Что входит в состав нуклеотидов. Нуклеиновые кислоты. АТФ

В организме человека находится большое количество органических соединений, без которых невозможно представить стабильное течение обменных процессов, поддерживающих жизнедеятельность всех . Одними из таких веществ являются нуклеотиды – это фосфорные эфиры нуклеозидов, которые играют важнейшую роль в передаче информационных данных, а также химических реакциях с выделением внутриклеточной энергии.

Как самостоятельные органические единицы формируют наполнительный состав всех нуклеиновых кислот и большинства коферментов. Рассмотрим более подробно, что такое нуклеозидфосфаты и какую роль они играют в человеческом организме.

Из чего состоит вещество нуклеотид. Оно считается крайне сложным эфиром, относящимся к группе кислот фосфора и нуклеозидов, которые по своим биохимическим свойствам относятся к числу N-гликозидов и содержат гетероциклические фрагменты, связанные с молекулами глюкозы и атомом азота.

В природе наиболее распространенными являются нуклеотиды ДНК.

Кроме этого, еще различают органические вещества с похожими характеристиками строения: рибонуклеотиды, а также дезоксирибонуклеотиды. Все они без исключения являются мономерными молекулами, относящимися к сложным по строению биологическим веществам полимерного типа.

Из них формируется РНК и ДНК всех живых существ, начиная от простейших микроорганизмов и вирусных инфекций, заканчивая человеческим организмом.

Остаток молекулярной структуры фосфора среди нуклеозидфосфатов, образует эфирную связь с двумя, тремя, а в некоторых случаях сразу с пятью гидроксильными группами. Практически все без исключения нуклеотиды относятся к числу эфирных веществ, которые образовались из остатков ортофосфорной кислоты, поэтому их связи устойчивы и не распадаются под воздействием неблагоприятных факторов внутренней и внешней среды.

Обратите внимание! Строение нуклеотидов всегда сложное и основывается на моноэфирах. Последовательность нуклеотидов может меняться под воздействием стрессовых факторов.

Биологическая роль

Влияние нуклеотидов на течение всех процессов в организме живых существ изучают ученые, которые исследуют молекулярное строение внутриклеточного пространства.

Исходя из лабораторных заключений, полученных по итогам многолетней работы ученых различных стран мира, выделяют следующую роль нуклеозидфосфатов:

  • универсальный источник жизненной энергии, за счет которой происходит питание клеток и соответственно поддерживается нормальная работа тканей, формирующих внутренние органы, биологические жидкости, эпителиальный покров, сосудистую систему;
  • являются транспортировщиками глюкозных мономеров в клетках любого типа (это одна из форм углеводного обмена, когда употребляемый сахар, под воздействием пищеварительных ферментов трансформируется в глюкозу, которая разносится в каждый уголок организма вместе с нуклеозидфосфатами);
  • выполняют функцию кофермента (витаминные и минеральные соединения, которые способствуют обеспечению клеток питательными веществами);
  • сложные и циклические мононуклеотиды являются биологическими проводниками гормонов, распространяющихся вместе с потоком крови, а также усиливают действие нейронных импульсов;
  • аллостерическим образом регулируют активность пищеварительных ферментов, вырабатываемых тканями поджелудочной железы.

Нуклеотиды входят в состав нуклеиновых кислот. Они соединены тремя и пятью связями фосфодиэфирного типа. Генетики и ученые, посвятившие свою жизнь молекулярной биологии, продолжают лабораторные исследования нуклеозидфосфатов, поэтому ежегодно мир узнает еще больше интересного о свойствах нуклеотидов.

Последовательность нуклеотидов – это разновидность генетического равновесия и баланса расположения аминокислот в структуре ДНК, своеобразный порядок размещения остатков эфира в составе нуклеиновых кислот.

Он определяется с помощью традиционного метода секвенирования отобранного для анализа биологического материала.

Т – тимин;

А – аденин;

G – гуанин;

С – цитозин;

R – GA аденин в комплексе с гуанином и основаниями пурина;

Y – TC пиримидиновые соединения;

K – GT нуклеотиды, содержащие кетогруппу;

M – AC входящие в аминогруппу;

S – GC мощные, отличающиеся тремя водородными соединениями;

W – AT неустойчивые, которые образуют только по две водородные связи.

Последовательность нуклеотидов может меняться, а обозначения латинскими буквами необходимы в тех случаях, когда порядок расположения эфирных соединений неизвестен, является несущественным либо уже имеются результаты первичных исследований.

Наибольшее количество вариантов и комбинаций нуклеозидфосфатов свойственно для ДНК. Для записи эфирных соединений РНК достаточно символов A, С, G, U. Последнее литерное обозначение является веществом уридин, которое встречается только в РНК. Последовательность символических обозначений всегда записывается без использования пробелов.

Полезное видео: нуклеиновые кислоты (ДНК и РНК)

Сколько нуклеотидов в ДНК

Для того, чтобы максимально подробно понимать, о чем идет речь, следует иметь четкое представление о самой ДНК. Это отдельный вид молекул, которые имеют вытянутую форму и состоят из структурных элементов, а именно – нуклеозидфосфатов. Какое количество нуклеотидов в ДНК? Существует 4 вида эфирных соединений данного типа, входящие в состав ДНК. Это аденин, тимин, цитозин и гуанин. Все они формируют единую цепочку, из которой и образовывается молекулярная структура ДНК.

Впервые строение ДНК было расшифровано в далеком 1953 году американскими учеными Френсисом Криком и Джеймсом Уотсоном. В одной молекуле дезоксирибонуклеиновой кислоты содержится по две цепочки нуклеозидфосфатов. Они размещены таким образом, что внешне напоминают спираль, закручивающуюся вокруг своей оси.

Обратите внимание! Количество нуклеотидов в ДНК неизменное и ограничивается только четырьмя видами — данное открытие приблизило человечество к расшифровке полного генетического кода человека.

При этом строение молекулы имеет одну важную особенность. Все нуклеотидные цепочки обладают свойством комплементарности. Это означает, что друг напротив друга размещаются только эфирные соединения определенного вида. Известно, что напротив тимина всегда расположен аденин. Напротив цитозина не может находится никакое другое вещество кроме гуанина. Такие нуклеотидные пары формируют принцип комплементарности и являются неразделимыми.

Масса и длина

С помощью сложных математических подсчетов и лабораторных исследований, ученым удалось установить точные физико-биологические свойства эфирных соединений, формирующих молекулярную структуру дезоксирибонуклеиновой кислоты.

Известно, что протяжная длина одного внутриклеточного остатка, состоящего из аминокислот в единой полипептидной цепи – 3,5 ангстрем. Средняя масса одного молекулярного остатка равна 110 а.е.м.

Кроме этого, еще выделяют мономеры нуклеотидного типа, которые сформированы не только из аминокислот, но имеют и эфирные составляющие. Это мономеры ДНК и РНК. Их линейная длина измеряется непосредственно внутри нуклеиновой кислоты и составляет не менее 3,4 ангстрем. Молекулярный вес одного нуклеозидфосфата находится в пределах 345 а.е.м. Это исходные данные, которые используются в практической лабораторной работе, посвященной опытам, генетическим исследованиям и прочей научной деятельности.

Медицинские обозначения

Генетика, как наука, развивалась еще в период, когда не было исследований строения ДНК человека и других живых существ на молекулярном уровне. Поэтому в период домолекулярной генетики нуклеотидные связи обозначались, как наименьший элемент в структуре молекулы ДНК. Как ранее, так и в настоящее время, эфирные вещества данного типа были подвержены . Она могла быть спонтанной или индуцированной, потому для обозначения нуклеозидфосфатов с поврежденной структурой еще используют термин «рекон».

Для определения понятия наступления возможной мутации в азотистых соединениях нуклеотидных связей, применяют термин «мутон». Данные обозначения больше востребованы в лабораторной работе с биологическим материалом. Также используются учеными генетиками, которые изучают устройство молекул ДНК, пути передачи наследственной информации, способы ее шифрования и возможные комбинации генов, получаемых в результате слияния генетического потенциала двух половых партнеров.

Полезное видео: строение нуклеотида

Вывод

Исходя из вышеизложенного можно сделать вывод, что нуклеозидфосфаты – это важная составляющая часть внутриклеточного устройства в организме человека и любого живого существа. За счет эфирных веществ данного типа передается большая часть не только генетической информации от родителей к потомкам, но и осуществляются обменные процессы в тканях всех жизненно важных органов.

Подобно белкам, нуклеиновые кислоты - биополимеры, а их функция заключается в хранении, реализации и передаче генетической (наследственной) информации в живых организмах.

Существует два типа нуклеиновых кислот - дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Мономерами в нуклеиновых кислотах служат нуклеотиды. Каждый из них содержит азотистое основание, пятиуглеродный сахар (дезоксирибоза - в ДНК, рибоза - в РНК) и остаток фосфорной кислоты.

В ДНК входят четыре вида нуклеотидов, отличающихся по азотистому основанию в их составе, - аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В молекуле РНК также имеется 4 вида нуклеотидов с одним из азотистых оснований - аденином, гуанином, цитозином и урацилом (У). Таким образом, ДНК и РНК различаются как по содержанию сахара в нуклеотидах, так и по одному из азотистых оснований (табл. 1).

Таблица 1

Компоненты нуклеотидов ДНК и РНК

Молекулы ДНК и РНК существенно различаются по своему строению и выполняемым функциям.

Молекула ДНК может включать огромное количество нуклеотидов - от нескольких тысяч до сотен миллионов (поистине гигантские молекулы ДНК удается «увидеть» с помощью электронного микроскопа). В структурном отношении она представляет собой двойную спираль из полинуклеотидных цепей (рис. 1), соединенных с помощью водородных связей между азотистыми основаниями нуклеотидов. Благодаря этому полинуклеотидные цепи прочно удерживаются одна возле другой.

При исследовании различных ДНК (у разных видов организмов) было установлено, что аденин одной цепи может связываться лишь с тимином, а гуанин - только с цитозином другой. Следовательно, порядок расположения нуклеотидов в одной цепи строго соответствует порядку их расположения в другой. Этот феномен получил название комплементарности (т. е. дополнения), а противоположные полинуклеотидные цепи называются комплементарными. Именно этим обусловлено уникальное среди всех неорганических и органических веществ свойство ДНК - способность к самовоспроизведению или удвоению (рис. 2). При этом сначала комплементарные цепи молекул ДНК расходятся (под воздействием специального фермента происходит разрушение связей между комплементарными нуклеотидами двух цепей). Затем на каждой цепи начинается синтез новой («недостающей») комплементарной ей цепи за счет свободных нуклеотидов, всегда имеющихся в большом количестве в клетке. В результате вместо одной («материнской») молекулы ДНК образуются две («дочерние») новые, идентичные по структуре и составу друг другу, а также исходной молекуле ДНК. Этот процесс всегда предшествует клеточному делению и обеспечивает передачу наследственной информации от материнской клетки дочерним и всем последующим поколениям.


Рис. 1. Двойная спираль ДНК. Две цепи обвиты одна вокруг другой. Каждая цепь (изображенная в виде ленты) состоит из чередующихся остатков сахара и фосфатных групп. Водородные связи между азотистыми основаниями (А, Т, Г и Ц) удерживают две цепи вместе

Рис. 2. Репликация ДНК. Двойная спираль «расстегивается» по слабым водородным связям, соединяющим комплементарные основания двух цепей. Каждая из старых цепей служит матрицей для образования новой: нуклеотиды с комплементарными основаниями выстраиваются против старой цепи и соединяются друг с другом

Молекулы РНК, как правило, одноцепочечные (в отличие от ДНК) и содержат значительно меньшее число нуклеотидов. Выделяют три вида РНК (табл. 2), различающиеся по величине молекул и выполняемым функциям, - информационную (иРНК), рибосомальную (рРНК) и транспортную (тРНК).

Таблица 2

Три вида РНК

Информационная РНК (и-РНК) располагается в ядре и цитоплазме клетки, имеет самую длинную полинуклеотидную цепь среди РНК и выполняет функцию переноса наследственной информации из ядра в цитоплазму клетки.

Транспортная РНК (т-РНК) также содержится в ядре и цитоплазме клет-ки, ее цепь имеет наиболее сложную структуру, а также является самой короткой (75 нуклеотидов). Т-РНК доставляет аминокислоты к рибосомам в процессе трансляции - биосинтеза белка.

Рибосомальная РНК (р-РНК) содержится в ядрышке и рибосомах клетки, имеет цепь средней длины. Все виды РНК образуются в процессе транскрипции соответствующих генов ДНК.

Нуклеиновые кислоты. АТФ

Нуклеиновые кислоты (от лат. nucleus – ядро) – кислоты, впервые обнаруженные при исследовании ядер лейкоцитов; были открыты в 1868 г. И.Ф. Мишером, швейцарским биохимиком. Биологическое значение нуклеиновых кислот - хранение и передача наследственной информации; они необходимы для поддержания жизни и для ее воспроизведения.

Нуклеиновые кислоты

Нуклеотид ДНК и нуклеотид РНК имеют черты сходства и различия.

Строение нуклеотида ДНК

Строение нуклеотида РНК

Молекула ДНК – двойная цепь, закрученная по спирали.

Молекула РНК представляет собой одиночную нить нуклеотидов, схожую по строению с отдельной нитью ДНК. Только вместо дезоксирибозы РНК включает другой углевод – рибозу (отсюда и название), а вместо тимина – урацил.

Две нити ДНК соединены друг с другом водородными связями. При этом наблюдается важная закономерность: напротив азотистого основания аденин А в одной цепи располагается азотистое основание тимин Т в другой цепи, а против гуанина Г всегда расположен цитозин Ц. Эти пары оснований называют комплементарными парами.

Таким образом, принцип комплементарности (от лат. complementum – дополнение) состоит в том, что каждому азотистому основанию, входящему в нуклеотид, соответствует другое азотистое основание. Возникают строго определенные пары оснований (А – Т, Г – Ц), эти пары специфичны. Между гуанином и цитозином – три водородные связи, а между аденином и тимином возникают две водородные связи в нуклеотиде ДНК, а в РНК две водородные связи возникают между аденином и урацилом.

Водородные связи между азотистыми основаниями нуклеотидов

Г ≡ Ц Г ≡ Ц

В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых - числу цитидиловых. Благодаря этому свойству последовательность нуклеотидов в одной цепи определяет их последовательность в другой. Такая способность к избирательному соединению нуклеотидов называется комплементарностью, и это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы (репликации, т. е. удвоения).

Таким образом, количественное содержание азотистых оснований в ДНК подчинено некоторым правилам:

1) Сумма аденина и гуанина равна сумме цитозина и тимина А + Г = Ц + Т.

2) Сумма аденина и цитозина равна сумме гуанина и тимина А + Ц = Г + Т.

3) Количество аденина равно количеству тимина, количество гуанина равно количеству цитозина А = Т; Г = Ц.

При изменении условий ДНК, подобно белкам, может подвергаться денатурации, которая называется плавлением.

ДНК обладает уникальными свойствами: способностью к самоудвоению (репликация, редупликация) и способностью к самовосстановлению (репарация). Репликация обеспечивает точное воспроизведение в дочерних молекулах той информации, которая была записана в материнской молекуле. Но в процессе репликации иногда возникают ошибки. Способность молекулы ДНК исправлять ошибки, возникающие в ее цепях, то есть восстанавливать правильную последовательность нуклеотидов, называется репарацией .

Молекулы ДНК находятся в основном в ядрах клеток и в небольшом количестве в митохондриях и пластидах – хлоропластах. Молекулы ДНК – носители наследственной информации.

Строение, функции и локализация в клетке. Различают три вида РНК. Названия связаны с выполняемыми функциями:

Сравнительная характеристика нуклеиновых кислот

Аденозинфосфорные кислоты - аденозинтрифосфорная кислота (АТФ), аденозиндифосфорная кислота (АДФ), аденозинмонофосфорная кислота (АМФ).

В цитоплазме каждой клетки, а также в митохондриях, хлоропластах и ядрах содержится аденозинтрифосфорная кислота (АТФ). Она поставляет энергию для большинства реакций, происходящих в клетке. С помощью АТФ клетка синтезирует новые молекулы белков, углеводов, жиров, осуществляет активный транспорт веществ, биение жгутиков и ресничек.

АТФпо строению сходна с адениновым нуклеотидом, входящим в состав РНК, только вместо одной фосфорной кислоты в состав АТФ входят три остатка фосфорной кислоты.

Строение молекулы АТФ:

Неустойчивые химические связи, которыми соединены молекулы фосфорной кислоты в АТФ, очень богаты энергией. При разрыве этих связей выделяется энергия, которая используется каждой клеткой для обеспечения процессов жизнедеятельности:



АТФ АДФ + Ф + Е

АДФ АМФ + Ф + Е,

где Ф – фосфорная кислота Н3РО4, Е – освобождающаяся энергия.

Химические связи в АТФ между остатками фосфорной кислоты, богатые энергией, называются макроэргическими связями . Отщепление одной молекулы фосфорной кислоты сопровождается выделением энергии – 40 кДж.

АТФ образуется из АДФ и неорганического фосфата за счет энергии, освобождающейся при окислении органических веществ и в процессе фотосинтеза. Этот процесс называется фосфорилированием.

При этом должно быть затрачено не менее 40 кДж/моль энергии, которая аккумулируется в макроэргических связях. Следовательно, основное значение процессов дыхания и фотосинтеза определяется тем, что они поставляют энергию для синтеза АТФ, с участием которой в клетке выполняется большая часть работы.

АТФ чрезвычайно быстро обновляется. У человека, например, каждая молекула АТФ расщепляется и вновь восстанавливается 2 400 раз в сутки, так что ее средняя продолжительность жизни менее 1 мин. Синтез АТФ осуществляется главным образом в митохондриях и хлоропластах (частично в цитоплазме). Образовавшаяся здесь АТФ направляется в те участки клетки, где возникает потребность в энергии.

АТФ играет важную роль в биоэнергетике клетки: выполняет одну из важнейших функций – накопителя энергии, это универсальный биологический аккумулятор энергии.

Все живое на планете состоит из множества клеток, поддерживающих упорядоченность своей организации за счет содержащейся в ядре генетической информации. Она сохраняется, реализуется и передается сложными высокомолекулярными соединениями - нуклеиновыми кислотами, состоящими из мономерных звеньев - нуклеотидов. Роль нуклеиновых кислот невозможно переоценить. Стабильностью их структуры определяется нормальная жизнедеятельность организма, а любые отклонения в строении неминуемо приводят к изменению клеточной организации, активности физиологических процессов и жизнеспособности клеток в целом.

Понятие нуклеотида и его свойства

Каждая или РНК собрана из более мелких мономерных соединений - нуклеотидов. Другими словами, нуклеотид - это строительный материал для нуклеиновых кислот, коферментов и многих других биологических соединений, которые крайне необходимы клетке в процессе ее жизнедеятельности.

К основным свойствам этих незаменимых веществ можно отнести:

Хранение информации о и наследуемых признаках;
. осуществление контроля над ростом и репродукцией;
. участие в метаболизме и многих других физиологических процессах, протекающих в клетке.

Говоря о нуклеотидах, нельзя не остановиться на таком важном вопросе, как их структура и состав.

Каждый нуклеотид состоит из:

Сахарного остатка;
. азотистого основания;
. фосфатной группы или остатка фосфорной кислоты.

Можно сказать, что нуклеотид - это сложное органическое соединение. В зависимости от видового состава азотистых оснований и типа пентозы в структуре нуклеотида нуклеиновые кислоты подразделяются на:

Дезоксирибонуклеиновую кислоту, или ДНК;
. рибонуклеиновую кислоту, или РНК.

Состав нуклеиновых кислот

В нуклеиновых кислотах сахар представлен пентозой. Это пятиуглеродный сахар, в ДНК его называют дезоксирибозой, в РНК - рибозой. Каждая молекула пентозы имеет пять атомов углерода, четыре из них вместе с атомом кислорода образуют пятичленное кольцо, а пятый входит в группу НО-СН2.

Положение каждого атома углерода в молекуле пентозы обозначается арабской цифрой со штрихом (1C´, 2C´, 3C´, 4C´, 5C´). Поскольку все процессы считывания с молекулы нуклеиновой кислоты имеют строгую направленность, нумерация атомов углерода и их расположение в кольце служат своего рода указателем правильного направления.

По гидроксильной группе к третьему и пятому углеродным атомам (3С´ и 5С´) присоединен остаток фосфорной кислоты. Он и определяет химическую принадлежность ДНК и РНК к группе кислот.

К первому углеродному атому (1С´) в молекуле сахара присоединено азотистое основание.

Видовой состав азотистых оснований

Нуклеотиды ДНК по азотистому основанию представлены четырьмя видами:

Аденином (А);
. гуанином (Г);
. цитозином (Ц);
. тимином (Т).

Первые два относятся к классу пуринов, два последних - пиримидинов. По молекулярной массе пуриновые всегда тяжелее пиримидиновых.

Нуклеотиды РНК по азотистому основанию представлены:

Аденином (А);
. гуанином (Г);
. цитозином (Ц);
. урацилом (У).

Урацил так же, как и тимин, является пиримидиновым основанием.

В научной литературе нередко можно встретить и другое обозначение азотистых оснований - латинскими буквами (A, T, C, G, U).

Подробнее остановимся на химической структуре пуринов и пиримидинов.

Пиримидины, а именно цитозин, тимин и урацил, в своем составе представлены двумя атомами азота и четырьмя атомами углерода, образующих шестичленное кольцо. Каждый атом имеет свой номер от 1 до 6.

Пурины (аденин и гуанин) состоят из пиримидина и имидазола или двух гетероциклов. Молекула пуриновых оснований представлена четырьмя атомами азота и пятью атомами углерода. Каждый атом пронумерован от 1 до 9.

В результате соединения азотистого основания и остатка пентозы образуется нуклеозид. Нуклеотид - это соединение нуклеозида и фосфатной группы.

Образование фосфодиэфирных связей

Важно разобраться в вопросе о том, как соединяются нуклеотиды в полипептидную цепь и образуют молекулу нуклеиновой кислоты. Происходит это за счет так называемых фосфодиэфирных связей.

Взаимодействие двух нуклеотидов дает динуклеотид. Образование нового соединения происходит путем конденсации, когда между фосфатным остатком одного мономера и гидроксигруппой пентозы другого возникает фосфодиэфирная связь.

Синтез полинуклеотида - неоднократное повторение этой реакции (несколько миллионов раз). Полинуклеотидная цепь строится посредством образования фосфодиэфирных связей между третьим и пятым углеродами сахаров (3С´ и 5С´).

Сборка полинуклеотида - сложный процесс, протекающий при участии фермента ДНК-полимеразы, которая обеспечивает рост цепи только с одного конца (3´) со свободной гидроксигруппой.

Структура молекулы ДНК

Молекула ДНК, так же как и белка, может иметь первичную, вторичную и третичную структуру.

Последовательность нуклеотидов в цепи ДНК определяет ее первичную формируется за счет водородных связей, в основе возникновения которых положен принцип комплементарности. Другими словами, при синтезе двойной действует определенная закономерность: аденин одной цепи соответствует тимину другой, гуанин - цитозину, и наоборот. Пары аденина и тимина или гуанина и цитозина образуются за счет двух в первом и трех в последнем случае водородных связей. Такое соединение нуклеотидов обеспечивает прочную связь цепей и равное расстояние между ними.

Зная последовательность нуклеотидов одной цепи ДНК, по принципу комплементарности или дополнения можно достроить вторую.

Третичная структура ДНК образована за счет сложных трехмерных связей, что делает ее молекулу более компактной и способной размещаться в малом объеме клетки. Так, например, длина ДНК кишечной палочки составляет более 1 мм, тогда как длина клетки - меньше 5 мкм.

Число нуклеотидов в ДНК, а именно их количественное соотношение, подчиняется правилу Чергаффа (число пуриновых оснований всегда равно количеству пиримидиновых). Расстояние между нуклеотидами - величина постоянная, равная 0,34 нм, как и их молекулярная масса.

Структура молекулы РНК

РНК представлена одной полинуклеотидной цепочкой, образованной через между пентозой (в данном случае рибозой) и фосфатным остатком. По длине она значительно короче ДНК. По видовому составу азотистых оснований в нуклеотиде также имеются различия. В РНК вместо пиримидинового основания тимина используется урацил. В зависимости от функций, выполняемых в организме, РНК может быть трех типов.

Рибосомальная (рРНК) - содержит обычно от 3000 до 5000 нуклеотидов. Как необходимый структурный компонент принимает участие в формировании активного центра рибосом, места осуществления одного из важнейших процессов в клетке — биосинтеза белка.
. Транспортная (тРНК) - состоит в среднем из 75 - 95 нуклеотидов, осуществляет перенос нужной аминокислоты к месту синтеза полипептида в рибосоме. Каждый вид тРНК (не менее 40) имеет свою, присущую только ему последовательность мономеров или нуклеотидов.
. Информационная (иРНК) - по нуклеотидному составу весьма разнообразна. Переносит генетическую информацию от ДНК к рибосомам, выступает в роли матрицы для синтеза белковой молекулы.

Роль нуклеотидов в организме

Нуклеотиды в клетке выполняют ряд важнейших функций:

Используются в качестве структурных блоков для нуклеиновых кислот (нуклеотиды пуринового и пиримидинового рядов);
. участвуют во многих обменных процессах в клетке;
. входят в состав АТФ - главного источника энергии в клетках;
. выступают в роли переносчиков восстановительных эквивалентов в клетках (НАД+, НАДФ+, ФАД, ФМН);
. выполняют функцию биорегуляторов;
. могут рассматриваться как вторые вестники внеклеточного регулярного синтеза (например, цАМФ или цГМФ).

Нуклеотид - это мономерная единица, образующая более сложные соединения - нуклеиновые кислоты, без которых невозможна передача генетической информации, ее хранение и воспроизведение. Свободные нуклеотиды являются главными компонентами, участвующими в сигнальных и энергетических процессах, поддерживающих нормальную жизнедеятельность клеток и организма в целом.

Лекция № 19
НУКЛЕОЗИДЫ. НУКЛЕОТИДЫ. НУКЛЕИНОВЫЕ КИСЛОТЫ
План

    1. Нуклеиновые основания.
    2. Нуклеозиды.
    3. Нуклеотиды.
    4. Нуклеотидные коферменты.
    5. Нуклеиновые кислоты.


Лекция № 19

НУКЛЕОЗИДЫ. НУКЛЕОТИДЫ. НУКЛЕИНОВЫЕ
КИСЛОТЫ

План

    1. Нуклеиновые основания.
    2. Нуклеозиды.
    3. Нуклеотиды.
    4. Нуклеотидные коферменты.
    5. Нуклеиновые кислоты.

Нуклеиновые кислоты – присутствующие в
клетках всех живых организмов биополимеры, которые выполняют важнейшие функции
по хранению и передаче генетической информации и участвуют в механизмах ее
реализации в процессе синтеза клеточных белков.

Установление состава нуклеиновых кислот путем их последовательного
гидролитического расщепления позволяет выделить следующие структурные
компоненты.

Рассмотрим структурные компоненты нуклеиновых
кислот в порядке усложнения их строения.

1. Нуклеиновые основания.

Гетероциклические основания, входящие в состав
нуклеиновых кислот (нуклеиновые основания ), — это гидрокси- и
аминопроизводные пиримидина и пурина. Нуклеиновые кислоты содержат три
гетероциклических основания с пиримидиновым циклом (пиримидиновые
основания
) и два — с пуриновым циклом (пуриновые основания ). Нуклеиновые основания
имеют тривиальные названия и соответствующие однобуквенные обозначения.

В составе нуклеиновых кислот гетероциклические
основания находятся в термодинамически стабильной оксоформе.

Кроме этих групп нуклеиновых оснований,
называемых основными , в нуклеиновых кислотах в небольших количествах
встречаются минорные основания: 6-оксопурин (гипоксантин),
3-N-метилурацил, 1-N-метилгуанин и др.

Нуклеиновые кислоты включают остатки
моносахаридов – D-рибозы и 2-дезокси –D-рибозы. Оба моносахарида присутствуют в
нуклеиновых кислотах в b -фуранозной форме.

2. Нуклеозиды.

Нуклеозиды – это N-гликозиды, образованные нуклеиновыми основаниями и рибозой
или дезоксирибозой.

Между аномерным атомом углерода моносахарида и атомом азота в положении 1
пиримидинового цикла или атомом азота в положении 9 пуринового цикла образуется b -гликозидная
связь.

В зависимости от природы моносахаридного остатка
нуклеозиды делят на рибонуклеозиды (содержат остаток рибозы) и дезоксирибонуклеозиды (содержат остаток дезоксирибозы). Названия
нуклеозидов строят на основе тривиальных названий нуклеиновых оснований,
добавляя окончание –идин для производных пиримидина и -озин для
производных пурина. К названиям дезоксирибонуклеозидов добавляют приставку дезокси-. Исключение составляет нуклеозид, образованный тимином и
дезоксирибозой, к которому приставка дезокси- не добавляется, так как
тимин образует нуклеозиды с рибозой лишь в очень редких случаях.

Для обозначения нуклеозидов используются
однобуквенные обозначения, входящих в их состав нуклеиновых оснований. К
обозначениям дезоксирибонуклеозидов (за исключением тимидина) добавляется буква
”д”.

Наряду с представленными на схеме основными
нуклеозидами в составе нуклеиновых кислот встречаются минорные нуклеозиды,
содержащие модифицированные нуклеиновые основания (см. выше).

В природе нуклеозиды встречаются также в
свободном состоянии, преимущественно в виде нуклеозидных антибиотиков, которые
проявляют противоопухолевую активность. Нуклеозиды-антибиотики имеют некоторые
отличия от обычных нуклеозидов в строении либо углеводной части, либо
гетероциклического основания, что позволяет им выступать в качестве
антиметаболитов, чем и объясняется их антибиотическая активность.

Как N-гликозиды, нуклеозиды устойчивы к действию
щелочей, но расщепляются под действием кислот с образованием свободного
моносахарида и нуклеинового основания. Пуриновые нуклеозиды гидролизуются
значительно легче пиримидиновых.

3. Нуклеотиды

Нуклеотиды – это эфиры нуклеозидов и фосфорной
кислоты (нуклеозидфосфаты). Сложноэфирную связь с фосфорной кислотой образует ОН
группа в положении 5 / или
3 / моносахарида. В зависимости от
природы моносахаридного остатка нуклеотиды делят на рибонуклеотиды (структурные элементы РНК) и дезоксирибонуклеотиды (структурные элементы
ДНК). Названия нуклеотидов включают название нуклеозида с указанием положения в
нем остатка фосфорной кислоты. Сокращенные обзначения нуклеозидов содержат
обозначение нуклеозида, остатка моно-, ди- или трифосфорной кислоты, для
3
/ -производных указывается также
положение фосфатной группы.

Нуклеотиды являются мономерными звеньями, из
которых построены полимерные цепи нуклеиновых кислот. Некоторые нуклеотиды
выполняют роль коферментов и участвуют в обмене веществ.

4. Нуклеотидные
коферменты

Коферменты – это органические соединения
небелковой природы, которые необходимы для осуществления каталитического
действия ферментов. Коферменты относятся к разным классам органических
соединений. Важную группу коферментов составляют нуклеозидполифосфаты .

Аденозинфосфаты – производные
аденозина, содержащие остатки моно-, ди- и трифосфорных кислот. Особое место
занимают аденозин-5 / -моно-, ди- и
трифосфаты — АМФ, АДФ и АТФ — макроэргические вещества, которые обладают
большими запасами свободной энергии в подвижной форме. Молекула АТФ содержит
макроэргические связи Р-О, которые легко расщепляются в результате гидролиза.
Выделяющаяся при этом свободная энергия обеспечивает протекание сопряженных с
гидролизом АТФ термодинамически невыгодных анаболических процессов, например,
биосинтез белка.

Кофермент А . Молекула этого
кофермента состоит из трех структурных компонентов: пантотеновой кислоты,
2-аминоэтантиола и АДФ.

Кофермент А участвует в процессах
ферментативного ацилирования, активируя карбоновые кислоты путем превращения их
в реакционноспособные сложные эфиры тиолов.

Никотинамидадениндинуклеотидные коферменты. Никотинамидадениндинуклеотид (НАД +) и его фосфат (НАДФ + ) содержат в своем составе катион пиридиния в виде
никотинамидного фрагмента. Пиридиниевый катион в составе этих коферментов
способен обратимо присоединять гидрид-анион с образованием восстановленной формы
кофермента — НАД
Н.

Таким образом никотинамидадениндинуклеотидные
коферменты участвуют в окислительно-восстановительных процессах, связанных с
переносом гидрид-аниона, например, окислении спиртовых групп в альдегидные
(превращение ретинола в ретиналь), восстановительном аминировании кетокислот,
восстановлении кетокислот в гидроксикислоты. В ходе этих процессов субстрат
теряет (окисление) или присоединяет (восстановление) два атома водорода в виде
Н + и Н — . Кофермент служит при этом акцептором
(НАД
+ ) или донором
(НАД . Н) гидрид-иона. Все процессы с
участием коферментов являются стереоселективными. Так, при восстановлении
пировиноградной кислоты образуется исключительно L-молочная кислота.

5. Нуклеиновые кислоты.

Первичная структура нуклеиновых кислот представляет собой линейную полимерную цепь, построенную
из мономеров – нуклеотидов, которые связаны между собой
3 / -5 / -фосфодиэфирными
связями. Полинуклеотидная цепь имеет 5′-конец и 3′- конец. На 5′-конце находится
остаток фосфорной кислоты, а на 3′- конце — свободная гидроксильная группа.
Нуклеотидную цепь принято записывать, начиная с 5′-конца.

В зависимости от природы моносахаридных остатков
в нуклеотиде различают дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые
кислоты (РНК). ДНК и РНК различаются также по природе входящих в их состав
нуклеиновых оснований: урацил входит только в состав РНК, тимин – только в
состав ДНК.

Вторичная структура ДНК представляет собой комплекс двух полинуклеотидных цепей, закрученных вправо
вокруг общей оси так, что углевод-фосфатные цепи находятся снаружи, а
нуклеиновые основания направлены внутрь (двойная спираль Уотсона-Крика ).
Шаг спирали — 3.4 нм, на 1 виток приходится 10 пар нуклеотидов. Полинуклеотидные
цепи антипараллельны,т.е.
напротив 3′-конца одной цепи находится 5′-конец другой цепи. Две цепи ДНК
неодинаковы по своему составу, но они комплементарны . Это выражается в
том, что напротив аденина (А) в одной цепи всегда находится тимин (Т) в другой
цепи, а напротив гуанина (Г) всегда находится цитозин (Ц). Комплементарное
спаривание А с Т и Г с Ц осуществляется за счет водородных связей. Между А и Т
образуется две водородные связи, между Г и Ц – три.

Комплементарность цепей ДНК составляет
химическую основу важнейшей функции ДНК – хранения и передачи генетической
информации.

Типы РНК. Известны три основных
вида клеточных РНК: транспортные РНК (тРНК), матричные РНК (мРНК) и рибосомные
РНК (рРНК). Они различаются по месторасположению в клетке, составу и размерами,
а также функциями. РНК состоят, как правило, из одной полинуклеотидной цепи,
которая в пространстве складывается таким образом, что ее отдельные участки
становятся комплементарными друг другу (”слипаются”) и образуют короткие
двуспиральные участки молекулы, в то время как другие участки остаются
однотяжевыми.

Матричные РНК выполняют функцию матрицы
белкового синтеза в рибосомах.

Рибосомные РНК выполняют роль структурных
компонентов рибосом.

Транспортные РНК участвуют в
транспортировке a -аминокислот из цитоплазмы в рибосомы и в переводе информации нуклеотидной
последовательности мРНК в последовательность аминокислот в белках.

Механизм передачи генетической информации. Генетическая информация закодированиа в нуклеотидной последовательности
ДНК. Механизм передачи этой информации включает три основных этапа.

Первый этап – репликация –копирование
материнской ДНК с образованием двух дочерних молекул ДНК, нуклеотидная
последовательность которых комплементарна последовательности материнской ДНК и
однозначно определяется ею. Репликация осуществляется путем синтеза новой
молекулы ДНК на материнской, которая играет роль матрицы. Двойная спираль
материнской ДНК раскручивается и на каждой из двух цепей происходит синтез новой
(дочерней) цепи ДНК с учетом принципа комплементарности. Процесс осуществляется
под действием фермента ДНК-полимеразы. Таким образом из одной материнской ДНК
образуются две дочерних, каждая из которых содержит в своем составе одну
материнскую и одну вновь синтезированную полинуклеотидную цепь.

Второй этап – транскрипция – процесс, в
ходе которого часть генетической информации переписывается с ДНК в форме мРНК.
Матричная РНК синтезируется на участке деспирализованной цепи ДНК как на матрице
под действием фермента РНК-полимеразы. В полинуклеотидной цепи мРНК
рибонуклеотиды, несущие определенные
нуклеиновые основания, выстраиваются в последовательности, определяемой
комплементарными взаимодействиями с нуклеиновыми основаниями цепи ДНК. При этом адениновому основанию в ДНК будет соответствовать урациловое основание в РНК. Генетическая информация о синтезе белка закодирована в ДНК с
помощью триплетного кода. Одна аминокислота кодируется
последовательностью из трех нуклеотидов, которую называют кодоном .
Участок ДНК, кодирующий одну полипептидную цепь, называется геном .
Каждому кодону ДНК соответствует комплементарный кодон в мРНК. В целом молекула
мРНК комплементарна определенной части цепи ДНК – гену.

Процессы репликации и транскрипции происходят в
ядре клетки. Синтез белка осуществляется в рибосомах. Синтезированная мРНК
мигрирует из ядра в цитоплазму к рибосомам, перенося генетическую информацию к
месту синтеза белка.

Третий этап – трансляция – процесс
реализации генетической информации, которую несет мРНК в виде последовательности
нуклеотидов в последовательность аминокислот в синтезируемом белке. a -Аминокислоты, необходимые для
синтеза белка транспортируются к рибосомам посредством тРНК, с которыми они
связываются путем ацилирования 3
/ -ОН группы на конце цепи тРНК.

тРНК имеет антикодоновую ветвь, содержащую
тринуклеотид — антикодон , который соответствует переносимой ею
аминокислоте. На рибосоме тРНК прикрепляются антикодоновыми участками к
соответствующим кодонам мРНК. Специфичность стыковки кодона и антикодона
обеспечивается их комплементарностью. Между сближенными аминокислотами
образуется пептидная связь. Таким образом реализуется строго определенная
последовательность соединения аминокислот в белки, закодированная в
генах.



Случайные статьи

Вверх