенных недостатков относительно трансмиссионной методики. Она может рассматриваться как полноправная ее замена, более удобная для пациента.

У отраженной пульсоксиметрии есть несколько минусов:

  • возможность аллергии на клеящее вещество (иногда датчик приклеивают к коже на время процедуры );
  • плохой контакт с кожей, если датчик был плохо закреплен;
  • появление существенных искажений в случае сильного отека тканей;
  • датчик невозможно закрепить на кожу при некоторых дерматологических заболеваниях.
Также нужно учитывать, что датчик может выдавать ошибки, если он закреплен непосредственно над крупной артерией (например, на запястье, где обычно проверяют пульсацию лучевой артерии ). Погрешности возможны, так как датчик постоянно колеблется в такт пульсу. Лучше закреплять его в нескольких сантиметрах от такой зоны.

Ночная пульсоксиметрия (респираторный ночной мониторинг )

Ночная пульсоксиметрия в подавляющем большинстве случаев необходима для диагностики синдрома ночного апноэ. Исследование предполагает установку датчиков на время сна, чтобы диагностировать нарушения дыхания, которые сам пациент не чувствует. Все пульсоксиметры для ночных измерений оснащены специальным встроенным компьютером, который не только считывает данные, но и сохраняет их. Таким образом, у врачей утром есть возможность увидеть, как функционировал организм пациента во время сна.

Ночная пульсоксиметрия практически всегда проводится в специализированных отделениях врачами-сомнологами. Они не только следят за корректным проведением процедуры (правильное положение датчика на пальце ), но и оказывают необходимую помощь, если возникает угроза для здоровья больного.

Суточная пульсоксиметрия

Суточная пульсоксиметрия является относительно редким, но весьма информативным диагностическим методом. Для ее проведения используют специальные портативные пульсоксиметры, которые не мешают пациенту в его повседневной деятельности. Аппарат считывает данные о насыщении крови кислородом в течение суток (иногда и более ) и может предоставить их в виде графика. Сопоставляя эти данные с деятельностью пациента в определенное время, врачи могут сделать выводы о различных нарушениях и заболеваниях.

Суточная пульсоксиметрия может выявить нарушения в работе следующих органов и систем:

  • дыхательная система (легкие, трахея и др. );
  • сердечно-сосудистая система (сердце, сосуды малого и большого круга кровообращения );
  • система кроветворения (низкий уровень эритроцитов, их патологические изменения );
  • некоторые заболевания обмена веществ.
Обычно в результате суточной пульсоксиметрии удается выявить факторы в повседневной жизни пациента, которые тем или иным образом провоцируют патологические изменения в организме. Например, приступ бронхиальной астмы и его последствия будут регистрироваться при пульсоксиметрии во время контакта с аллергеном .

Неинвазивная пульсоксиметрия

Неинвазивная пульсоксиметрия объединяет большинство техник и методов проведения данной процедуры и является наиболее распространенным способом определения уровня кислорода в крови. Она не требует непосредственного контакта датчиков с кровью пациента и не подразумевает забор крови для проведения лабораторного анализа. Данные получают с помощью просвечивания тканей светом в инфракрасном диапазоне.

Неинвазивная пульсоксиметрия имеет следующие несомненные преимущества перед инвазивной:

  • проведение процедуры не требует специальной подготовки и даже медицинского образования;
  • быстро дает результат в режиме реального времени (происходит мониторинг );
  • процедура является дешевой и доступной, так как не требует дорогостоящего оборудования;
  • наблюдать пациента можно в домашних условиях или при транспортировке;
  • процедура может непрерывно длиться несколько часов или даже дней;
  • отсутствует риск осложнений или инфицирования пациента, так как нет прямого контакта с кровью;
  • процедура не требует специальной подготовки пациента.

Инвазивная пульсоксиметрия

Данный метод исследования является достаточно сложным и применяется только в специализированных отделениях больниц. Суть метода заключается во введении специального датчика непосредственно в кровеносный сосуд. В принципе, это небольшая хирургическая операция, так как происходит рассечение относительно крупной артерии. Установленный датчик считывает данные о насыщении крови кислородом, входя в непосредственный контакт с кровью пациента. Правильно выполненная процедура дает данные высокой точности, которые выводятся на экран монитора.

Место установки датчика (сосуд ) может быть различным. Ограничивающим фактором является диаметр артерии, так как даже с введенным датчиком кровь должна по этому сосуду свободно циркулировать. Также место введения выбирают в зависимости от конкретной патологии или проблемы (например, в области, где по тем или иным причинам насыщение крови кислородом снижено ). В некоторых случаях датчики вводятся и внутрь крупных вен.

Чаще всего датчики для инвазивной пульсоксиметрии располагают в следующих сосудах:

  • лучевая артерия;
  • бедренная артерия;
  • вены рук и ног достаточно большого диаметра.
Поскольку выполнение инвазивной пульсоксиметрии – достаточно сложная процедура, катетер, с помощью которого вводят датчик, считывает также данные об артериальном давлении, уровне глюкозы в крови и ряд других показателей.

В настоящее время инвазивная пульсоксиметрия применяется исключительно в условиях реанимации или хирургического отделения (по необходимости ). Иногда к этому методу прибегают в научно-исследовательских институтах для получения более точных данных. В условиях обычных больничных отделений незначительные погрешности неинвазивной пульсоксиметрии не играют существенной роли, и применение инвазивного метода попросту неоправданно.

Показания и противопоказания к пульсоксиметрии

Единых стандартов применения пульсоксиметрии как отдельного метода диагностики, в принципе, нет. Ее назначают пациентам на усмотрение лечащего врача. Обычно это касается пациентов в тяжелом состоянии (находящихся в реанимации ) или больных, у которых могут возникнуть проблемы с насыщением крови кислородом. Таким образом, спектр патологий, при которых врач может воспользоваться пульсоксиметрией, достаточно широк.

При каких заболеваниях нужна пульсоксиметрия?

В принципе, в отношении пульсоксиметрии нет понятия «показания к проведению процедуры».
Ее применяют для наблюдения за состоянием пациента при самых разных заболеваниях и патологических состояниях. Иногда пульсоксиметрию применяют и для исследования работы органов у здоровых людей (например, у спортсменов ).

Тем не менее, есть определенный круг заболеваний, при которых пульсоксиметрия является очень важным диагностическим методом. Речь идет о патологиях сердечно-сосудистой и дыхательной системы. Дело в том, что именно эти системы в основном отвечают за насыщение организма кислородом. Соответственно, проблемы с сердцем или легкими чаще и быстрее других болезней ведут к понижению концентрации кислорода в крови.

Наиболее часто пульсоксиметрию проводят при следующих патологиях:

  • дыхательная недостаточность (на фоне различных заболеваний );
  • бронхиальная астма;
  • синдром ночного апноэ;
  • отравление угарным газом.
При оценке тяжести вышеперечисленных заболеваний важным критерием является насыщение крови кислородом (сатурация ). Ее-то и определяют с помощью пульсоксиметрии.

При дыхательной (респираторной ) недостаточности

Дыхательная недостаточность – это патологическое состояние, которое может возникать при различных заболеваниях легких и (реже ) других органов. Степень насыщения крови кислородом при этом играет важнейшую роль в выборе правильного лечения. Пульсоксиметрия, предоставляющая эти данные, позволяется правильно классифицировать состояние пациента.

В зависимости от степени насыщения крови кислородом, различают следующие виды дыхательной недостаточности:

  • Компенсированная. При компенсированной дыхательной недостаточности показатели пульсоксиметрии будут в пределах нормы. Другие органы справляются с небольшими проблемами с дыханием, и уровень кислорода в крови понизится незначительно.
  • Декомпенсированная. При декомпенсированной дыхательной недостаточности пульсоксиметрия обнаружит значительное понижение уровня кислорода в крови. Это является показанием для более интенсивного режима лечения (искусственная вентиляция легких и др. ).

При ХОБЛ (хроническая обструктивная болезнь легких )

Хроническая обструктивная болезнь легких может быть последствием перенесенных болезней дыхательной системы или самостоятельным заболеванием. При данной проблеме происходит частичное перекрытие просвета мелких бронхов и бронхиол, из-за чего воздух с трудом попадает в легкие. В результате газообмен снижается, и насыщение крови кислородом падает. Пульсоксиметрия таким больным проводится при необходимости (при появлении симптомов дыхательной недостаточности ) для коррекции режима лечения. Сатурация может быть снижена в течение длительного времени, так как при ХОБЛ изменения в структуре легких необратимы и могут прогрессировать.

При пневмонии (воспалении легких )

При воспалении легких в легочных мешочках и ходах начинается воспалительный процесс, который сопровождается накоплением жидкости. Это затрудняет обмен газа между кровью и воздухом, и часть легкого как бы «выключается» из процесса дыхания. При этом, как правило, снижается и сатурация крови кислородом. При тяжелой пневмонии в стационаре больного подключают к пульсоксиметру, чтобы иметь объективные данные о его состоянии и выбрать в случае необходимости правильный метод лечения.

При бронхиальной астме

При бронхиальной астме у больных нарушается дыхание из-за спонтанного закрытия просвета мелких бронхов и бронхиол. Приступ может быть спровоцирован различными факторами. Перед началом лечения врачам важно установить, насколько серьезно страдает процесс дыхания. Объективным показателем при этом будет пульсоксиметрия. При тяжелых приступах насыщение крови кислородом сильно снизится. Для объективной оценки тяжести болезни пульсоксиметрию нужно делать именно во время приступа, так как в остальное время дыхание пациента нормальное, и отклонений от нормы не будет. Иногда в условиях стационара приступ стараются спровоцировать специально во время процедуры.

При отравлении угарным газом

В случае отравления угарным газом (у пациентов после пожаров ) пульсоксиметрия является важным диагностическим методом. Ее показатели в отличие от многих других заболеваний будут не пониженными, а повышенными, так как датчик будет регистрировать не только оксигемоглобин (переносящий кислород в норме ), но и карбоксигемоглобин – патологическое соединение, которое затрудняет работу организма. В отделениях реанимации данные пульсоксиметрии сопоставят с данными анализа крови на различные газы. Это даст наиболее объективный результат и позволит начать адекватное лечение.

При ночном апноэ

Синдром апноэ во сне является достаточно распространенной проблемой, которую порой тяжело диагностировать. У пациентов по различным причинам затрудняется дыхание во время ночного сна (эпизодами от 10 – 20 секунд до 1 – 2 минут ). Ночная пульсоксиметрия (мониторинг ) является в таких случаях наиболее эффективным методом диагностики. Исследование проводят врачи-сомнологи в специализированных отделениях. Датчик, закрепленный на пальце или мочке уха пациента, считывает информацию о частоте пульса и сатурации крови кислородом. Во время приступов апноэ эти показатели меняются. Исследование позволяет не только обнаружить проблему, но и оценить степень тяжести заболевания.

Противопоказания к пульсоксиметрии

В принципе, пульсоксиметрия не имеет каких-либо противопоказаний. Ее можно проводить всем пациентам, и при правильном использовании аппарат отразит их основные жизненные показатели на данный момент времени. В случае травмы или ожогов рук врач просто выберет другое место для закрепления датчика. Если же речь идет о новорожденных, существуют специальные приборы, предназначенные для маленьких детей.

Единственным существенным противопоказанием является психомоторное возбуждение, когда из-за нервных или психических расстройств пациент не осознает происходящего. В этом случае закрепить датчик просто не представляется возможным, потому что пациент сам его срывает. Однако применение транквилизаторов помогает успокоить больного и провести процедуру. Аналогичная ситуация может возникнуть при судорогах , когда из-за сильной дрожи в конечностях датчик будет смещаться, и получить достоверные данные труднее.

Какие анализы и обследования делают с пульсоксиметрией?

Пульсоксиметрия отражает насыщение крови кислородом и частоту сердечных сокращений. В принципе, это основные показатели, которые позволяют оценить состояние пациента. Однако для более точной диагностики некоторых заболеваний часто требуются и другие исследования. Сопоставление их результатов с результатами пульсоксиметрии позволяют получить больше информации и выбрать более правильную тактику лечения.
Во многих отделениях пульсоксиметрию дополняют следующими методами исследования:
  • капнометрия;
Эти диагностические методы отражают параметры, непосредственно связанные с насыщением крови кислородом. Таким образом, врач сможет не только констатировать низкую сатурацию, но и предположить механизм ее возникновения, определить причину нарушений.

Спирометрия

Спирометрия является одним из наиболее информативных методов исследования дыхания. В ходе достаточно простой процедуры врачи измеряют объем легких, их жизненную емкость, скорость вдоха и выдоха. Все эти показатели сопоставляются с данными пульсоксиметрии для более точной постановки диагноза. Особенно важна спирометрия для пациентов, у которых насыщение крови кислородом страдает из-за хронических заболеваний легких (хроническая дыхательная недостаточность, ХОБЛ и др. ).

Капнометрия

Данный метод исследования направлен на определение концентрации углекислого газа в воздухе, выдыхаемом пациентом. Это позволяет сделать косвенные выводы о содержании углекислого газа в крови и обмене веществ в организме. Метод применяется параллельно с пульсоксиметрией в реаниматологии и анестезиологии. Сопоставление данных пульсоксиметрии и капнометрии позволяет получить более полную информацию о работе легких. Это имеет большое значение во время операции, когда пациент под наркозом. Также эти данные важны для выбора режима аппарата при искусственной вентиляции легких.

Пикфлоуметрия

Пикфлоуметрия является важным диагностическим методом, позволяющим определить максимальную скорость выдоха. С помощью этого теста врачи оценивают функциональное состояние легких (насколько хорошо воздух проходит по путям ). Пикфлоуметрию могут назначить пациентам, у которых пульсоксиметрия показала пониженную концентрацию кислорода в крови. Если результаты обоих тестов ниже нормы, значит, организм страдает от недостатка кислорода из-за нарушений на уровне легких. На основании этих результатов лечащий врач может назначить оптимальное лечение.

Где сделать пульсоксиметрию?

Пульсоксиметрию можно сделать практически в любом медицинском учреждении (как частном, так и государственном ). Стоимость данного исследования варьирует в зависимости от длительности процедуры. Цена возрастает, если за показаниями нужно следить всю ночь или даже несколько часов. Стоимость же разового измерения уровня кислорода в крови обычно не превышает 100 – 200 рублей.

Записаться на пульсоксиметрию

Чтобы записаться на прием к врачу или диагностику, Вам достаточно позвонить по единому номеру телефона
+7 495 488-20-52 в Москве

+7 812 416-38-96 в Санкт-Петербурге

Оператор Вас выслушает и перенаправит звонок в нужную клинику, либо примет заказ на запись к необходимому Вам специалисту.

Аппараты для проведения пульсоксиметрии всегда имеются в следующих отделениях:

В Санкт-Петербурге

Перед применением необходимо проконсультироваться со специалистом.

Небольшое колебание уровня насыщения крови кислородом может возникнуть у каждого человека. Для более точного анализа изменений этого показателя правильным будет провести несколько измерений. Далее в статье выясним, почему возникают колебания, как они фиксируются и для чего необходимо их контролировать.

Снижение уровня О 2 в крови: причины

Насыщение крови кислородом происходит в легких. Затем О 2 разносится к органам с участием гемоглобина. Это соединение является специальным белком-переносчиком. Он содержится в эритроцитах - красных кровяных тельцах. По уровню кислородного насыщения можно определить количество гемоглобина, которое присутствует в организме в связанном с кислородом состоянии. В идеале уровень насыщения должен находиться в промежутке 96-99%. При таком показателе практически весь гемоглобин связан с кислородом. Причиной его понижения могут быть тяжелые формы заболеваний дыхательной и сердечно-сосудистой системы. При анемии существенно снижается. В случае обострения хронических сердечных и легочных заболеваний также наблюдается уменьшение кислорода в крови, поэтому рекомендуется сразу обратиться к врачу.

Простуда, грипп, ОРВИ, пневмония, хронический бронхит влияют на этот показатель и сообщают о тяжелой форме болезни. В ходе проведения обследования необходимо брать во внимание некоторые посторонние факторы, влияющие на снижение кислородного насыщения в крови и изменяющие показатели. Таковыми являются движение рук или дрожь пальцев, маникюр с наличием лака темных тонов, прямое попадание света. Среди факторов следует отметить также низкую температуру помещения и близко расположенные предметы с электромагнитным излучением, в том числе и мобильный телефон. Все это приводит к погрешностям в измерениях при диагностировании.

Сатурация - что это?

Под этим термином понимают состояние насыщенности жидкостей газами. Сатурация в медицине обозначает, какой процент кислорода содержится в крови. Этот показатель является одним из важнейших и обеспечивает нормальную жизнедеятельность организма. Кровь разносит кислород, необходимый для правильного функционирования, ко всем органам. Как определить, какая в крови сатурация? Что это даст?

Пульсоксиметр

Сатурация крови кислородом определяется методом, который называется пульсоксиметрия. Прибор, который используется при этом, носит название пульсоксиметр. Впервые эта методика была применена в медицинских учреждениях в палатах Пульсоксиметр стал общедоступным средством для диагностирования здоровья человека. Его стали применять даже в домашних условиях. Прибор отличается простотой в использовании, поэтому при помощи него измеряются некоторые важные для жизни показатели, в том числе пульс и сатурация. Что это за прибор и как он функционирует?

Принцип работы оборудования

Циркуляция значительного количества кислорода в организме происходит в связанном с гемоглобином состоянии. Остальная его часть свободно разносится кровью, которая способна поглощать свет и любые другие вещества. В чем же состоит принцип работы пульсоксиметра? Для проведения анализа необходимо сделать забор крови. Как известно, эту неприятную процедуру многие плохо переносят. Особенно это касается детей. Им довольно трудно объяснить, зачем определяется сатурация, что это и какая в этом необходимость. Но, к счастью, пульсоксометрия избавляет от подобных неприятностей. Исследование проводится совершенно безболезненно, быстро и абсолютно "бескровно". Внешний датчик, который подключен к прибору, прислоняется к уху, кончику пальца или другим периферическим органам. Результат обрабатывается процессором и на дисплее видно, сатурация кислорода в норме или нет.

Особенности

Однако имеется пара нюансов. В организме человека различают два восстановленный и оксигемоглобин. Последний насыщает кислородом ткани. Задача пульсоксиметра состоит в том, чтобы отличить эти разновидности кислорода. В периферическом датчике присутствуют два светодиода. Из одного исходят красные световые лучи, имеющие 660 Нм, из другого - инфракрасные, у которых длина волны составляет 910 Нм и выше. Именно из-за поглощения этих колебаний и появляется возможность определения уровня оксигемоглобина. Периферический датчик снабжен фотоприемником, на который поступают световые лучи. Они проходят через ткани и направляют сигнал в процессуальный блок. Далее результат измерения воспроизводится на дисплее, и здесь можно определить, сатурация кислорода в норме или есть отклонения. Второй нюанс состоит в поглощении света только из Это происходит благодаря ее способности изменять свою плотность, осуществляя это одновременно с изменениями кровяного давления. В итоге артериальный значительно больше колеблется. Пульсоксиметр различает свет, прошедший именно через артерию.

Определение насыщения (сатурации) венозной крови кислородом (SvO 2) является одним из современных направлений инвазивного мониторинга. Этот параметр сравнивают со «сторожевым псом» кислородного баланса и иногда называют «пятым витальным показателем», позволяющим косвенно судить о глобальном балансе между доставкой и потреблением кислорода. Следует помнить, что периодическое или непрерывное измерение СВ и SaO 2 (SpO 2 ) дает возможность отслеживать доставку O 2 , но в то же время ничего не говорит о потребности в нем в рамках иерархической обратной связи, описанной Pflüger E.F., – «потребность – потребление – доставка».
Потребление кислорода может быть рассчитано согласно принципу Фика:

VO 2 = СВ × (CaO 2 – CvO 2)

Путем математического преобразования этого уравнения можно определить, что при данном значении VO 2 показатель SvO 2 пропорционален соотношению между доставкой и потребностью в кислороде:

SvO 2 ~ SaO 2 – ~ SaO 2 – (VO 2 / СВ),

где SvO 2 – насыщение (сатурация) венозной крови кислородом (%); SaO 2 – насыщение артериальной крови кислородом (%); Hb – концентрация гемоглобина (г/л); VO 2 – потребление кислорода тканями (мл/мин); СВ – сердечный выброс (л/мин).

Таким образом, насыщение гемоглобина венозной крови кислородом будет пропорционально усредненному значению экстракции O 2 (VO 2 /DO 2 , O 2 ER) и в случае снижения может быть следствием критического дисбаланса между доставкой кислорода и потребностью в нем. Исследования показали, что, при сравнении со значениями АДСРЕД и ЧСС, показатель SvO 2 демонстрирует наиболее четкую связь с O 2 ER.
Действительно, перфузионное АД, хотя и является наиболее часто измеряемым гемодинамическим показателем, обладает при этом наименьшей значимостью в оценке адекватности транспорта кислорода и тканевой оксигенации. Несмотря на нормализацию АД и СВ, неадекватное распределение кровотока или блокада потребления O 2 могут сопровождаться явлениями тканевой гипоксии и прогрессированием ПОН.
Классической точкой измерения венозной сатурации (SvO 2) считается легочнаяартерия, содержащая смешанную венозную кровь из бассейна нижней и верхней полой вен, а также коронарного синуса. Соответственно, исследование этого параметра требует выполнения катетеризации легочной артерии. Нормальные значения
показателя могут варьировать в диапазоне 65–75%. При критических состояниях интерпретация динамических изменений SvO 2 имеет большее значение, нежели одномоментная оценка его абсолютного значения (таблица 1).

Таблица 1. Сатурация смешанной венозной крови: диапазоны значений

Показатель SvO 2 представляет нам усредненное значение SO 2 крови, оттекающей от различных органов и тканей. Однако на уровне отдельно взятого органа или сектора организма насыщение венозной крови кислородом может значимо варьировать, что определяется характером и интенсивностью работы органа (таблица 2).
Например, потребление O 2 мышцами может существенно возрастать при физической нагрузке за счет роста его экстракции, что ведет к снижению SO 2 оттекающей крови.
При физической нагрузке значения CvO 2 и SvO 2 снижаются, несмотря на повышение DO 2 . Показатель SvO 2 для почек высок и составляет 90–92%. Относительно большой объем почечного кровотока не связан с собственными потребностями органа и отражает его экскреторную функцию.

Таблица 2. Относительный объем перфузии, потребление кислорода и насыще-
ние кислородом венозной крови, оттекающей от различных органова

Необходимо учитывать, что при критических состояниях, сопровождающихся повреждением легких, прослеживается четкая корреляция между изменениями SvO 2 (ΔSvO 2) и SaO 2 (ΔSaO 2). Помимо состояния внешнего газообмена, существует большое число факторов, определяющих результирующее значение SvO 2 . Так, снижение SvO 2 может быть вызвано не только тканевой гипоперфузией (снижение СВ), но и артериальной десатурацией, а также снижением концентрации гемоглобина, в том числе в результате гемодилюции на фоне проводимой инфузионной терапии (таблица 3).
По данным Ho K.M. et al .21 (2008), оксигенация артериальной крови (PaO 2) может оказывать даже большее влияние на значение венозной сатурации, чем величина сердечного выброса. Таким образом, оценка и интерпретация SvO 2 должны быть основаны на комплексном подходе, учитывающем такие важные детерминанты, как SaO 2 , ЧСС, АД, ЦВД, СВ, темп диуреза, а также концентрации гемоглобина и лактата в венозной крови. Наличие большого числа факторов, определяющих результирующее значение SvO 2 , и их быстрое изменение при критических состояниях создают предпосылки для непрерывного мониторинга венозной сатурации в интенсивной терапии и анестезиологии.


Таблица 3. Причины изменений сатурации смешанной и центральной венозной крови
ScvO 2 – сатурация центральной венозной крови; SvO 2 – сатурация смешанной венозной крови; СВ – сердеч-
ный выброс; Hb – концентрация гемоглобина; SaO 2 – насыщение артериальной крови кислородом; ОПЛ –
острое повреждение легких

Несмотря на эти ограничения, оценка SvO 2 остается удобным подходом, направленным на раннее выявление шока, в частности его «скрытых» форм («cryptic shock») , не проявляющихся ростом плазменной концентрации лактата и признаками развернутой полиорганной недостаточности. Диагностическая, прогностическая и тера-
певтическая значимость снижения SvO 2 была продемонстрирована у различных групп реанимационных больных.28 Вместе с тем ряд критических состояний могут сопровождаться гетерогенным распределением перфузии, шунтированием крови на прекапиллярном уровне, диспропорциональным угнетением циркуляции и митохондриальной активности (блокада экстракции кислорода). На фоне подобных нарушений, в частности при септическом шоке, может наблюдаться повышение SvO 2 , что связано с подавлением захвата кислорода клетками на фоне дисфункции митохондрий и расстройств микроциркуляции. Неслучайно септический шок иногда характеризуется как «микроциркуляторный и митохондриальный дистресс-синдром».
«Супранормальные» значения SvO 2 , наблюдающиеся в ряде случаев на фоне ПОН, не должны рассматриваться как признак избыточной доставки кислорода или «шикарная перфузия». Напротив, рост SvO 2 может указывать на подавление митохондрий и «обкрадывание» тех областей, где потребность в кислороде особенно высока, со всеми вытекающими отсюда последствиями.7 Схожая картина наблюдается при блокаде митохондриальной дыхательной цепи цианидами. Нередко повышение SvO 2 может быть следствием гипердинамической реакции кровообращения на фоне сепсиса, вазодилатации и инотропной поддержки.
По данным Varpula M. et al .51 (2005), исход у пациентов с септическим шоком помимо прочих переменных (АДСРЕД, концентрация лактата и ЦВД) связан с показателем SvO 2 , при этом значение SvO 2 > 70% ассоциировалось с улучшением исхода. Тем не менее в исследовании Dahn M.S. et al . указывается, что у пациентов с сепсисом час-
то не удается зарегистрировать значимого снижения SvO 2 , что может быть следствием регионарных нарушений потребления кислорода. В связи с этим некоторые авторы не рекомендуют использовать SvO 2 в качестве маркера тканевой гипоперфузии.
В рандомизированном исследовании Gattinoni L. et al. повышение SvO 2 > 70% в течение 5 суток у пациентов с септическим шоком не сопровождалось значимым снижением летальности. Однако шесть лет спустя Rivers E.P. et al. 37 (2001) продемонстрировали значимое улучшение исхода при использовании протокола целенаправленной терапии, который включал функциональный аналог SvO 2 – сатурацию центральной венозной крови (ScvO 2).

Измерение сатурации центральной венозной крови (ScvO 2 )
Для дискретного измерения сатурации «центральной» венозной крови (ScvO 2) необходим забор крови из верхней полой вены с последующим исследованием газового состава образца. Непрерывное измерение ScvO 2 требует установки фиброоптического датчика и основано на принципе отражательной фотометрии.
Основное преимущество измерения SсvO 2 по сравнению с SvO 2 заключается в том, что в этом случае не требуется катетеризация легочной артерии. Действительно, ранняя установка катетера Сван–Ганца для проведения начальной терапии шока и ПОН может быть технически затруднена и нецелесообразна, в то время как цен-
тральный венозный катетер устанавливается у большинства пациентов, поступающих в ОИТ. Известно, что помимо диагностических целей (измерение ЦВД и ScvO 2), катетеризация центрального венозного русла необходима для проведения инфузионной и заместительной почечной терапии, парентерального питания, а также введения препаратов вазопрессорного и инотропного ряда. Примечательно, что, по мнению Bauer P. и Reinhart K., именно необходимость измерения ScvO 2 может рассматриваться как решающее показание к катетеризации центрального венозного русла при критических состояниях.
Необходимо отметить, что в 10–30% случаев кончик центрального венозного катетера находится в правом предсердии и, в частности, в его нижней части. В этой ситуации значение сатурации венозной крови будет близко к таковому для смешанной венозной крови.
Очевидно, что на сегодняшний день мониторинг ScvO 2 превосходит по своей популярности измерение SvO 2 . Кроме того, несмотря на возможность периодического измерения SvO 2 /ScvO 2 путем лабораторного анализа газового состава крови, определенный интерес представляет непрерывный мониторинг показателя методом фотометрии. Теоретическим обоснованием целесообразности непрерывного измерения ScvO 2 может быть тот факт, что при нестабильном состоянии больного баланс VO 2 /DO 2 зависит от ряда условий (таблица 3) и подвержен быстрым изменениям, требующим незамедлительной коррекции. Обращает на себя внимание тот факт, что эффективность мониторинга ScvO 2 доказана в известном исследовании Rivers E.P. et al. именно с использованием метода непрерывной венозной оксиметрии.
Согласно литературным данным, до 50% пациентов с шоком имеют сохраняющуюся тканевую гипоксию (повышение уровня лактата и снижение ScvO 2) даже на фоне нормализации витальных показателей и ЦВД. Более того, в связи со стабильными значениями витальных параметров (ЧСС, АДСРЕД, темп диуреза и др.) пациенты, поступающие на приемный покой, часто не обследуются в полном объеме на предмет расстройств тканевого кровотока и не получают адекватной терапии на протяжении «золотых часов» – периода, когда органная дисфункция является обратимой. Это подтверждает необходимость адекватной терапии реанимационных больных уже с первых минут их поступления в стационар. Выбор исходно ошибочной тактики ранней терапии, в узких пределах «золотых» 6 часов после поступления в стационар, крайне неблагоприятно влияет на исход, даже при последующей коррекции лечебных мероприятий. Так, в исследовании пациентов с тяжелым сепсисом было показано, что раннее (в течение первых 6 часов после поступления) применение протокола целенаправленной терапии (EGDT), ориентированного в том числе на достижение целевого значения ScvO 2 , привело к следующим результатам:
1) снижение летальности на 15% (с 46,5% до 30,5%; p = 0,009);
2) снижение длительности пребывания в ОИТ на 3,8 суток;
3) снижение расходов на терапию на 12 000 долларов США.
Предложенный Rivers E.P. et al . протокол EGDT (Early Goal - Directed Therapy –ранняя целенаправленная терапия) (рисунок 9.4) устанавливает целевые критерии, позволяющие на раннем этапе выявить пациентов высокого риска, и определяет тактику ранней инфузионной и/или трансфузионной, и/или инотропной терапии
на основании следующих целевых показателей:
– ЦВД = 8–12 мм рт. ст.;
– АДСРЕД > 65 мм рт. ст.;
– темп диуреза > 0,5 мл/кг/час;
ScvO 2 > 70% (непрерывная оксиметрия).

Рисунок 1. Протокол целена-
правленной терапии Rivers E.P.
et al. (2001)
ЦВД – центральное венозное дав-
ление; АДСРЕД – среднее артериаль-
ное давление; ScvO 2 – насыщение
центральной венозной крови ки-
слородом; ИВЛ – искусственная
вентиляция легких

Рекомендации Surviving Sepsis Campaign 2008 включают нормализацию показателя ScvO 2 (> 70%), что подразумевает мониторинг этого показателя на начальной стадии лечебных мероприятий у пациентов с тяжелым сепсисом и септическим шоком.
Однако в некоторых ситуациях, в том числе при септическом шоке, может наблюдаться повышение ScvO 2 , что обусловлено «уклонением» кровотока от тканей в результате шунтирования, уменьшением экстракции O 2 и гипердинамией, а также прочими факторами и их сочетанием. В этом контексте представляют интерес данные
Bauer P. et al . (2008), которые демонстрируют, что как снижение (< 65%), так и повышение показателя ScvO 2 (> 75%) при плановых кардиоторакальных вмешательствах сопровождаются значимым ростом частоты осложнений и летальности параллельно с повышением концентрации лактата > 4 ммоль/л. Эти результаты позволили авторам сделать заключение, что для показателя ScvO 2 «коридор безопасности» пролегает
в интервале между 65% и 75% (70 ± 5%).
Вместе с тем снижение ScvO 2 также не обязательно указывает на критическую тканевую гипоксию. Метаболический стресс, наблюдающийся при физической нагрузке или компенсаторном повышении O 2 ER на фоне хронической сердечной недостаточности, будет сопровождаться компенсаторным снижением SvO 2 /ScvO 2 , что, впрочем, является относительно доброкачественным признаком и не сопровождается развитием ПОН. Следует подчеркнуть, что чувствительность показателя ScvO 2 , скорее всего, недостаточно высока для оценки потребления O 2 отдельными органами при их изолированном поражении. Согласно данным Weinrich M. et al . (2008), при обширных абдоминальных вмешательствах показатель ScvO 2 не коррелирует с насыщением кислородом венозной крови, оттекающей непосредственно от органа/области вмешательства.
Тем не менее, результаты ряда рандомизированных исследований показывают, что применение протоколов целенаправленной терапии, основанных на целевых значениях ScvO 2 , при обширных хирургических вмешательствах может сопровождаться снижением частоты послеоперационных осложнений и летальности. По нашим данным, сочетанный мониторинг ScvO 2 и внутригрудного объема крови (ВГОК) при аортокоронарном шунтировании на работающем сердце ведет к увеличению интраоперационного гидробаланса, снижению частоты использования вазопрессоров и уменьшению длительности пребывания пациентов в стационаре. У кар-
диохирургических пациентов могут наблюдаться разнонаправленные изменения ScvO 2 и SvO 2: Sander M. et al . (2007) утверждают, что одновременный мониторингобоих показателей может повысить частоту выявления глобальной и локальной гипоперфузии. Мониторинг венозной сатурации может также оказаться полезным у
пациентов с травмой, при остром инфаркте миокарда и кардиогенном шоке, облегчая раннюю диагностику критического дисбаланса транспорта кислорода при этих состояниях. Кроме того, наряду с такими индикаторами, как концентрация гемоглобина, гематокрит и избыток оснований (BE), показатель ScvO 2 в случае адекватной артериальной оксигенации и нормализации СВ может рассматриваться как удобный маркер, указывающий на необходимость гемотрансфузии.

Различия ScvO 2 и SvO 2
Следует признать, что прикладные клинические исследования сатурации центральной венозной крови начались до введения в широкую клиническую практику катетера Сван–Ганца, а следовательно, и возможности измерения SvO 2 . Вопрос о различиях между абсолютными значениями ScvO 2 и SvO 2 носит, главным образом,
академический интерес. В отличие от смешанной венозной крови, газовый состав центральной венозной крови отражает экстракцию O 2 головным мозгом и верхними конечностями/плечевым поясом. В клинических условиях ScvO 2 расценивается как «функциональный аналог» (или «суррогат») показателя сатурации смешанной венозной крови. Сатурация центральной венозной крови менее точно отражает глобальное среднее значение O 2 ER, но является доступной и удобной альтернативой SvO 2 .
У здорового человека, находящегося в состоянии покоя, ScvO 2 обычно на 2–4% ниже SvO 2 , что связано с более высокой экстракцией O 2 в органах верхней половины тела, в том числе в головном мозге, который при весе, составляющем всего 2% от массы тела, может получать до 20–22% от объема сердечного выброса. Несмотря на
эти различия, глобальные изменения O 2 ER сопровождаются однонаправленными и близкими по амплитуде сдвигами значений ScvO 2 и SvO 2 .
При развитии шока картина диаметрально меняется: ScvO 2 всегда превышает SvO 2 , при этом различия достигают 5–18%. По данным Reinhart K. et al. , при септическом шоке ScvO 2 превышает SvO 2 на 8%. Кардиогенный и гиповолемический шок ведут к подавлению спланхнической перфузии, что сопровождается ростом O 2 ER с
неизбежным снижением SvO 2 . Таким образом, различия между ScvO 2 и SvO 2 могут варьировать в зависимости от ряда факторов (таблица 4). Так, во время анестезии показатель ScvO 2 превышает SvO 2 на 6%. Схожие изменения наблюдаются при седации и внутричерепной гипертензии.


Таблица 4. Различия сатурации центральной и смешанной венозной крови

Выводы клинических и экспериментальных исследований в отношении использования ScvO 2 в качестве альтернативы SvO 2 варьируют. Ряд исследователей указывают на соответствие изменений SvO 2 и ScvO 2 при различных критических состояниях. Некоторые авторы полагают, что значения ScvO 2 не показывают тесной
корреляции с SvO 2 , при этом мониторинг показателя не позволяет с приемлемой точностью оценить глобальный баланс VO 2 /DO 2 . Особенно остро несоответствие значений ScvO 2 и SvO 2 проявляется при септическом шоке, который сопровождается явлениями митохондриального дистресса. Выраженность шунтирования и
тяжесть митохондриальной дисфункции в бассейне верхней и нижней полых вен могут различаться; в подобной ситуации ScvO 2 не может служить адекватным заменителем SvO 2 .50 Недавние исследования показали, что на момент поступления в ОИТ снижение ScvO 2 наблюдается лишь у небольшой части пациентов с тяжелым сепси-
сом. В связи с этим некоторые эксперты считают включение ScvO 2 в стандартизованные рекомендации по ведению этой категории больных преждевременным.
Тем не менее резкое снижение ScvO 2 практически всегда сопряжено со снижением SvO 2 . Таким образом, ScvO 2 остается важным клиническим параметром и может рассматриваться как надежный показатель дисбаланса между доставкой и потреблением кислорода.

Рисунок 2. Параллельные из-
менения сатурации смешанной
и центральной венозной крови:
1 – нормоксия; 2 – кровопотеря; 3
инфузионная терапия (HAES); 4
гипоксия; 5 – нормоксия; 6 – гипе-
роксия; 7 – кровопотеря.
Из : Reinhart K., Bloos F. Central Venous
Oxygen Saturation (ScvO 2).
Yearbook of Intensive Care Medicine
2002: Ed.: Vincent J.-L.:241–250

ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МОНИТОРИНГА ВЕНОЗНОЙ САТУРАЦИИ

Показатели ScvO 2 и SvO 2 могут измеряться дискретно, путем анализа газового состава образцов венозной крови, забранных, соответственно, из центрального венозного катетера или дистального просвета катетера Сван–Ганца. Однако по ряду причин, указанных выше, непрерывное измерение ScvO 2 /SvO 2 может иметь ряд преимуществ, в частности, на фоне быстрых и трудно прогнозируемых изменений тканевого кровотока и прочих детерминант доставки кислорода. В настоящее время существует несколько систем для непрерывного измерения ScvO 2 /SvO 2 , действующих по принципу венозной фотометрии (оксиметрия). Метод непрерывного измерения основан на использовании катетера малого диаметра, в который интегрированы фиброоптические проводники, один из которых излучает свет определенной волны в поток венозной крови, а второй передает отраженный сигнал на оптический датчик монитора (рисунок 3).

Рисунок 3. Принцип непре-
рывной отражательной веноз-
ной оксиметрии

1. Системы мониторинга CeVOX и PiCCO 2 (Pulsion Medical Systems, Германия) . Датчик для венозной оксиметрии устанавливается через один из просветов центрального венозного катетера. Для непрерывного измерения ScvO 2 необходимы центральные блоки CeVOX (PC3000) или PiCCO 2 , снабженные оптическим модулем (PC3100) и одноразовым фиброоптическим датчиком (PV2022-XX, 2F (0,67 мм), 30–38 см). Для начальной калибровки монитора in vivo необходимо введение датчика в верхнюю полую вену. После подтверждения качественного сигнала забирают образец венозной крови с определением ее насыщения кислородом и концентрации гемоглобина. Введение этих показателей в меню монитора завершает процедуру калибровки. Удобство системы состоит в том, что изменение положения, удаление или замена оксиметрического датчика не требуют смены положения или извлечения центрального венозного катетера. По данным недавнего исследования Baulig W. et al .6 (2008), ScvO 2 , измеренная при помощи системы CeVOX, характеризуется приемлемыми значениями чувствительности и специфичности в отношении прогнозирования значимых изменений показателя. Система PiCCO 2 позволяет осуществлять непрерывный мониторинг значений DO 2 и VO 2 .

2. Система PreSep TM (Edwards Lifesciences, Ирвин, США) включает трехпросветный центральный венозный катетер с заранее интегрированным фиброоптическим проводником для непрерывного мониторинга ScvO 2 . Катетер может быть подключен к ряду систем компании Edwards Lifesciences, в частности Vigilance-I, Vigilance-II и VigileoTM. При длине 20 см диаметр катетера составляет 8,5F (2,8 мм). Перед установкой требуется калибровка in vitro и in vivo . Качество сигнала ScvO 2 может быть нарушено при пульсации в области кончика катетера, периодическом контакте со стенкой сосуда (заклинивание катетера), перегибе и формировании сгустка крови, гемодилюции. Обновление в меню монитора значений гемоглобина и гематокрита необходимо при изменении этих величин на 6% и более. Модели с маркером «H» имеют традиционное антибактериальное и гепариновое по-
крытие AMC Thromboshield. В настоящее время катетеры PreSepTM защищены от бактериальной контаминации патентованным комплексом OligonTM (комплексное покрытие, включающее атомы серебра, платины и углерода), действие которого основано на выделении активных ионов серебра.

3. Система CCOmbo (Edwards Lifesciences, Ирвин, США) представляет собой катетер Сван–Ганца с интегрированным фиброоптическим элементом. При подключении к системам мониторинга Vigilance дает возможность непрерывного измерения SvO 2 , СВ, а также конечно-диастолического объема и фракции изгнания правого желудочка. Стоимость катетера относительно высока.

ПОКАЗАНИЯ К МОНИТОРИНГУ ВЕНОЗНОЙ САТУРАЦИИ

По данным ряда клинических исследований, мониторинг центральной и/или смешанной венозной сатурации может быть показан в следующих ситуациях:
– тяжелый сепсис и септический шок;
– периоперационный период кардиоторакальных вмешательств;
– инфаркт миокарда, кардиогенный шок и остановка кровообращения;
– тяжелая травма и кровопотеря.
Алгоритмы целенаправленной терапии, основанные на определенном значении SvO 2 /ScvO 2 , в большинстве случаев направлены на увеличение детерминант доставки кислорода:
– повышение сердечного выброса (инфузионная терапия и инотропная поддержка);
– нормализация концентрации гемоглобина (гемотрансфузия);
– нормализация внешнего дыхания (SaO 2) – методы респираторной терапии.

Вместе с тем с учетом характера компенсаторных изменений, наблюдающихся при неадекватном распределении тканевого кровотока, могут быть целесообразны методы, способствующие перераспределению капиллярного кровотока (микроциркуляторный рекрутмент) и повышению экстракции O 2 тканями («метаболическая терапия»).
В заключение необходимо еще раз напомнить, что поддержание адекватной перфузии и оксигенации тканей является основной целью терапии реанимационных больных. Целесообразность мониторинга сатурации центральной венозной крови состоит в том, что этот метод не требует проведения дополнительных инвазивных
вмешательств и имеет явные преимущества на раннем этапе диагностики шока. При дистрибутивном шоке ScvO 2 не всегда точно отражает глобальную экстракцию кислорода, однако изменения ScvO 2 в результате лечебных мероприятий достоверно коррелируют с динамикой SvO 2 . В такой ситуации представляется рациональным говорить о «коридоре безопасных значений» показателя, а не только о его нижней границе. Мониторинг ScvO 2 может быть полезен при обширных хирургических вмешательствах, кардиогенном шоке различного генеза, кровопотере и остановке кровообращения.
Показатели центральной и смешанной венозной сатурации следует интерпретировать с учетом других гемодинамических показателей (ЧСС, АД, ЦВД, СВ, ГКДО) и маркеров метаболической активности органов (темп диуреза, PvCO 2 , градиент тканевого или гастрального PCO 2 и PaCO 2 , концентрация лактата и др.). Измерение венозной сатурации может быть полезным «скрининговым тестом» для дальнейшей детальной оценки гемодинамики, в частности исследования преднагрузки, сердечного выброса и прочих показателей. При критических состояниях использование этих показателей и ранняя целенаправленная терапия нарушений могут способствовать выявлению метаболического стресса и тканевой гипоксии и, следовательно, выбору адекватной лечебной тактики. Кроме того, показатель венозной сатурации, как и прочие «метаболические маркеры», может быть использован для оценки эффективности и безопасности ряда лечебных мероприятий, например, отлучения от ИВЛ или прекращения инотропной поддержки.



Случайные статьи

Вверх