Эволюция звезд с точки зрения точной науки и теории относительности. Как происходит эволюция звезд

Эволюция звезд – это изменение со временем физических характеристик, внутреннего строения и химического состава звезд. Современная теория эволюции звезд способна объяснить общий ход развития звезд в удовлетворительном согласии с данными астрономических наблюдений. Ход эволюции звезды зависит от ее массы и исходного химического состава. Звезды первого поколения сформировались из вещества, состав которого определялся космологическими условиями (около 70% водорода, 30% гелия, ничтожная примесь дейтерия и лития). В ходе эволюции звезд первого поколения образовались тяжелые элементы, которые были выброшены в межзвездное пространство в результате истечения вещества из звезд или при взрывах звезд. Звезды последующих поколений сформировались из вещества, содержащего 3 – 4% тяжелых элементов.

Рождение звезды – это образование объекта, излучение которого поддерживается за счет собственных источников энергии. Процесс звездообразования продолжается непрерывно, он происходит и в настоящее время.

Для объяснения структуры мегамира наиболее важным является гравитационное взаимодействие. В газопылевых туманностях под действием сил гравитации происходит формирование неустойчивых неоднородностей, благодаря чему диффузная материя распадается на ряд сгущений. Если такие сгущения сохраняются достаточно долго, то с течением времени они превращаются в звезды. Важно отметить, что происходит процесс рождения не отдельной звезды, а звездных ассоциаций. Образовавшиеся газовые тела притягиваются друг к другу, но не обязательно объединяются в одно громадное тело. Они, как правило, начинают вращаться относительно друг друга, и центробежные силы этого движения противодействуют силам притяжения, ведущим к дальнейшей концентрации.

К молодым относятся звезды, которые находятся еще в стадии первоначального гравитационного сжатия. Температура в центре таких звезд еще недостаточна для протекания термоядерных реакций. Свечение звезд происходит только за счет превращения гравитационной энергии в теплоту. Гравитационное сжатие – первый этап эволюции звезд. Оно приводит к разогреву центральной зоны звезды до температуры начала термоядерной реакции (10 – 15 млн К) – превращения водорода в гелий.

Огромная энергия, излучаемая звездами, образуется в результате ядерных процессов, происходящих внутри звезд. Энергия, образующаяся внутри звезды, позволяет ей излучать свет и тепло в течение миллионов и миллиардов лет. Впервые предположение о том, что источником энергии звезд являются термоядерные реакции синтеза гелия из водорода, выдвинул в 1920 г. английский астрофизик А.С.Эддингтон. В недрах звезд возможны два типа термоядерных реакций с участием водорода, называемые водородным (протон-протонным) и углеродным (углеродно-азотным) циклами. В первом случае для протекания реакции требуется только водород, во втором необходимо еще наличие углерода, служащего катализатором. Исходным веществом служат протоны, из которых в результате ядерного синтеза образуются ядра гелия .


Поскольку при превращении четырех протонов в ядро гелия рождаются два нейтрино, в недрах Солнца ежесекундно генерируются 1,8∙10 38 нейтрино. Нейтрино слабо взаимодействует с веществом и обладает большой проникающей способностью. Пройдя сквозь огромную толщу солнечного вещества, нейтрино сохраняют всю ту информацию, которую они получили в термоядерных реакциях в недрах Солнца. Плотность потока солнечных нейтрино, падающих на поверхность Земли, равна 6,6∙10 10 нейтрино на 1 см 2 в 1 с. Измерение потока нейтрино, падающих на Землю, позволяет судить о процессах, происходящих внутри Солнца.

Таким образом, источником энергии у большинства звезд являются водородные термоядерные реакции в центральной зоне звезды. В результате термоядерной реакции возникает поток энергии, направленный наружу, в виде излучения в широком интервале частот (длин волн). Взаимодействие между излучением и веществом приводит к установившемуся равновесию: давление направленной наружу радиации уравновешивается давлением гравитации. Дальнейшее сжатие звезды прекращается, пока в центре производится достаточное количество энергии. Это состояние довольно устойчиво, и размер звезды остается постоянным. Водород – главная составная часть космического вещества и важнейший вид ядерного горючего. Запасов водорода звезде хватает на миллиарды лет. Это объясняет, почему звезды устойчивы столь длительное время. До тех пор, пока в центральной зоне весь водород не выгорит, свойства звезды изменяются мало.

Поле выгорания водорода в центральной зоне у звезды образуется геливое ядро. Водородные реакции продолжают протекать, но только в тонком слое около поверхности ядра. Ядерные реакции перемещаются на периферию звезды. Структура звезды на этой стадии описывается моделями со слоевым источником энергии. Выгоревшее ядро начинает сжиматься, а внешняя оболочка – расширяться. Оболочка разбухает до колоссальных размеров, внешняя температура становится низкой. Звезда переходит в стадию красного гиганта. С этого момента жизнь звезды начинает клониться к закату. Красные гиганты отличаются низкими температурами и огромными размерами (от 10 до 1000 R c). Средняя плотность вещества в них не достигает и 0,001 г/см 3 . Их светимость в сотни раз превышает светимость Солнца, но температура значительно ниже (около 3000 – 4000 К).

Полагают, что наше Солнце при переходе в стадию красного гиганта может увеличиться настолько, что заполнит орбиту Меркурия. Правда, Солнце станет красным гигантом через 8 млрд лет.

Для красного гиганта характерна низкая внешняя температура, но очень высокая внутренняя. С ее повышением в термоядерные реакции включаются всё более тяжелые ядра. При температуре 150 млн К начинаются гелиевые реакции, которые являются не только источником энергии, но в ходе них осуществляется синтез более тяжелых химических элементов. После образования углерода в гелиевом ядре звезды возможны следующие реакции:

Следует отметить, что синтез очередного более тяжелого ядра требует все более и более высоких энергий. К моменту образования магния весь гелий в ядре звезды истощается, и, чтобы стали возможными дальнейшие ядерные реакции, необходимо новое сжатие звезды и повышение ее температуры. Однако это возможно не для всех звезд, лишь для достаточно больших, масса которых превышает массу Солнца более чем в 1,4 раза (так называемый предел Чандрасекара). В звездах меньшей массы реакции заканчиваются на стадии образования магния. В звездах, масса которых превышает предел Чандрасекара, за счет гравитационного сжатия температура повышается до 2 млрд градусов, реакции продолжаются, образуя более тяжелые элементы – вплоть до железа. Элементы тяжелее железа образуются при взрывах звезд.

В результате роста давления, пульсаций и других процессов красный гигант непрерывно теряет вещество, которое выбрасывается в межзвездное пространство в виде звездного ветра. Когда внутренние термоядерные источники энергии полностью истощаются, дальнейшая судьба звезды зависит от ее массы.

При массе меньше 1,4 массы Солнца звезда переходит в стационарное состояние с очень большой плотностью (сотни тонн на 1 см 3). Такие звезды называются белыми карликами. В процессе превращения красного гиганта в белый карлик заезда может сбросить свои наружные слои, как легкую оболочку, обнажив при этом ядро. Газовая оболочка ярко светится под действием мощного излучения звезды. Так образуются планетарные туманности. При высоких плотностях вещества внутри белого карлика электронные оболочки атомов разрушаются, и вещество звезды представляет собой электронно-ядерную плазму, причем ее электронная составляющая представляет собой вырожденный электронный газ. Белые карлики находятся в равновесном состоянии за счет равенства сил между гравитацией (фактор сжатия) и давлением вырожденного газа в недрах звезды (фактор расширения). Белые карлики могут существовать миллиарды лет.

Тепловые запасы звезды постепенно истощаются, звезда медленно охлаждается, что сопровождается выбросами оболочки звезд в межзвездное пространство. Звезда постепенно изменяет свой цвет от белого к желтому, затем к красному, наконец, она перестает излучать, становится маленьким безжизненным объектом, мертвой холодной звездой, размеры которой меньше размеров Земли, а масса сравнима с массой Солнца. Плотность такой звезды в миллиарды раз больше плотности воды. Такие звезды называются черными карликами. Так заканчивают свое существование большинство звезд.

При массе звезды более 1,4 массы Солнца стационарное состояние звезды без внутренних источников энергии становится невозможным, т.к. давление внутри звезды не может уравновесить силу тяготения. Начинается гравитационный коллапс – сжатие вещества к центру звезды под действием гравитационных сил.

Если отталкивание частиц и другие причины останавливают коллапс, то происходит мощный взрыв ─ вспышка сверхновой звезды с выбросом значительной части вещества в окружающее пространство и образованием газовых туманностей. Название было предложено Ф.Цвикки в 1934 г. Взрыв сверхновой является одним из промежуточных этапов эволюции звезд перед превращением их в белые карлики, нейтронные звезды или черные дыры. При взрыве выделяется энергия 10 43 ─ 10 44 Дж при мощности излучения 10 34 Вт. При этом блеск звезды увеличивается на десятки звездных величин за несколько суток. Светимость сверхновой может превосходить светимость всей галактики, в которой она вспыхнула.

Газовая туманность, образующаяся при взрыве сверхновой, состоит частично из выброшенных взрывом верхних слоев звезды, а частично – из межзвездного вещества, уплотненного и разогретого разлетающимися продуктами взрыва. Наиболее известной газовой туманностью является Крабовидная туманность в созвездии Тельца – остаток сверхновой 1054 г. Молодые остатки сверхновых расширяются со скоростями 10-20 тыс. км/с. Столкновение расширяющейся оболочки с неподвижным межзвездным газом порождает ударную волну, в которой газ нагревается до миллионов Кельвин и становится источником рентгеновского излучения. Распространение ударной волны в газе приводит к появлению быстрых заряженных частиц (космических лучей), которые, двигаясь в сжатом и усиленном этой же волной межзвездном магнитном поле, излучают в радиодиапазоне.

Астрономы зафиксировали вспышки сверхновых в 1054, 1572, 1604 годах. В 1885 году появление сверхновой было отмечено в туманности Андромеды. Ее блеск превышал блеск всей Галактики и оказался в 4 млрд раз более интенсивным, чем блеск Солнца.

Уже к 1980 г. было открыто более 500 вспышек сверхновых звезд, но ни одна не наблюдалась в нашей Галактике. Астрофизики подсчитали, что в нашей Галактике сверхновые звезды вспыхивают с периодом 10 млн лет в непосредственной близости от Солнца. В среднем в Метагалактике происходит вспышка сверхновой каждые 30 лет.

Дозы космического излучения на Земле при этом могут превышать нормальный уровень в 7000 раз. Это приведет к серьезнейшим мутациям в живых организмах на нашей планете. Некоторые ученые так объясняют внезапную гибель динозавров.

Часть массы взорвавшейся сверхновой звезды может остаться в виде сверхплотного тела – нейтронной звезды или черной дыры. Масса нейтронных звезд составляет (1,4 – 3)М с, диаметр – около 10 км. Плотность нейтронной звезды очень велика, выше плотности атомных ядер ─ 10 15 г/см 3 . При нарастании сжатия и давления становится возможной реакция поглощения электронов протонами В итоге все вещество звезды будет состоять из нейтронов. Нейтронизация звезды сопровождается мощной вспышкой нейтринного излучения. При вспышке сверхновой SN1987A продолжительность нейтринной вспышки составляла 10 с, а энергия, унесенная всеми нейтрино, достигала 3∙10 46 Дж. Температура нейтронной звезды достигает 1 млрд К. Нейтронные звезды очень быстро остывают, светимость их слабеет. Зато они интенсивно излучают радиоволны в узком конусе по направлению магнитной оси. Для звезд, у которых магнитная ось не совпадает с осью вращения, характерно радиоизлучение в виде повторяющихся импульсов. Поэтому нейтронные звезды называют пульсарами. Первые пульсары были открыты в 1967 г. Частота пульсаций излучения, определяемая скоростью вращения пульсара, от 2 до 200 Гц, что указывает на их малые размеры. Например, пульсар в Крабовидной туманности имеет период испускания импульсов 0,03 с. В настоящее время известны сотни нейтронных звезд. Нейтронная звезда может появиться в результате так называемого «тихого коллапса». Если белый карлик входит в двойную систему из близко расположенных звезд, то возникает явление аккреции, когда вещество со звезды-соседа перетекает на белый карлик. Масса белого карлика растет и в определенный момент превосходит предел Чандрасекара. Белый карлик превращается в нейтронную звезду.

Если конечная масса белого карлика превышает 3 массы Солнца, то вырожденное нейтронное состояние неустойчиво, и гравитационное сжатие продолжается до образования объекта, называемого черной дырой. Термин «черная дыра» введен Дж. Уилером в 1968 г. Однако представление о подобных объектах возникло на несколько столетий раньше, после открытия И. Ньютоном в 1687 г. закона всемирного тяготения. В 1783 г. Дж. Митчелл предположил, что в природе должны существовать темные звезды, гравитационное поле которых столь сильно, что свет не может вырваться из них наружу. В 1798 г. такая же идея была высказана П. Лапласом. В 1916 г. физик Шварцшильд, решая уравнения Эйнштейна, пришел к выводу о возможности существования объектов с необычными свойствами, позже названные черными дырами. Черная дыра – область пространства, в которой поле тяготения настолько сильно, что вторая космическая скорость для находящихся в этой области тел должна превышать скорость света, т.е. из черной дыры ничто не может вылететь – ни частицы, ни излучение. В соответствии с общей теорией относительности характерный размер черной дыры определяется гравитационным радиусом: R g =2GM/c 2 , где М – масса объекта, с – скорость света в вакууме, G – постоянная тяготения. Гравитационный радиус Земли равен 9 мм, Солнца 3 км. Границу области, за которую не выходит свет, называют горизонтом событий черной дыры. У вращающихся черных дыр радиус горизонта событий меньше гравитационного радиуса. Особый интерес вызывает возможность захвата черной дырой тел, прилетающих из бесконечности.

Теория допускает существование черных дыр массой 3 –50 масс Солнца, образующихся на поздних стадиях эволюции массивных звезд с массой более 3 масс Солнца, сверхмассивных черных дыр в ядрах галактик массой в миллионы и миллиарды масс Солнца, первичных (реликтовых) черных дыр, формировавшихся на ранних стадиях эволюции Вселенной. До наших дней должны были дожить реликтовые черные дыры массой более 10 15 г (масса средней горы на Земле) из-за действия механизма квантового испарения черных дыр, предложенного С. Хокингом (S.W.Hawking).

Астрономы обнаруживают черные дыры по мощному рентгеновскому излучению. Примером такого типа звезд является мощный рентгеновский источник Лебедь Х-1, масса которого превышает 10М с. Часто черные дыры встречаются в рентгеновских двойных звездных системах. Уже обнаружены десятки черных дыр звездной массы в таких системах (m ч.д. = 4-15 М с). По эффектам гравитационного линзирования открыто несколько одиночных черных дыр звездной массы (m ч.д. =6-8 М с). В случае тесной двойной звезды наблюдается явление аккреции – перетекание плазмы с поверхности обычной звезды под действием гравитационных сил на черную дыру. Вещество, перетекающее на черную дыру, обладает моментом импульса. Поэтому плазма образует вращающийся диск вокруг черной дыры. Температура газа в этом вращающемся диске может достигать 10 млн градусов. При этой температуре газ излучает в рентгеновском диапазоне. По этому излучению можно определить наличие в данном месте черной дыры.

Особый интерес представляют сверхмассивные черные дыры в ядрах галактик. На основании изучения рентгеновского изображения центра нашей Галактики, полученного с помощью спутника CHANDRA, установлено наличие сверхмассивной черной дыры, масса которой в 4 млн. раз превышает массу Солнца. В результате последних исследований американским астрономам удалось обнаружить уникальную сверхтяжелую черную дыру, расположенную в центре очень отдаленной галактики, масса которой в 10 млрд. раз превышает массу Солнца. Для того чтобы достичь таких невообразимо огромных размеров и плотности, черная дыра должна была формироваться на протяжении многих миллиардов лет, непрерывно притягивая и поглощая материю. Ученые оценивают ее возраст в 12,7 млрд лет, т.е. она начала формироваться примерно через один миллиард лет после Большого взрыва. К настоящему времени обнаружено более 250 сверхмассивных черных дыр в ядрах галактик (m ч.д. =(10 6 – 10 9) М с).

С эволюцией звезд тесно связан вопрос о происхождении химических элементов. Если водород и гелий являются элементами, которые остались от ранних стадий эволюции расширяющейся Вселенной, то более тяжелые химические элементы могли образоваться только в недрах звезд при термоядерных реакциях. Внутри звезд при термоядерных реакциях может образоваться до 30 химических элементов (по железо включительно).

По своему физическому состоянию звезды можно разделить на нормальные и вырожденные. Первые состоят в основном из вещества малой плотности, в их недрах идут термоядерные реакции синтеза. К вырожденным звездам относятся белые карлики и нейтронные звезды, они представляют собой конечную стадию эволюции звезд. Реакции синтеза в них закончились, а равновесие поддерживается квантово-механическими эффектами вырожденных фермионов: электронов в белых карликах и нейтронов в нейтронных звездах. Белые карлики, нейтронные звезды и черные дыры объединяют общим названием «компактные остатки».

В конце эволюции в зависимости от массы звезда либо взрывается, либо сбрасывает более спокойно вещество, уже обогащенное тяжелыми химическими элементами. При этом образуются остальные элементы периодической системы. Из обогащенной тяжелыми элементами межзвездной среды образуются звезды следующих поколений. Например, Солнце – звезда второго поколения, образовавшаяся из вещества, уже однажды побывавшего в недрах звезд и обогащенного тяжелыми элементами. Поэтому о возрасте звезд можно судить по их химическому составу, определенному методом спектрального анализа.

Звезды, как и люди, могут быть новорожденными, молодыми, старыми. Каждый миг умирают одни звезды и образуются другие. Обычно самые юные из них похожи на Солнце. Они находятся на стадии формирования и фактически представляют собой протозвезды. Астрономы называют их звездами типа Т - Тельца, по имени своего прототипа. По своим свойствам - например, светимости - протозвезды являются переменными, поскольку их существование еще не вошло в стабильную фазу. Вокруг многих из них находится большое количество материи. От звезд типа Т исходят мощные ветровые потоки.

Протозвезды: начало жизненного цикла

Если на поверхность протозвезды падает вещество, оно быстро сгорает и превращается в тепло. Как следствие, температура протозвезд постоянно увеличивается. Когда она поднимается настолько, что в центре звезды запускаются ядерные реакции, протозвезда обретает статус обыкновенной. С началом протекания ядерных реакций у звезды появляется постоянный источник энергии, который поддерживает ее жизнедеятельность в течение длительного времени. Насколько долгой будет жизненный цикл звезды во Вселенной, зависит от ее первоначального размера. Однако считается, что у звезд, диаметром с Солнце, энергии хватит на то, чтобы безбедно существовать в течение приблизительно 10 млрд лет. Несмотря на это, случается и так, что даже более массивные звезды живут всего лишь несколько миллионов лет. Это происходит по причине того, что сжигают они свое топливо гораздо быстрее.

Звезды нормальных размеров

Каждая из звезд представляет собой сгустки горячего газа. В их глубинах постоянно происходит процесс выработки ядерной энергии. Однако не все звезды похожи на Солнце. Одно из главных различий заключается в цвете. Звезды бывают не только желтыми, но и синеватыми, красноватыми.

Яркость и светимость

Различаются они и по таким признакам, как блеск, яркость. То, насколько яркой окажется наблюдаемая с поверхности Земли звезда, зависит не только от ее светимости, но и от удаленности от нашей планеты. Учитывая расстояние до Земли, звезды могут обладать совершенно различной яркостью. Этот показатель колеблется от одной десятитысячной блеска Солнца до яркости, сопоставимой более чем с миллионом Солнц.

Большая часть звезд находится на нижнем отрезке этого спектра, являясь тусклыми. Во многих отношениях Солнце является среднестатистической, типичной звездой. Однако, по сравнению с другими, оно обладает гораздо большей яркостью. Большое количество тусклых звезд могут наблюдаться даже невооруженным глазом. Причина, по которой звезды отличаются по яркости, заключается в их массе. Цвет, блеск и изменение яркости во времени определяется количеством вещества.

Попытки объяснить жизненный цикл звезд

Люди издавна пытались проследить жизнь звезд, однако первые попытки ученых были достаточно робкими. Первым достижением было применение закона Лейна к гипотезе Гельмгольца-Кельвина о гравитационном сжатии. Это принесло в астрономию новое понимание: теоретически температура звезды должна повышаться (ее показатель обратно пропорционален радиусу звезды) до тех пор, пока увеличение плотности не замедлит процессы сжатия. Тогда расход энергии будет выше, чем ее приход. В этот момент звезда начнет стремительно остывать.

Гипотезы о жизни звезд

Одна из оригинальных гипотез о жизненном цикле звезды была предложена астрономом Норманом Локиером. Он считал, что звезды возникают из метеорной материи. При этом положения его гипотезы опирались не только на имеющиеся в астрономии теоретические выводы, но и на данные спектрального анализа звезд. Локиер был убежден в том, что химические элементы, которые принимают участие в эволюции небесных тел, состоят из элементарных частиц - «протоэлементов». В отличие от современных нейтронов, протонов и электронов, они обладают не общим, а индивидуальным характером. Например, согласно Локиеру, водород распадается на так называемый «протоводород»; железо становится «протожелезом». Описать жизненный цикл звезды пытались и другие ученые-астрономы, например, Джеймс Хопвуд, Яков Зельдович, Фред Хойл.

Звезды-гиганты и звезды-карлики

Звезды больших размеров являются самыми горячими и яркими. На вид они обычно белые или голубоватого оттенка. Несмотря на то что они обладают гигантскими размерами, топливо внутри них сгорает настолько быстро, что они лишаются его за каких-то несколько миллионов лет.

Звезды небольших размеров, в противоположность гигантским, обычно не столь яркие. Они обладают красным цветом, живут достаточно долго - в течение миллиардов лет. Но среди ярких звезд на небосклоне есть также красные и оранжевые. Примером может послужить звезда Альдебаран - так называемый «глаз быка», находящийся в созвездии Тельца; а также в созвездии Скорпиона. Почему же эти холодные звезды способны конкурировать по яркости с раскаленными звездами, наподобие Сириуса?

Так происходит из-за того, что когда-то они очень сильно расширились, и по своему диаметру стали превосходить огромные красные звезды (сверхгиганты). Огромная площадь позволяет этим звездам излучать на порядок больше энергии, чем Солнце. И это несмотря на тот факт, что их температура намного ниже. К примеру, диаметр Бетельгейзе, находящейся в созвездии Ориона, в несколько сотен раз больше диаметра Солнца. А диаметр обыкновенных красных звезд обычно не составляет и десятой части размера Солнца. Такие звезды называют карликами. Эти виды жизненного цикла звезд может проходить каждое небесное светило - одна и та же звезда на разных отрезках своей жизни может быть и красным гигантом, и карликом.

Как правило, светила, подобные Солнцу, поддерживают свое существование за счет находящегося внутри водорода. Он превращается в гелий внутри ядерной сердцевины звезды. Солнце располагает огромным количеством топлива, однако даже оно не бесконечно - за последние пять миллиардов лет была израсходована половина запаса.

Время жизни звезд. Жизненный цикл звезд

После того как внутри звезды исчерпываются запасы водорода, приходят серьезные перемены. Остатки водорода начинают сгорать не внутри ее ядра, а на поверхности. При этом все больше сокращается время жизни звезды. Цикл звезд, по крайней мере, большинства из них, на этом отрезке переходит в стадию красного гиганта. Размер звезды становится больше, а ее температура - напротив, меньше. Так появляется большинство красных гигантов, а также сверхгигантов. Этот процесс входит в состав общей последовательности происходящих со звездами изменений, которые ученые назвали эволюцией звезд. Цикл жизни звезды включает все ее стадии: в конечном счете все звезды стареют и умирают, а продолжительность их существования напрямую определяется количеством топлива. Большие звезды заканчивают свою жизнь огромным, эффектным взрывом. Более скромные, наоборот, погибают, постепенно сжимаясь до размеров белых карликов. Затем они просто угасают.

Сколько по времени живет средняя звезда? Жизненный цикл звезды может длиться от менее 1,5 млн лет и до 1 млрд лет и более. Все это, как было сказано, зависит от ее состава и размеров. Звезды, подобные Солнцу, живут от 10 до 16 млрд лет. Очень яркие звезды, наподобие Сириуса, живут относительно недолго - всего лишь несколько сотен миллионов лет. Схема жизненного цикла звезды включает в себя следующие этапы. Это молекулярное облако - гравитационный коллапс облака - рождение сверхновой звезды - эволюция протозвезды - окончание протозвездной фазы. Затем следуют этапы: начало стадии молодой звезды - середина жизни - зрелость - стадия красного гиганта - планетарная туманность - этап белого карлика. Последние две фазы свойственны звездам малого размера.

Природа планетарных туманностей

Итак, мы рассмотрели кратко жизненный цикл звезды. Но что представляет собой Превращаясь из огромного красного гиганта в белого карлика, иногда звезды сбрасывают внешние слои, и тогда ядро звезды становится обнаженным. Газовая оболочка начинает светиться под действием энергии, излучаемой звездой. Название свое эта стадия получила за счет того, что светящиеся газовые пузыри в этой оболочке часто похожи на диски вокруг планет. Но на самом деле они ничего общего с планетами не имеют. Жизненный цикл звезд для детей может не включать всех научных подробностей. Можно лишь описать основные фазы эволюции небесных светил.

Звездные скопления

Астрономы очень любят исследовать Есть гипотеза, что все светила рождаются именно группами, а не поодиночке. Так как звезды, принадлежащие к одному скоплению, обладают схожими свойствами, то и различия между ними являются истинными, а не обусловленными расстоянием до Земли. Какие бы изменения не приходились на долю этих звезд, свое начало они берут в одно и то же время и при равных условиях. Особенно много знаний можно получить, изучая зависимость их свойств от массы. Ведь возраст звезд в скоплениях и их удаленность от Земли примерно равны, поэтому отличаются они только по этому показателю. Скопления будут интересны не только профессиональным астрономам - каждый любитель будет рад сделать красивую фотографию, полюбоваться их исключительно красивым видом в планетарии.

Созерцая ясное ночное небо вдали от городских огней, нетрудно заметить что Вселенная полна звезд. Каким образом природе удалось создать несметное число этих объектов? Ведь по оценкам только в Млечном Пути около 100 млрд. звезд. Кроме того, звезды рождаются и поныне, 10-20 млрд. лет спустя после образования Вселенной. Как образуются звезды? Каким изменениям подвергается звезда, прежде чем она достигнет устойчивого состояния, как у нашего Солнца?

С точки зрения физики, звезда — это газовый шар

С точки зрения физики, — это газовый шар. Теплота и давление генерируемые в ядерных реакциях — главным образом в реакциях синтеза гелия из водорода — предотвращают сжатие звезды под действием собственной гравитации. Жизнь этого относительно простого объекта проходит по вполне определенному сценарию. Сначала происходит рождение звезды из диффузного облака межзвездного газа, потом идет долгое светопреставление. Но в конце концов, когда все ядерное топливо будет исчерпано, она превратится в слабосветящийся белый карлик, нейтронную звезду или черную дыру.


Это описание может создать впечатление, что детальный анализ образования и ранних стадий эволюции звезд не должен вызывать существенных трудностей. Но взаимодействие гравитации и теплового давления приводит к тому, что звезды ведут себя непредсказуемым образом.
Рассмотрим, например, эволюцию светимости, то есть изменение количества энергии, испускаемое звездной поверхностью в единицу времени. Внутренняя температура молодой звезды слишком мала для слияния атомов ядер водорода, поэтому ее светимость должна быть относительно низкой. Она может возрасти, когда начнутся ядерные реакции, и лишь потом может постепенно падать. На самом деле очень молодая звезда чрезвычайно яркая. Ее светимость уменьшается с возрастом, достигая временного минимума во время горения водорода.

На ранних стадиях эволюции в звездах происходят разнообразные физические процессы

На ранних стадиях эволюции в звездах происходят разнообразные физические процессы, некоторые из которых еще плохо поняты. Только в последние два десятилетия астрономы начали строить детальную картину эволюции звезд на основе достижений.теории и наблюдений.
Звезды рождаются из больших не наблюдаемых в видимом свете облаков, расположенных в дисках спиральных галактик. Эти объекты астрономы называют гигантскими молекулярными комплексами. Термин «молекулярный» отражает тот факт, что газ в комплексах в основном состоит из водорода в молекулярной форме. Такие облака — самые большие образования в Галактике, иногда достигают более 300 св. лет в поперечнике.

При более тщательном анализе эволюции звезды

При более тщательном анализе обнаруживается, что звезды образуются из отдельных конденсаций — компактных зон -в гигантском молекулярном облаке. Астрономы исследовали свойства компактных зон с помощью больших радиотелескопов — единственных инструментов, способных регистрировать слабое миллимоблаков. Из наблюдений этого излучения следует, что типичная компактная зона имеет диаметр несколько световых месяцев, плотность 30000 молекул водорода на 1 см^ и температуру 10 Кельвинов.
На основе этих значений был сделан вывод, что давление газа в компактных зонах таково, что оно может противостоять сжатию под действием сил самогравитации.

Поэтому, чтобы образовалась звезда, компактная зона должна сжиматься из неустойчивого состояния, причем такого, чтобы силы гравитации превышали внутреннее газовое давление.
Пока еще не ясно, как компактные зоны конденсируются из исходного молекулярного облака и приобретают такое неустойчивое состояние. Тем не менее еще до открытия компактных зон у астрофизиков была возможность смоделировать процесс звездообразования. Уже в 60-х годах теоретики использовали компьютерное моделирование, чтобы определить, как происходит сжатие облаков в неустойчивом состоянии.
Хотя для теоретических расчетов использовался широкий диапазон начальных условий, полученные результаты совпадали: у слишком неустойчивого облака сжимается сначала внутренняя часть, то есть свободному падению подвергаются сначала вещество в центре, а периферийные области остаются стабильными. Постепенно область сжатия распространяется наружу, охватывая все облако.

Глубоко в недрах сжимающийся области начинается эволюция звезд

Глубоко в недрах сжимающийся области начинается звездообразование. Диаметр звезды -всего лишь одна световая секунда, т. е. одна миллионная поперечника компактной зоны. Для таких относительно малых размеров общая картина сжатия облака не существенна, а главную роль здесь играет скорость падения вещества на звезду

Скорость падения вещества может быть разной, но она в прямую зависит от температуры облака. Чем выше температура, тем больше скорость. Вычисления показывают, что масса, равная массе Солнца, может накапливаться в центре сжимающейся компактной зоны за время от 100 тыс. до 1 млн. лет.Тело, образующееся в центре коллапсирующе-го облака, называют протозвездой. С помощью компьютерного моделирования астрономы разработали модель, описывающую строение протозвезды.
Оказалось, что падающий газ ударяется о поверхность протозвезды с очень высокой скоростью. Поэтому образуется мощный ударный фронт (резкий переход к очень высокому давлению). В пределах ударного фронта газ нагревается почти до 1 млн. Кельвинов, затем при излучении у поверхности быстро охлаждается примерно ло 10000 К, образуя слой за слоем протозвезду.

Наличием ударного фронта объясняется высокая яркость молодых звезд

Наличием ударного фронта объясняется высокая яркость молодых звезд. Если масса протоз-везды равна одной солнечной, то ее светимость может превышает солнечную в десять раз. Но она обусловлена не реакциями термоядерного синтеза, как у обычных звезд, а кинетической энергией вещества, приобретаемой в поле гравитации.
Протозвезды можно наблюдать, но не с помощью обычных оптических телескопов.
Весь межзвездный газ, в том числе и тот, из которого образуются звезды, содержит в себе «пыль» — смесь твердых частиц субмикронных размеров. Излучение ударного фронта встречает на своем пути большое число этих частиц, падающих вместе с газом на поверхность протозвезды.
Холодные пылевые частицы поглощают фотоны, испускаемые ударным фронтом, и переизлучают их более длинноволновыми. Это длинноволновое излучение в свою очередь поглощается, а затем переизлучается еще более удаленной пылью. Поэтому пока фотон прокладывают свой путь сквозь облака пыли и газа, его длина волны оказывается в инфракрасном диапазоне электромагнитного спектра. Но уже на расстоянии нескольких световых часов от протозвезды длина волны фотона становится слишком велика, так что пыль не может его поглотить, и он, наконец, может беспрепятственно мчаться к земным телескопам, чувствительным к инфракрасному излучению.
Несмотря на широкие возможности современных детекторов, астрономы не могут утверждать, что телескопы действительно регистрируют излучение протозвезд. По-видимому они глубоко спрятаны в недрах компактных зон, зарегистрированных в радиодиапазоне. Неопределенность в регистрации связана с тем, что детекторы не могут отличить протозвезду от более старших звезд, вкрапленных в газ и пыль.
Для надежного отождествления инфракрасный или радиотелескоп должен обнаружить доплеровское смещение спектральных линий излучения протозвезды. Доплеровское смещение показало бы истинное движение газа, падающего на ее поверхность.
Как только в результате падения вещества масса протозвезды достигает нескольких десятых массы Солнца, температура в центре становится достаточной для начала реакций термоядерного синтеза. Однако термоядерные реакции в протозвездах коренным образом отличаются от реакций в звездах среднего «возраста». Источником энергии таких звезд являются реакции термоядерного синтеза гелия из водорода.

Водород — самый распространенный химический элемент во Вселенной

Водород — самый распространенный химический элемент во Вселенной. При рождении Вселенной (Большом взрыве) этот элемент образовался в обычной форме с ядром, состоящим из одного протона. Но два из каждых 100000 ядер являются ядрами дейтерия, состоящими из протона и нейтрона. Этот изотоп водорода присутствует в современную эпоху в межзвездном газе, из которого он попадает в звезды.
Примечательно, что эта мизерная примесь играет доминирующую роль в жизни протозвезд. Температура в их недрах недостаточна для реакций обычного водорода, которые происходят при 10 млн. Кельвинов. Но в результате гравитационного сжатия температура в центре протозвезды легко может достичь 1 млн. Кельвинов, когда начинается слияние ядер дейтерия, при которых также выделяется колоссальная энергия.

Непрозрачность протозвездного вещества слишком велика

Непрозрачность протозвездного вещества слишком велика, чтобы эта энергия передавалась путем лучистого переноса. Поэтому звезда становится конвективно неустойчивой: нагретые на «ядерном огне» пузыри газа всплывают к поверхности. Эти восходящие потоки уравновешиваются нисходящими к центру потоками холодного газа. Подобные конвективные движения, но в гораздо меньших масштабах, имеют место в комнате с паровым отоплением. В протозвезде конвективные вихри переносят дейтерий с поверхности в ее недра. Таким образом топливо, необходимое для термоядерных реакций, достигает ядра звезды.
Несмотря на очень низкую концентрацию ядер дейтерия, выделяющееся при их слиянии тепло оказывает сильное влияние на протозвезду. Главным следствием реакций горения дейтерия является «разбухание» протозвезды. Из-за эффективного переноса тепла путем конвекции в результате «горения» дейтерия протозвезда увеличивается в размерах, который зависит от ее массы. Протозвезда одной солнечной массы имеет радиус, равный пяти солнечным. При массе, равной трем солнечным, протозвезда раздувается до радиуса, равного 10 солнечным.
Масса типичной компактной зоны больше массы порождаемой ее звезды. Поэтому должен существовать некоторый механизм, удаляющий излишнюю массу и прекращающий падение вещества. Большинство астрономов убеждены, что за это ответственен сильный звездный ветер, вырывающийся с поверхности протозвезды. Звездный ветер сдувает падающий газ в обратном на-правлении и в конце концов рассеивает компактную зону.

Идея звездного ветра

Из теоретических расчетов «идея звездного ветра» не следует. И удивленным теоретикам были предоставлены свидетельства этого явления: наблюдения потоков молекулярного газа, движущихся от инфракрасных источников излучения. Эти потоки связаны с протозвездным ветром. Его происхождение одна из самых глубоких тайн молодых звезд.
Когда рассеивается компактная зона, обнажается объект, который можно наблюдать в оптическом диапазоне — молодая звезда. Как и протозвезда, она имеет высокую светимость, которая в большей мере определяется гравитацией, чем термоядерным синтезом. Давление в недрах звезды предотвращает катастрофический гравитационный коллапс. Однако тепло, ответственное за это давление, излучается со звездной поверхности, поэтому звезда очень ярко светит и медленно сжимается.
По мере сжатия ее внутренняя температура постепенно растет и в конце концов достигает 10 млн. Кельвинов. Тогда начинаются реакции слияния ядер водорода с образованием гелия. Выделяемое тепло создает давление, препятствующее сжатию, и звезда долго будет светить, пока в ее недрах не закончится ядерное топливо.
Нашему Солнцу, типичной звезде, потребовалось около 30 млн. лет на сжатие от протозвездных до современных размеров. Благодаря теплу, выделяемому при термоядерных реакциях, оно сохраняет эти размеры уже в течение примерно 5 млрд. лет.
Так рождаются звезды. Но несмотря на столь явные успехи ученых, позволивших нам узнать одну из многих тайн мироздания, еще многие известные свойства молодых звезд пока полностью не понятны. Это относится к их неправильной переменности, колоссальному звездному ветру, неожиданным ярким вспышкам. На эти вопросы еще нет уверенных ответов. Но эти нерешенные проблемы следует рассматривать как разрывы в цепи, основные звенья которой уже спааяны. И нам удастся замкнуть эту цепь и завершить биографию молодых звезд, если мы найдем ключ, созданный самой природой. И этот ключ мерцает в ясном небе над нами.

Рождение звезды видео:

Каждый из нас хотя бы раз в жизни смотрел в звездное небо. Кто-то смотрел на эту красоту, испытывая романтические чувства, другой пытался понять, откуда берется вся эта красота. Жизнь в космосе, в отличие от жизни на нашей планете, течет на другой скорости. Время в космическом пространстве живет своими категориями, расстояния и размеры во Вселенной колоссальны. Мы редко задумываемся над тем, что на наших глазах постоянно происходит эволюция галактик и звезд. Каждый объект в бескрайнем космосе является следствием определенным физических процессов. У галактик, у звезд и даже у планет имеются основные фазы развития.

Наша планета и мы все зависим от нашего светила. Как долго Солнце будет радовать нас своим теплом, вдыхая жизнь в Солнечную систему? Что ждет нас в будущем через миллионы и миллиарды лет? В связи с этим, любопытно больше узнать о том, каковы этапы эволюции астрономических объектов, откуда берутся звезды и чем оканчивается жизнь этих чудесных светил в ночном небе.

Происхождение, рождение и эволюция звезд

Эволюция звезд и планет, населяющих нашу галактику Млечный Путь и всю Вселенную, большей частью неплохо изучена. В космосе незыблемо действуют законы физики, которые помогают понять происхождение космических объектов. Опираться в данном случае принято на теорию Большого Взрыва, которая сейчас является доминирующей доктриной о процессе происхождения Вселенной. Событие, потрясшее мироздание и приведшее к формированию вселенной, по космическим меркам молниеносно. Для космоса от рождения звезды до ее гибели проходят мгновения. Огромные расстояния создают иллюзию постоянства Вселенной. Вспыхнувшая вдали звезда светит нам миллиарды лет, в то время ее уже может и не быть.

Теория эволюции галактики и звезд является развитием теории Большого Взрыва. Учение о рождении звезд и возникновении звездных систем отличается масштабами происходящего и временными рамками, которые, в отличие от Вселенной в целом, возможно наблюдать современными средствами науки.

Изучая жизненный цикл звезд можно на примере ближайшего к нам светила. Солнце – одна из сотни триллионов звезд в нашем поле зрения. К тому же расстояние от Земли до Солнца (150 млн. км) предоставляет уникальную возможность изучить объект, не покидая пределов Солнечной системы. Полученная информация позволит детально разобраться с тем, как устроены другие звезды, как быстро эти гигантские источники тепла истощаются, каковы стадии развития звезды и каким будет финал этой блистательной жизни — тихий и тусклый или сверкающий, взрывной.

После Большого взрыва мельчайшие частицы сформировали межзвездные облака, которые стали «роддомом» для триллионов звезд. Характерно, что все звезды рождались в одно и то же время в результате сжатия и расширения. Сжатие в облаках космического газа возникало под воздействием собственной гравитации и аналогичных процессов у новых звезд по соседству. Расширение возникло в результате внутреннего давления межзвездного газа и под действием магнитных полей внутри газового облака. При этом облако свободно вращалось вокруг своего центра масс.

Облака газа, образовавшиеся после взрыва, на 98% состоят из атомарного и молекулярного водорода и гелия. Только 2% в этом массиве приходится на пылевые и твердые микроскопические частицы. Ранее считалось, что в центре любой звезды лежит ядро железа, раскаленного до температуры в миллион градусов. Именно этим аспектом и объяснялась гигантская масса светила.

В противостоянии физических сил преобладали силы сжатия, так как свет, возникающий в результате выделения энергии, не проникает внутрь газового облака. Свет вместе с частью выделяемой энергии распространяется наружу, создавая внутри плотного скопления газа минусовую температуру и зону низкого давления. Находясь в таком состоянии, космический газ стремительно сжимается, влияние сил гравитационного притяжения приводит к тому, что частицы начинают формировать звездное вещество. Когда скопление газа плотное, интенсивное сжатие приводит к тому, что образуются звездное скопление. Когда размеры газового облака незначительны, сжатие приводит к образованию одиночной звезды.

Краткая характеристика происходящего заключается в том, что будущее светило проходит два этапа — быстрое и медленное сжатие до состояния протозвезды. Говоря простым и понятным языком, быстрое сжатие является падением звездного вещества к центру протозвезды. Медленное сжатие происходит уже на фоне образовавшегося центра протозвезды. В течение последующих сотен тысяч лет новое образование сокращается в размерах, а его плотность увеличивается в миллионы раз. Постепенно протозвезда становится непрозрачной из-за высокой плотности звездного вещества, а продолжающееся сжатие запускает механизм внутренних реакций. Рост внутреннего давления и температур приводит к образованию у будущей звезды собственного центра тяжести.

В таком состоянии протозвезда пребывает миллионы лет, медленно отдавая тепло и постепенно сжимаясь, уменьшаясь в размерах. В результате вырисовываются контуры новой звезды, а плотность его вещества становится сравнима с плотностью воды.

В среднем плотность нашей звезды составляет 1,4 кг/см3 — практически такая же, как плотность воды в соленом Мертвом море. В центре Солнце имеет плотность 100 кг/см3. Звездное вещество находится не в жидком состоянии, а пребывает в виде плазмы.

Под воздействием огромного давления и температуры приблизительно в 100 миллионов К начинаются термоядерные реакции водородного цикла. Сжатие прекращается, масса объекта возрастает, когда энергия гравитации переходит в термоядерное горение водорода. С этого момента новая звезда, излучая энергию, начинает терять массу.

Вышеописанный вариант образования звезды — всего лишь примитивная схема, которая описывает начальный этап эволюции и рождения звезды. Сегодня такие процессы в нашей галактике и во всей Вселенной практически незаметны ввиду интенсивного истощения звездного материала. За всю сознательную историю наблюдений за нашей Галактикой были отмечены лишь единичные появления новых звезд. В масштабах Вселенной эта цифра может быть увеличена в сотни и в тысячи раз.

Большую часть своей жизни протозвезды скрыты от человеческого глаза пылевой оболочкой. Излучение ядра можно наблюдать только в инфракрасном диапазоне, который является единственной возможностью видеть рождение звезды. К примеру, в Туманности Ориона в 1967 году ученые-астрофизики в инфракрасном диапазоне обнаружили новую звезду, температура излучения которой составляла 700 градусов Кельвина. Впоследствии выяснилось, что местом рождения протозвезд являются компактные источники, которые имеются не только в нашей галактике, но и в других отдаленных от нас уголках Вселенной. Помимо инфракрасного излучения места рождения новых звезд отмечены интенсивными радиосигналами.

Процесс изучения и схема эволюции звезд

Весь процесс познания звезд можно условно разделить на несколько этапов. В самом начале следует определить расстояние до звезды. Информация о том, как далеко от нас находится звезда, как долго идет от нее свет, дает представление о том, что происходило со светилом на протяжении всего этого времени. После того, как человек научился измерять расстояние до далеких звезд, стало ясно, что звезды – это то же самые солнца, только разных размеров и с разной судьбой. Зная расстояние до звезды, по уровню света и количеству излучаемой энергии можно проследить процесс термоядерного синтеза звезды.

Вслед за определением расстояния до звезды можно с помощью спектрального анализа рассчитать химический состав светила и узнать его структуру и возраст. Благодаря появлению спектрографа у ученых проявилась возможность изучить природу света звезд. Этим прибором можно определить и измерить газовый состав звездного вещества, которым обладает звезда на разных этапах своего существования.

Изучая спектральный анализ энергии Солнца и других звезд, ученые пришли к выводу, что эволюция звезд и планет имеет общие корни. Все космические тела имеют однотипный, сходный химический состав и произошли из одной и той же материи, возникшей в результате Большого Взрыва.

Звездное вещество состоит из тех же химических элементов (вплоть до железа), что и наша планета. Разница только в количестве тех или иных элементов и в процессах, происходящих на Солнце и внутри земной тверди. Это и отличает звезды от других объектов во Вселенной. Происхождение звезд следует также рассматривать в контексте другой физической дисциплины — квантовой механики. По этой теории, материя, которая определяет звездное вещество, состоит из постоянно делящихся атомов и элементарных частиц, создающих свой микромир. В этом свете вызывает интерес структура, состав, строение и эволюция звезд. Как выяснилось, основная масса нашей звезды и многих других звезд приходится всего на два элемента — водород и гелий. Теоретическая модель, описывающая строение звезды, позволит понять их строение и главное отличие от других космических объектов.

Главная особенность заключается в том, что многие объекты во Вселенной имеют определенный размер и форму, тогда как звезда может по мере своего развития менять размер. Горячий газ представляет собой соединение атомов, слабо связанных друг с другом. Через миллионы лет после формирования звезды начинается остывание поверхностного слоя звездного вещества. Большую часть своей энергии звезда отдает в космическое пространство, уменьшаясь или увеличиваясь в размерах. Передача тепла и энергии происходит из внутренних областей звезды к поверхности, оказывая влияние на интенсивность излучения. Другими словами, одна и та же звезда в разные периоды своего существования выглядит по-разному. Термоядерные процессы на основе реакций водородного цикла способствуют превращению легких атомов водорода в более тяжелые элементы — гелий и углерод. По мнению астрофизиков и ученых-ядерщиков, подобная термоядерная реакция является самой эффективной по количеству выделяемого тепла.

Почему же термоядерный синтез ядра не заканчивается взрывом такого реактора? Все дело в том, что силы гравитационного поля в нем могут удерживать звездное вещество в пределах стабилизированного объема. Из этого можно сделать однозначный вывод: любая звезда представляет собой массивное тело, которое сохраняет свои размеры благодаря балансу между силами гравитации и энергией термоядерных реакций. Результатом такой идеальной природной модели является источник тепла, способный работать длительное время. Предполагается, что первые формы жизни на Земле появились 3 млрд. лет назад. Солнце в те далекие времена грело нашу планету так же, как и сейчас. Следовательно, наша звезда мало чем изменилась, несмотря на то, что масштабы излучаемого тепла и солнечной энергии колоссальны — более 3-4 млн. тонн каждую секунду.

Нетрудно подсчитать, сколько за все годы своего существования наша звезда потеряла в весе. Это будет громадная цифра, однако из-за своей огромной массы и высокой плотности такие потери в масштабах Вселенной выглядят ничтожными.

Стадии эволюции звезд

Судьба светила в находится в зависимости от исходной массы звезды и ее химического состава. Пока в ядре сосредоточены основные запасы водорода, звезда пребывает в так называемой главной последовательности. Как только наметилась тенденция на увеличение размеров звезды, значит, иссяк основной источник для термоядерного синтеза. Начался длительный финальный путь трансформации небесного тела.

Образовавшиеся во Вселенной светила изначально делятся на три самых распространенных типа:

  • нормальные звезды (желтые карлики);
  • звезды-карлики;
  • звезды-гиганты.

Звезды с малой массой (карлики) медленно сжигают запасы водорода и проживают свою жизнь достаточно спокойно.

Таких звезд большинство во Вселенной и к ним относится наша звезда – желтый карлик. С наступлением старости желтый карлик становится красным гигантом или сверхгигантом.

Исходя из теории происхождения звезд, процесс формирования звезд во Вселенной не закончился. Самые яркие звезды в нашей галактике являются не только самыми крупными, в сравнении с Солнцем, но и самыми молодыми. Астрофизики и астрономы называют такие звезды голубыми сверхгигантами. В конце концов, их ожидает одна и та же участь, которую переживают триллионы других звезд. Сначала стремительное рождение, блистательная и ярая жизнь, после которой наступает период медленного затухания. Звезды такого размера, как Солнце, имеют продолжительный жизненный цикл, находясь в главной последовательности (в средней ее части).

Используя данные о массе звезды, можно предположить ее эволюционный путь развития. Наглядная иллюстрация данной теории — эволюция нашей звезды. Ничто не бывает вечным. В результате термоядерного синтеза водород превращается в гелий, следовательно, его первоначальные запасы расходуются и уменьшаются. Когда-то, очень не скоро, эти запасы закончатся. Судя по тому, что наше Солнце продолжает светить уже более 5 млрд. лет, не меняясь в своих размерах, зрелый возраст звезды еще может продлиться примерно такой же период.

Истощение запасов водорода приведет к тому, что под воздействием гравитации ядро солнца начнет стремительно сжиматься. Плотность ядра станет очень высокой, в результате чего термоядерные процессы переместятся в прилегающие к ядру слои. Подобное состояние называется коллапсом, который может быть вызван прохождением термоядерных реакций в верхних слоях звезды. В результате высокого давления запускаются термоядерные реакции с участием гелия.

Запасов водорода и гелия в этой части звезды хватит еще на миллионы лет. Еще очень нескоро истощение запасов водорода приведет к увеличению интенсивность излучения, к увеличению размеров оболочки и размеров самой звезды. Как следствие, наше Солнце станет очень большим. Если представить эту картину через десятки миллиардов лет, то вместо ослепительного яркого диска на небе будет висеть жаркий красный диск гигантских размеров. Красные гиганты — это естественная фаза эволюции звезды, ее переходное состояние в разряд переменных звезд.

В результате такой трансформации сократится расстояние от Земли до Солнца, так что Земля попадет в зону влияния солнечной короны и начнет «жариться» в ней. Температура на поверхности планеты вырастет в десятки раз, что приведет к исчезновению атмосферы и к испарению воды. В результате планета превратится в безжизненную каменистую пустыню.

Финальные стадии эволюции звезд

Достигнув фазы красного гиганта, нормальная звезда под влиянием гравитационных процессов становится белым карликом. Если масса звезды примерно равна массе нашего Солнца, все основные процессы в ней будут происходить спокойно, без импульсов и взрывных реакций. Белый карлик будет умирать долго, выгорая дотла.

В случаях, когда звезда изначально имела массу больше солнечной в 1,4 раза, белый карлик не будет финальной стадией. При большой массе внутри звезды начинаются процессы уплотнения звездного вещества на атомном, молекулярном уровне. Протоны превращаются в нейтроны, плотность звезды увеличивается, а ее размеры стремительно уменьшаются.

Известные науке нейтронные звезды имеют диаметр в 10-15 км. При таких малых размерах нейтронная звезда имеет колоссальную массу. Один кубический сантиметр звездного вещества может весить миллиарды тонн.

В том случае, если мы имели изначально дело со звездой большой массы, финальный этап эволюции принимает другие формы. Судьба массивной звезды – черная дыра — объект с неизученной природой и непредсказуемым поведением. Огромная масса звезды способствует увеличению гравитационных сил, приводящих в движение силы сжатия. Приостановить этот процесс не представляется возможным. Плотность материи растет до тех пор, пока не превращается в бесконечность, образуя сингулярное пространство (теория относительности Эйнштейна). Радиус такой звезды в конечном итоге станет равен нулю, став черной дырой в космическом пространстве. Черных дыр было бы значительно больше, если бы в космосе большую часть пространства занимали массивные и сверхмассивные звезды.

Следует отметить, что при трансформации красного гиганта в нейтронную звезду или в черную дыру, Вселенная может пережить уникальное явление — рождение нового космического объекта.

Рождение сверхновой – самая впечатляющая финальная стадия эволюции звезд. Здесь действует естественный закон природы: прекращение существование одного тела дает начало новой жизни. Период такого цикла, как рождение сверхновой, в основном касается массивных звезд. Израсходовавшиеся запасы водорода приводят к тому, что в процесс термоядерного синтеза включается гелий и углерод. В результате этой реакции давление снова растет, а в центре звезды образуется ядро железа. Под воздействием сильнейших гравитационных сил центр массы смещается в центральную часть звезды. Ядро становится настолько тяжелым, что неспособно противостоять собственной гравитации. Как следствие, начинается стремительное расширение ядра, приводящее к мгновенному взрыву. Рождение сверхновой — это взрыв, ударная волна чудовищной силы, яркая вспышка в бескрайних просторах Вселенной.

Следует отметить, что наше Солнце не является массивной звездой, поэтому подобная судьба ее не грозит, не стоит бояться такого финала и нашей планете. В большинстве случаев взрывы сверхновых происходят в далеких галактиках, с чем и связано их достаточно редкое обнаружение.

В заключение

Эволюция звезд — это процесс, который растянут по времени на десятки миллиардов лет. Наше представление о происходящих процессах — всего лишь математическая и физическая модель, теория. Земное время является лишь мгновением в огромном временном цикле, которым живет наша Вселенная. Мы можем только наблюдать то, что происходило миллиарды лет назад и предполагать, с чем могут столкнуться последующие поколения землян.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Звезды, как известно, получают свою энергию из реакций термоядерного синтеза, и у каждой звезды рано или поздно наступает момент, когда термоядерное топливо подходит к концу. Чем выше масса звезды, тем быстрее она сжигает все, что может, и переходит на заключительную стадию своего существования. Дальнейшие события могут идти по разным сценариям, какой именно – в первую очередь зависит опять же от массы.
В то время, когда «догорает» водород в центре звезды, в ней выделяется гелиевое ядро, сжимающееся и выделающее энергию. В дальнейшем в нем могут начаться реакции горения гелия и последующих элементов (см. ниже). Внешние слои увеличиваются во много раз под действием увеличившегося давления, идущего из нагретого ядра, звезда становится красным гигантом.
В зависимости от массы звезды, в ней могут протекать разные реакции. От этого зависит, какой состав будет иметь звезда к моменту угасания синтеза.

Белые карлики

Для звезд с массой до примерно 10 M C ядро весит менее 1,5 M C . После завершения термоядерных реакций прекращается давление излучения, и ядро начинает сжиматься под действием гравитации. Сжимается оно до тех пор, пока не начнет мешать давление вырожденного электронного газа, обусловленное принципом Паули. Внешние слои сбрасываются и рассеиваются, образуя планетарную туманность. Первую такую туманность открыл французский астроном Шарль Мессье в 1764 году и занес ее в каталог под номером M27.
То, что получилось из ядра, называется белым карликом. Белые карлики имеют плотностьбольше 10 7 г/см 3 и температуру поверхости порядка 10 4 К. Светимость на 2-4 порядка ниже светимости Солнца. Термоядерный синтез в нем не идет, вся излучаемая им энергия была накоплена ранее.Таким образом, белые карлики медленно остывают и перестают быть видимыми.
У белого карлика еще есть шанс проявить активность, если он входит в состав двойной звезды и перетягивает на себя массу компаньона (например, компаньон стал красным гигантом и заполнил своейй массой всю свою полость Роша). В таком случае может начаться либо синтез водорода в CNO-цикле с помощью углерода, содержащегося в белом карлике, заканчивающийся сбросом внешнего водородного слоя («новая» звезда). Либо масса белого карлика может вырасти настолько, что загорится ее углеродно-кислородная составляющая, волной взрывного горения, идущей из центра. В результате образуются тяжелые элементы с выделением большого количества энергии:

12 С + 16 O → 28 Si + 16.76 МэВ
28 Si + 28 Si → 56 Ni + 10.92 МэВ

Светимость звезды сильно возрастает в течение 2 недель, затем в течение еще 2 недель быстро спадает, после чего продолжает падать примерно в 2 раза за 50 дней. Основная энергия (около 90%) испускается в виде гамма-квантов из цепочки распада изотопа никеля.Такое явление называется сверхновой 1 типа.
Белых карликов массой в 1.5 и выше масс Солнца не бывает. Это объясняется тем, что для существования белого карлика необходимо уравновесить гравитационное сжатие давлением электронного газа, но происходит это при массах не более 1.4 M C , это ограничение называется пределом Чандрасекара. Величину можно получить как условие равенства сил давления силам гравитационного сжатия в предположении, что импульсы электронов определяются соотношением неопределенности для занимаемого ими объема, а движутся они со скоростью, близкой к скорости света.

Нейтронные звезды

В случае с более массивными (> 10 M C) звездами все происходит несколько иначе.Высокая температура в ядре активизирует реакции с поглощением энергии, такие как выбивание протонов, нейтронов и альфа-частиц из ядер, а также e-захват высокоэнергетичных электронов, компенсирующих разницу масс двух ядер. Вторая реакция создает избыток нейтронов в ядре. Обе реакции ведут к его охлаждению и общему сжатию звезды. Когда энергия ядерного синтеза заканчивается, сжатие превращается в почти свободное падение оболочки на сжимающееся ядро. При этом резко ускоряется скорость термоядерного синтеза во внешних падающих слоях, что приводит к испусканию огромного количества энергии за несколько минут (сопоставимую с энергией, которую легкие звезды испускают за все свое существование).
Сжимающееся ядро за счет высокой массы преодолевает давление электронного газа и сжимается дальше. При этом происходят реакии p + e - → n + ν e , после которых электронов, мешающих сжатию, в ядре почти не остается. Сжатие происходит до размеров в 10 − 30 км, соответствующих плотности, установленной давлением нейтронного вырожденного газа. Падающее на ядро вещество получает отраженную от нейтронного ядра ударную волну и часть выделившейся при его сжатии энергии, что приводит к стремительному выбросу внешней оболочки в стороны. Получившийся объект называется нейтронной звездой. Большую часть (90%) энергии, выделившейся от гравитационного сжатия, уносят нейтрино в первые секунды после коллапса. Вышеописанный процесс называется взрывом сверхновой второго типа. Энергия взрыва такова, что некоторые их них (редко) видны невооруженным глазом даже в дневное время. Первая сверхновая была зарегистрирована китаййскими астрономами в 185 году н.э. В настоящее время регистрируется несколько сотен вспышек в год.
Получившаяся нейтронная звезда имеет плотность ρ ~ 10 14 − 10 15 г/см 3 . Сохранение момента импулься при сжатии звезды приводит к очень малым периодам обращения, обычно в пределах от 1 до 1000 мс. Для обычных звезд такие периоды невозможны, т.к. Их гравитация не сможет противодействовать центробежным силам такого вращения. Нейтронная звезда имеет очень большое магнитное поле, достигающее 10 12 -10 13 Гс на поверхности, что приводит к сильному электромагнитному излучению. Несовпадающая с осью вращения магнитная ось приводит к тому, что в заданное направление нейтронная звезда посылает периодические (с периодом вращения) импульсы излучения. Такая звезда называется пульсаром. Этот факт помог их экспериментальному открытию и используется для обнаружения. Обнаружить нейтронную звезду оптическими методами намного сложнее из-за малой светимости. Период обращения постепенно уменьшается из-за перехода энергии в излучение.
Внешний слой нейтронной звезды состоит из кристаллического вещества, в основном железа и соседних с ним элементов. Большая часть остальной массы - нейтроны, в самом центре могут находиться пионы и гипероны. Плотность звезды растет к центру и может достигать величин, заметно больших плотности ядерной материи. Поведение материи при таких плотностях плохо изучено. Существуют теории о свободных кварках, в том числе не только первого поколения, при таких экстремальных плотностях адронной материи. Возможны сверхпроводимое и сверхтекучее состояние нейтронного вещества.
Существует 2 механизма охлаждения нейтронной звезды. Один из них – излучение фотонов, как и всюду. Второй механизм – нейтринный. Он преобладает до тех пор, пока температура ядра выше 10 8 K. Обычно это соответствует температуре поверхности выше 10 6 K и длится 10 5 −10 6 лет. Существует несколько способов излучения нейтрино:

Черные дыры

В случае, если масса исходной звезды превышала 30 масс Солнца, то образующееся во взрыве сверхновой ядро будет тяжелее 3 M C . При такой массе давление нейтронного газа больше не может сдерживать гравитацию, и ядро не останавливается на стадии нейтронной звезды, а продолжает коллапсировать (тем не менее, экспериментально обнаруженные нейтронные звезды имеют массы не более 2 масс Солнца, а не трех). На этот раз коллапсу уже ничего не помешает, и образуется черная дыра. Этот объект имеет чисто релятивистскую природу и не может быть объяснен без ОТО. Несмотря на то, что вещество, по теории, сколлапсировало в точку − сингулярность, черная дыра имеет ненулевой радиус, называемый радиусом Шварцшильда:

R Ш = 2GM/c 2 .

Радиус обозначает границу непреодолимого даже для фотонов гравитационного поля черной дыры, называемую горизонтом событий. К примеру, радиус Шварцшильда Солнца − всего 3 км. Вне горизонта событий гравитационное поле черной дыры такое же, как поле обычного объекта ее массы. Наблюдать черную дыру можно только по косвенным эффектам, так как сама она сколько-нибудь заметной энергии не излучает.
Несмотря на то, что покинуть горизонт событий ничто не может, черная дыра все же может создавать излучение. В квантовом физическом вакууме постоянно рождаются и исчезают виртуальные пары частица-античастица. Сильнейшее гравитационное поле черной дыры может успеть провзаимодействовать с ними до того, как они исчезнут, и поглотить античастицу. В случае, если полная энергия виртуальной античастицы была отрицательна, черная дыра при этом теряет массу, а оставшаяся частица становится реальной и получает энергию, достаточную, чтобы улететь из поля черной дыры. Это излучение называется излучением Хокинга и имеет спектр абсолютно черного тела. Ему можно приписать некоторую температуру:

Влияние этого процесса на массу большинства черных дыр ничтожно по сравнению с той энергией, которую они получают даже от реликтового излучения. Исключение составляют реликтовые микроскопические черные дыры, которые могли образоваться на ранних стадиях эволюции Вселенной. Малые размеры ускоряют процесс испарения и замедляют процесс набора массы. Последние стадии испарения таких черных дыр должны заканчиваться взрывом. Подходящих под описание взрывов зарегистрировано ни разу не было.
Вещество, падающее на черную дыру, нагревается и становится источником рентгеновского излучения, которое служит косвенным признаком наличия черной дыры. При падении на черную дыру вещества с большим моментом импульса оно образует вращающийся аккреционный диск вокруг нее, в котором частицы теряют энергию и момент импульса перед падением на черныю дыру. В случае с сверхмассивной черной дырой, возникают два выделенных направления вдоль оси диска, в которых давление испускаемого излучения и электромагнитные эффекты ускоряют выбившиеся из диска частицы. Это создает мощные струи вещества в обе стороны, которые также можно зарегистрировать. По одной из теорий, именно так устроены активные ядра галактик и квазары.
Вращающаяся черная дыра представляет собой более сложный объект. Своим вращением она «захватывает» некоторую область пространства за горизонтом событий («Эффект Лензе-Тирринга»). Эта область называется эргосферой, ее граница называется пределом статичности. Предел статичности представляет собой эллипсоид, совпадающий с горизонтом событий в двух полюсах вращения черной дыры.
Вращающиеся черные дыры имеют дополнительный механизм потери энергии через передачу ее частицам, попавшим в эргосферу. Такая потеря энергии сопровождается потерей момента импульса и замедляет вращение.

Список литературы

  1. С.Б.Попов, М.Е.Прохоров "Астрофизика одиночных нейтронных звезд: радиотихие нейтронные звезды и магнитары" ГАИШ МГУ, 2002
  2. Уильям Дж. Кауфман "Космические рубежи теории относительности" 1977
  3. Другие источники в интернет

декабрь 2010 г.



Случайные статьи

Вверх