Фибринолиз и его значение. Причины отклонений в результатах исследования на время фибринолиза. Внутренний и внешний путь активизации

Нормальная физиология: конспект лекций Светлана Сергеевна Фирсова

5. Физиология фибринолиза

5. Физиология фибринолиза

Система фибринолиза – ферментативная система, расщепляющая нити фибрина, которые образовались в процессе свертывания крови, на растворимые комплексы. Система фибринолиза полностью противоположна системе свертывания крови. Фибринолиз ограничивает распространение свертывания крови по сосудам, регулирует проницаемость сосудов, восстанавливает их проходимость и обеспечивает жидкое состояние крови в сосудистом русле. В состав системы фибринолиза входят следующие компоненты:

1) фибринолизин (плазмин). Находится в неактивном виде в крови в виде профибринолизина (плазминоген). Он расщепляет фибрин, фибриноген, некоторые плазменные факторы свертывания крови;

2) активаторы плазминогена (профибринолизина). Они относятся к глобулиновой фракции белков. Различают две группы активаторов: прямого действия и непрямого действия. Активаторы прямого действия непосредственно переводят плазминоген в активную форму – плазмин. Активаторы прямого действия – трипсин, урокиназа, кислая и щелочная фосфатаза. Активаторы непрямого действия находятся в плазме крови в неактивном состоянии в виде проактиватора. Для его активации необходимы лизокиназа тканей, плазмы. Свойствами лизокиназы обладают некоторые бактерии. В тканях находятся тканевые активаторы, особенно много их содержится в матке, легких, щитовидной железе, простате;

3) ингибиторы фибринолиза (антиплазмины) – альбумины. Антиплазмины тормозят действие фермента фибринолизина и превращение профибринолизина в фибринолизин.

Процесс фибринолиза проходит в три фазы.

Во время I фазы лизокиназы, поступая в кровь, приводят проактиватор плазминогена в активное состояние. Эта реакция осуществляется в результате отщепления от проактиватора ряда аминокислот.

II фаза – превращение плазминогена в плазмин за счет отщепления липидного ингибитора под действием активатора.

В ходе III фазы под влиянием плазмина происходит расщепление фибрина до полипептидов и аминокислот. Эти ферменты получили название продуктов деградации фибриногена / фибрина, они обладают выраженным антикоагулянтным действием. Они ингибируют тромбин и тормозят процесс образования протромбиназы, подавляют процесс полимеризации фибрина, адгезию и агрегацию тромбоцитов, усиливают действие брадикинина, гистамина, ангеотензина на сосудистую стенку, что способствует выбросу из эндотелия сосудов активаторов фибринолиза.

Различают два вида фибринолиза – ферментативный и неферментативный.

Ферментативный фибринолиз осуществляется при участии протеолитического фермента плазмина. Происходит расщепление фибрина до продуктов деградации.

Неферментативный фибринолиз осуществляется комплексными соединениями гепарина с тромбогенными белками, биогенными аминами, гормонами, совершаются конформационные изменения в молекуле фибрина-S.

Процесс фибринолиза идет по двум механизмам – внешнему и внутреннему.

По внешнему пути активация фибринолиза идет за счет лизокиназ тканей, тканевых активаторов плазминогена.

Во внутреннем пути активации принимают участие проактиваторы и активаторы фибринолиза, способные превращать проактиваторы в активаторы плазминогена или же действовать непосредственно на профермент и переводить его в плазмин.

Значительную роль в процессе растворения фибринового сгустка играют лейкоциты в силу своей фагоцитарной активности. Лейкоциты захватывают фибрин, лизируют его и выделяют в окружающую среду продукты его деградации.

Процесс фибринолиза рассматривается в тесной связи с процессом свертывания крови. Их взаимосвязи осуществляются на уровне общих путей активаций в реакции ферментного каскада, а также за счет нервно-гуморальных механизмов регуляции.

Из книги Очищение организма и правильное питание автора Геннадий Петрович Малахов

Физиология пищеварения Распределение процессов обработки пищи однотипно у всех теплокровных животных, в том числе и у человека: в ротовой полости – измельчение пищи и формирование пищевого комка; в желудке – своеобразный склад пищи и кислотная денатурация; в тонком

Из книги Питание и долголетие автора Жорес Медведев

Физиология ожирения В животном мире нет таких форм ожирения, которые могли бы вызвать ограничения в способности передвигаться, охотиться, летать, прыгать, лазать по деревьям. Животные, у которых большие отложения жира являются видовыми признаками (киты, моржи, тюлени,

Из книги Как перестать храпеть и дать спать другим автора Юлия Сергеевна Попова

Физиология сна Согласно определению специалистов, сон - это естественное физиологическое состояние человека, характеризующееся цикличностью, периодичностью, относительным уменьшением уровня физической и психической активности, отсутствием сознания и снижением

Из книги Избранные лекции по факультетской хирургии: учебное пособие автора Коллектив авторов

Анатомия и физиология Толстая кишка начинается от конечной части тонкой кишки и заканчивается заднепроходным отверстием. Выделяют следующие ее части (рис. 169): caecum – слепая кишка с червеобразным отростком – appendix vermiformis; colon ascendens – восходящая ободочная кишка; colon transversum –

Из книги Успех или Позитивный образ мышления автора Филипп Олегович Богачев

8.2. Физиология Новости эти я знал с детства: одна страна угрожает другой, кто-то кого-то предал, экономика переживает упадок, Израиль и Палестина за протёкшие пятьдесят лет так и не пришли к соглашению, ещё один взрыв, ещё один ураган оставил тысячи людей без крова. Паоло

Из книги Энциклопедия клинического акушерства автора Марина Геннадиевна Дрангой

Физиология родов Факторы, приводящие к наступлению родов Роды как процесс предполагают изгнание плода и элементов плодного яйца (плаценты, пуповины, оболочки) из матки под действием изгоняющих сил. Процесс физиологических родов происходит через 40 недель беременности,

Из книги Оздоровление позвоночника и суставов: методики С. М. Бубновского, опыт читателей «Вестника «ЗОЖ» автора Сергей Михайлович Бубновский

Физиология воспаления Самое время рассказать о физиологии воспаления суставов.Артрит, то есть воспаление сустава, - это реакция нарушения микроциркуляции в мышцах сустава. Известно, что каждое мышечное волокно содержит 3–4 капилляра. Если мышца спазмируется (неловкое

Из книги Вегетососудистая дистония. Избавиться навсегда! автора Николай Григорьевич Месник

ФИЗИОЛОГИЯ ДЫХАНИЯ Уважаемый читатель, давайте сделаем очень лаконичный экскурс в физиологию дыхания, чтобы уже затем показать значимость дыхательных тренингов для коррекции ВСД.В норме артериальная кровь содержит 95–98 % оксигемоглобина (HbO2) - соединения гемоглобина

Из книги Победа разума над медициной. Революционная методика оздоровления без лекарств автора Лисса Рэнкин

Физиология одиночества Так что же это такое – жить в сплоченной общине, собираться и общаться с теми, кто разделяет ваши религиозные убеждения, жить вместе с партнером, иметь множество друзей, получать наслаждение от интимной близости, которая стимулирует оздоровление

Из книги Тайная мудрость человеческого организма автора Александр Соломонович Залманов

Глава 2. Физиология Существует ли физиология человека? До сих пор мы не имеем настоящего труда по физиологии человека. Существует только физиология животных, основанная на бесчисленных опытах на лабораторных животных. Но у них состав вне- и внутриклеточных жидкостей

Из книги Нормальная физиология автора Николай Александрович Агаджанян

Глава 2. Физиология

Из книги автора

Физиология в цифрах Ньютону удалось выразить в математических уравнениях движение небесных светил. Математическая мысль способна преобразовать биологию, патологию и медицину. В своем элементарном применении она может облегчить открытие новых возможностей для

Из книги автора

Физиология мышц Существует три типа мышц: поперечно-полосатые скелетные мышцы, поперечно-полосатая сердечная мышца и гладкие мышцы.Мышцы обладают следующими физиологическими свойствами: 1. возбудимостью, т. е. способностью возбуждаться при действии раздражителей; 2.

Из книги автора

Физиология синапсов Термин «синапс» был введен Ч. Шеррингтоном. Синапсом называется функциональное соединение между нервной клеткой и другими клетками. Синапсы – это те участки, где нервные импульсы могут влиять на деятельность постсинаптической клетки, возбуждая или

Из книги автора

Физиология сердца

Из книги автора

Физиология сна Сон – физиологическое состояние, которое характеризуется потерей активных психических связей субъекта с окружающим его миром. Сон является жизненно необходимым для высших животных и человека. Длительное время считали, что сон представляет собой отдых,

Цветовой показатель (ЦП), или фарб-индекс (Fi), - относителная величина, которая дает представление о содержании гемоглобина (Hb) в отдельном эритроците (Э) по сравнению со стандартом.

Стандарт вычисляется следующим образом. Содержание гемоглобина в одном эритроците равно частному от деления количества Hb на количество эритроцитов. ЦП = Hb г/л*3 / 2 первые цифры числа эритроцитов*10. В норме цветовой показатель колеблется в пределах 0,75-1,0 и очень редко может достигать 1,1. В этом случае эритроциты называются нормохромными.

Цветовой показатель используется в клинической практике для дифференциального диагноза анемий. Большинство анемий сопровождаются гипохромией (уменьшением количества Hb в эритроците), цветовой показатель при этом будет меньше 0,75.Гипохромия наступает в результате уменьшения либо размеров эритроцитов, либо количества гемоглобина (при анемиях, вызванных кровопотерей, инфекцией и др.) Гиперхромия наблюдается при злокачественных анемиях, тяжелых анемиях у детей, ЦП в этих случаях будет больше 1,1. Гиперхромия зависит исключительно от увеличения размеров эритроцитов.

4. Первая фаза свертывания крови, внешний и внутренний циклы (основные факторы, участвующие в образовании протромбиназы). Процесс свертывания крови представляет собой преимущественно проферментно-ферментный каскад, в котором проферменты, пере­ходя в активное состояние, приобретают способность активировать другие факторы свертывания крови. Подобная активация может носить последовательный и ретроградный характер.

Процесс свертывания крови может быть разделен на три фазы: первая включает комплекс последовательных реакций, приводящих к образованию протромбиназы, во вторую фазу осуществляется переход протромбина (фактор II) в тромбин (фактор IIа) и в третью фазу из фибриногена образуется фибрин.

Первая фаза - образование протромбиназы может происходить по внешнему и внутреннему механизму. Внешний ме­ханизм предполагает обязательное присутствие тромбопластина (фактор III), внутренний же связан с участием тромбоцитов (фактор Р3) или разрушенных эритроцитов. Вместе с тем внутренний и внешний пути образования протромбиназы имеют много общего, так как активируются одними и теми же факторами (фактор ХIIа, калликреин, ВМК и др.), а также приводят в конечном итоге к появлению одного и того же активного фермента - фактора Ха, выполняющего функции протромбиназы. При этом и полный, и частичный тромбопластин служат матрицами, на которых в при­сутствии ионов Са2+ развертываются ферментативные реакции.

Формирование протромбиназы по внешнему пути начинается с активации фактора VII при его взаимодействии с тромбопластином и фактором ХIIа. Кроме того, фактор VII может переходить в деятельное состояние под влиянием факторов XIa, IXa, Ха, IIа и калликреина. В свою очередь фактор VIIa не только переводит фактор X в Ха (ведет к появлению протромбиназы), но и активирует фактор IX, участвующий в образовании протромбиназы по внут­реннему механизму.

Образование протромбиназы по внешнему пути происходит чрезвычайно быстро (за 20-30 с), ведет к появлению небольших порций тромбина (IIа), который способствует необратимой агре­гации тромбоцитов, активации факторов VIII и V и значительно ускоряет формирование протромбиназы по внутреннему механизму. Инициатором внутреннего механизма образования протромбиназы является фактор XII, который активируется травмированной по­верхностью стенки сосуда, кожей, коллагеном, адреналином, в лабораторных условиях - при контакте со стеклом, после чего переводит фактор XI в XIa. В этой реакции может принимать участие калликреин (активируется фактором ХIIа) и ВМК (ак­тивируется калликреином). Фактор XIa оказывает непосредствен­ное влияние на фактор IX, переводя его в фактор IXa. Специ­фическая деятельность последнего направлена на протеолиз фак­тора X и протекает при обязательном участии фактора VIII (или VIIIa).

Следует заметить, что активация фактора X под влиянием комплекса факторов VIII и IXa получила название теназной реакции.

Билет 5 1. Реакция агглютигации, условия ее развития. Группы крови системы АВО. Агглютинация – процесс склеивания эритроцитов, причем происходит он лишь при определенных сочетаниях сыворотки и эритроцитов.

Специфические белки в мембране эритроцитов – агглютиногены А и В,а в плазме крови – специфические белки - агглютинины α и β. Для каждой из групп по системе АВ0 имеется определенное сочетание этих белков по два из четырех:

Эритроцитарная антигенная система АВО. Известно, что существуют четыре группы крови. На каком же основании кровь всех людей планеты можно разделить всего на четыре группы крови? Оказывается, по наличию или отсутствию в мембране эритроцитов всего двух антигенов, А и В, выделяют четыре варианта присутствия этих антигенов на мембране эритроцитов: вариант 1 – мембрана эритроцитов не содержит ни антигена А, ни антигена В, такая кровь отнесена к группе I и обозначается О(I). Вариант 2 – эритроциты содержат только антиген А – вторая группа А(II). Вариант 3 - эритроциты содержат только антиген В – третья группа В(III). Вариант 4 – эритроциты содержат оба антигена – А и В – группа крови АВ(IV).

Внутрисосудистое превращение фибриногена в фибрин, в норме очень ограниченное, при шоке может значительно усиливаться. Фибринолиз - основной механизм, обеспечивающий в этих условиях поддержание жидкого состояния крови и проходимости сосудов, прежде всего - микроциркуляторного русЛа.

Фибринолитическая система включает в себя плазмин и его предшественник плазминоген, активаторы плазминогена и ингибиторы плазмина и активаторов (рис. 12.3). Фибринолитическая активность крови повышается при различных физиологических состояниях организма (физической нагрузке, психоэмоциональном напряжении и т. д.), что объясняется поступлением в кровь тканевых активаторов плазминогена (ТАП). В настоящее время можно считать установленным, что основным источником активатора плазминогена, обнаруживаемого в крови, являются клетки сосудистой стенки, главным образом эндотелий.

Несмотря на то что в экспериментах in vitro показано выделение ТАП из эндотелия, остается открытым вопрос, является ли такая секреция физиологическим феноменом или это просто следствие «утечки». В физиологических условиях, по-видимому, выделение ТАП из эндотелия очень мало. При окклюзии сосуда, стрессе этот процесс усиливается. В регуляции его играют роль биологически активные вещества: катехоламины, вазопрессин, гистамин; кинины усиливают, а ИЛ-1, ФНО и другие - уменьшают продукцию ТАП.

В эндотелии наряду с ТАП образуется и секретируется и его ингибитор - PAI-1 (plasminogen activator inhibitor-1). PAI-1 находится в клетках в большем количестве, чем ТАП. В крови

-ФХП
PAI-I- -
PAI-II -

альфа2 Макроглобулин------ *~Плазмин -

Фибриноген

(Д-фрагмент)

Рис. 12.3. Фибринолитическая система:

ТАП - тканевый активатор плазминогена; PAI-I - ингибитор ТАП; PAI-II - ингибитор урокиназы; а Гір С - активированный протеин С; ВМК - высокомолекулярный кининоген; ПДФ - продукты деградации фибрина (фибриногена); _ _ -

ингибирование;------------ - активация

и субклеточном матриксе PAI-1 связан с адгезивным гликопротеином - витронектином. В этом комплексе период биологического полураспада PAI-1 увеличивается в 2-4 раза. Благодаря этому возможна концентрация PAI-1 в определенном регионе и локальное угнетение фибринолиза. Некоторые цитокины (ИЛ-1, ФНО) и эндотелии подавляют фибринолитическую активность главным образом за счет увеличения синтеза и секреции PAI-1. При септическом шоке содержание PAI-1 в крови увеличено. Нарушение участия эндотелия в регуляции фибринолиза является важным звеном патогенеза шока. Обнаружение в крови большого количества ТАП еще не является свидетельством происходящего фибринолиза. Тканевый активатор плазминогена, как и сам плазминоген, имеет сильное сродство к фибрину. При выделении его в кровь не происходит генерации плазмина при отсутствии фибрина. Плазминоген и ТАП могут сосуществовать в крови, но не взаимодействовать. Активация плазминогена происходит на поверхности фибрина.

Активность ТАП, присутствующего в плазме человека, быстро исчезает как in vivo, так и in vitro. Период биологического полураспада ТАП, выделяющегося после введения здоровым людям никотиновой кислоты, составляет 13 мин in vivo и 78 мин in vitro. В элиминации ТАП из крови основную роль играет печень, при ее функциональной недостаточности наблюдается значительная задержка выведения. Инактивация ТАП в крови происходит также под влиянием физиологических ингибиторов.

Образование плазмина из плазминогена под влиянием тканевых активаторов рассматривается как внешний механизм акти-

вации плазминогена. Внутренний механизм связан с прямым или опосредованным действием ф. ХНа и калликреина (см. рис. 12.3) и демонстрирует тесную связь между процессами свертывания крови и фибринолиза.

Выявленное in vitro повышение фибринолитической активности крови не обязательно указывает на активацию фибринолиза в организме. Для первичного фибринолиза, развивающегося при массивном поступлении в кровь активатора плазминогена, характерны гиперплазминемия, гипофибриногенемия, появление продуктов распада фибриногена, уменьшение плазминогена, ингибиторов плазмина, уменьшение в крови ф. Y и ф. YIII. Маркерами активации фибринолиза являются пептиды, которые выявляются на ранней стадии действия плазмина на фибриноген. При вторичном фибринолизе, развивающемся на фоне гипокоагуляции, в крови снижено содержание плазминогена, плазмина, резко выражена гипофибриногенемия, обнаруживается большое количество продуктов деградации фибрина (ПДФ).

Изменение фибринолитической активности наблюдается при всех видах шока и имеет фазный характер: кратковременный период повышения фибринолитической активности и последующее ее снижение. В некоторых случаях, как правило при тяжелом шоке, на фоне ДВС развивается вторичный фибринолиз.

Наиболее выраженный первичный фибринолиз наблюдается при шоке от электротравмы, применяющемся с лечебной целью в психиатрической клинике и развивающемся в основном при прохождении тока через мозг. При этом резко уменьшается время лизиса эуглобулинов плазмы, что свидетельствует об активации фибринолиза. В это же время шок, возникающий при прохождении тока через грудную клетку, не сопровождается активацией фибринолиза. Показано, что эти различия объясняются не различным содержанием активатора плазминогена в мозге и сердце, а активацией фибринолиза, если электрошок сопровождается мышечными судорогами. Возможно, при этом происходит сдавление вен сокращенными мышцами и выделение активатора плазминогена из эндотелия (Tyminski W. et al., 1970).

В экспериментальных исследованиях показано, что при электрошоке активаторы плазминогена выделяются не только из эндотелия сосудов, но из сердца, коркового слоя почек и в меньшей степени легких, печени (Андреенко Г. В., Подорольская Л. В., 1987). В механизме выделения активатора плазминогена при электрошоке основное значение имеет нейро-гуморальная стимуляция. При травматическом шоке также нередко наблюдается первичный фибринолиз. Так, уже в ранние сроки после травмы (1-3 ч) у пострадавших отмечается повышение фибринолитической активности (Плешаков В.

Л., Цыбуляк Г. Н., 1971; Сувальская Л. А. и др., 1980). Определенную роль при этом может играть не только выделение сосудистого и тканевых активаторов плазминогена, но и активация ф. XII. Одним из механизмов активации фиб- ринолиза при травматическом шоке является снижение активности CI эстеразного ингибитора, который активирует ф. ХПа и калликреин. В результате увеличивается продолжительность циркуляции активаторов внутреннего фибринолиза. Степень активации фибринолиза может зависеть также от локализации травмы, так как содержание активатора плазминогена в различных тканях неодинаково.

Период биологического полураспада плазмина составляет около 0,1 с, он очень быстро инактивируется а2-антиплазмином, который образует с ферментом стабильный комплекс. Именно этим, по-видимому, можно объяснить, что в ряде случаев первичный фибринолиз в начальном периоде травматического шока не выявляется и более того наблюдается угнетение фибринолиза. Так, при травме органов брюшной полости (II--III стадии шока) на фоне гиперкоагуляции, наличия в крови растворимых комплексов фибрин-мономера фибринолитическая активность было снижена (Трушкина Т. В. и др., 1987). Возможно, это связано с резким увеличением продукции ингибиторов плазмина, как реакции на начальную кратковременную гиперплазминемию. Общая антиплаз- миновая активность увеличивается прежде всего за счет а2-анти- плазмина, а также ингибитора активатора плазминогена и гликопротеида, богатого гистидином. Такая реакция подробно описана I. A. Paramo и др. (1985) у больных в послеоперационном периоде.

После первичной активации фибринолиза при травме, осложненной шоком, развивается стадия снижения фибринолитической активности и/или вторичный фибринолиз. При стремительном развитии шока ДВС синдром и вторичный фибринолиз развиваются очень быстро (Дерябин И. И. и др., 1984).

В механизме угнетения фибринолиза при шоке имеет значение прежде всего увеличение общей антиплазминной активности (в основном а2-антиплазмина), а также гликопротеида, богатого гистидином, который вмешивается в связывание плазминогена с фибрином. На фоне уменьшения фибринолитической активности в системной циркуляции локальный фибринолиз в зоне повреждения, по-видимому, усилен. О этом свидетельствует количество ПДФ в крови после травмы.

Данные о фибринолитической активности крови при геморрагическом шоке весьма противоречивы, что объясняется различиями в объеме кровопотери, сопутствующими осложнениями и т. д. (Шутеу Ю. и др., 1981; Братусь В. Д., 1991). Экспериментальные данные также не внесли полной ясности в этот вопрос. Так, И. Б. Калмыкова (1979) наблюдала у собак после кровопотери (40-45 % ОЦК, АД = 40 мм рт. ст.) усиление фибринолиза на фоне гиперкоагуляции, а в фазе гипокоагуляции фибринолиз уменьшался. В аналогичных опытах в течение 3 часов после кровопотери Р. Garsia-Barreno и др. (1978) установили, что время лизиса эуглобулинов плазмы и концентрация фибриногена не изменялись, а через 6 ч наблюдалось некоторое угнетение фибринолиза.

Принципиально важным является то, что изменения фибринолиза при геморрагическом шоке вторичны, т. е. возникают на фоне циркуляторной гипоксии, метаболического ацидоза и т. д. При других видах шока активация фибринолиза может происходить независимо от гемодинамических нарушений (например, при электрошоке).

При септическом шоке фибринолитическая активность изменяется очень быстро и так же, как и при других видах шока, имеет фазный характер: усиление фибринолиза, угнетение, вторичный фибринолиз (развивается не во всех случаях). Р. Garcia-Bar- reno и др. (1978) проследили изменение фибринолитической активности крови у собак с эндотоксиновым шоком, начиная с 30-й мин и до 6 ч после выделения липополисахарида Escherichia coli. Фибринолитическая активность у подопытных животных резко возросла, концентрация фибриногена уменьшалась, а ПДФ через 1 ч обнаруживалась у 100 % животных. Следовательно, коагуло- патические изменения, в том числе и фибринолиз, развивались независимо от гемодинамических нарушений, гипоксии и т. д.

В механизме активизации фибринолиза при септическом шоке основное значение придается внутреннему пути активации плазминогена при участии ф. XII и калликреина (см. рис. 12.3). Первичный гиперфибринолиз при эндотоксиновом шоке развивается вследствие взаимодействия эндотоксина с сывороточной системой комплемента через активацию пропердиновой системы. Компонент СЗ и последние компоненты комплемента (С5-С9) активируют как фибринолиз, так и гемокоагуляцию.

Учитывая, что при септическом шоке происходит быстрое и сильное повреждение эндотелия, можно с уверенностью предположить участие внешнего механизма активации плазминогена. Наконец, при септическом шоке у больных выявлено снижение Cl-эстеразного ингибитора, являющегося ингибитором фибринолиза - инактивирует ф. ХПа и калликреин (Colucci М. et al.,

1985) . Вместе с тем под влиянием эндотоксина увеличивается образование быстродействующего ингибитора активатора плазминогена (Blauhut В. et al., 1985). Значение этого механизма регуляции еще предстоит изучить.

Если при травматическом, септическом, геморрагическом шоке и электрошоке большинство исследователей выделяют начальный период активации фибринолиза, то в ранней фазе кардиогенного шока фибринолитическая активность снижена, а в поздней повышена (Люсов В. А. и др., 1976; Грицюк В. И. и др., 1987). Вероятно, это объясняется тем, что острый инфаркт миокарда, осложненный кардиогенным шоком, развивается на фоне значительных изменений в системе гемостаза - гиперкоагуляции, напряжения фибринолитической системы и т. д. Это приводит к истощению запасов сосудистого активатора плазминогена, по- отому при кардиогенном шоке и не развивается первичный ги- перфибринолиз, несмотря на выраженную гиперадреналинемию. I более поздней стадии шока регистрируются гипофибриногене- лия, тромбоцитопения, уменьшение активности ф. И, Y, YII, положительные паракоагуляционные тесты, т. е. признаки внутрисосудистого свертывания крови, и на этом фоне развивается вторичный гиперфибринолиз.

Изменение фибринолитической активности при шоке не только демонстрирует нарушение функционального состояния системы гемостаза, но имеет и патогенетическое значение. Усиление фибринолиза в начальной стадии шока несомненно имеет положительное значение, так как растворение фибрина способствует сохранению суспензионной стабильности крови и микроциркуляции. С другой стороны, усиление фибринолиза на фоне дефицита прокоагулянтов нарушает коагуляционный механизм гемостаза. Продукты распада фибриногена и фибрина (ПДФ) обладают ан- титромбиновой, антиполимеразной активностью, тормозят адгезию и агрегацию тромбоцитов, что снижает эффективность тром- боцитарно-сосудистого гемостаза. Таким образом, патогенетическое значение усиления фибринолиза при шоке (особенно вторичного фибринолиза) заключается в том, что при этом повышается вероятность геморрагий.

Внутренний и внешний путь активизации

Схема фибринолиза. Синие стрелки - стимуляция; красные стрелки - подавление

Фибринолиз, как и процесс свертывания крови, протекает по внешнему или внутреннему механизму. Внешний путь активации осуществляется при неотъемлемом участии тканевых активаторов, синтезирующихся преимущественно в эндотелии сосудов. К данным активаторам относят тканевый активатор плазминогена (ТАП) и урокиназу.

Внутренний механизм активации осуществляется благодаря плазменным активаторам и активаторами форменных элементов крови - лейко­цитов, тромбоцитов и эритроцитов . Внутренний механизм активации разделяют на на Хагеман-зависимый и Хагеман-независимый. Хагеман-зависимый фибринолиз происходит под влиянием фактора XIIа свертывания крови, калликреина, которые вызывают превращение плазминогена в плазмин. Хагеман-независимый фибринолиз происходит наиболее быстро. Его основным назначением является очищение сосудистого русла от нестабилизированного фибрина, который образуется в процессе внутрисосудистого свертывания крови .

Ингибирование фибринолиза

Фибринолитическая активность крови во многом определяется именно соотношением ингибиторов и активаторов процесса фибринолиза.

Регуляция фибринолиза


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Фибринолиз" в других словарях:

    Фибринолиз … Орфографический словарь-справочник

    - (от фибрин и...лиз), растворение внутрисосудистых тромбов и внесосудистых сгустков фибрина под действием протеолитич. ферментов плазмы крови и форменных элементов, в первую очередь плазмина. Белки, осуществляющие Ф., составная часть противо… … Биологический энциклопедический словарь

    Сущ., кол во синонимов: 1 растворение (14) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    - (фибрин + греч. lysis распад, разложение) процесс растворения фибринового сгустка в результате ферментативных реакций; при тромбозе ф. приводит к канализации тромба … Большой медицинский словарь

    - (от Фибрин и греч. lýsis – разложение, растворение) растворение внутрисосудистых тромбов и внесосудистых отложений фибрина под действием фермента Фибринолизина. Имеет важное значение для сохранения жидкого состояния крови и проходимости… … Большая советская энциклопедия

    ФИБРИНОЛИЗ - (fibrinolysis) процесс растворения сгустков крови, включая расщепление нерастворимого белка фибрина под действием фермента плазмина. Последний присутствует в плазме крови в виде пассивного предшественника (плазминогена), который активируется… … Толковый словарь по медицине

    фибринолиз - фибролизин … Краткий словарь анаграмм

    - (син. фибриногенолиз трупной крови) Ф. крови трупа при внезапной смерти, вследствие чего такая кровь остается несвернувшейся; причины Ф. т. к. неясны … Большой медицинский словарь

    Процесс растворения сгустков крови, включая расщепление нерастворимого белка фибрина под действием фермента плазмина. Последний присутствует в плазме крови в виде пассивного предшественника (плазминогена), который активируется одновременно с… … Медицинские термины

    фибринолизин - фибринолиз ин, а … Русский орфографический словарь

Книги

  • Фармакология и фармакотерапия (комплект из 2 книг) , Сатоскар Р.С. , Бандаркар С.Д. , Первый том двухтомного руководства посвящен общим вопросам фармакологии. В нем рассмотрены пути введения и биологическое действие лекарственных веществ, их метаболизм и экскреция, механизм,… Категория: Фармакология, рецептура Издатель: Медицина ,
  • Журнал «Лечащий Врач» № 01/2015 , Открытые системы , Журнал «Лечащий Врач» – профессиональное медицинское издание. Новости медицинского и фармацевтического рынков, научно-практические статьи для врачей общей практике, терапевтов, педиатров,… Категория: Медицина Серия:

Термином "фибринолиз" обозначается процесс растворения кровяного сгустка. В процессе коагуляции фибринолиз предотвращает нарушение микроциркуляции в регионах организма вне зоны повреждения, после остановки кровотечения - реканализацию тромба и восстановление кровоснабжения в дистальных по отношению места образования тромба тканях. процесс разрушения (лизиса) тромба, связан с расщеплением фибрина и фибриногена системой ферментов, активным компонентами которых является плазмин. Плазмин гидролизует фибрин, фибриноген, факторы V, VII, XII, протромбин.

Плазмин в крови находится в неактивном состоянии в виде плазминогена и активируется тканевыми и кровяными активаторами. Тканевые активаторы плазминогена синтезируются эндотелием сосудов. Наибольшее значение среди них имеют тканевой активатор плазминогена (ТАП) и урокиназа, которая вырабатывается в почке юкстагиомерулярным аппаратом.

Внутренний путь активации делят на Хагеман-зависимый и Хагеман-независимый. Хагеман-зависимый осуществляется ф XIIа, ВМК и капликреина. Хагеман-независтмый протекает по механизму срочных реакций и осуществляется протеиназами плазмы. В плазме есть ингибиторы фибринолиза: a 2 - антиплазмин, С 1 и a 1 -протеазные ингибиторы, a 2 - макроглобулин. Активаторами являются: специфический активатор из эндотелиальных клеток; активированный фактор ХII при взаимодействии с калликреином и высокомолекулярным кининогеном; урокиназа, вырабатываемая почкой; бактериальная стрептокиназа.

Нарушение процесса свертывания крови происходит при недостатке или отсутствии какого-либо фактора, участвующего в гомеостазе. Так, например, известно наследственное заболевание гемофилия, которое встречается только у мужчин и характеризуется частыми и длительным кровотечением. Это заболевание обусловлено дефицитом факторов VIII и IX, которые называются антигемофильными.

Свертывание крови может протекать под влиянием факторов, ускоряющих и замедляющих этот процесс.

Факторы, ускоряющие процесс свертывания крови:

Разрушение форменных элементов крови и клеток тканей (увеличивается выход факторов, участвующих в свертывании крови);

Ионы кальция (участвуют во всех основных фазах свертывания крови);

Тромбин;

Витамин К (участвует в синтезе протромбина);

Тепло (свертывание крови является ферментативным процессом);

Адреналин.

В нормальных условиях кровь в сосудах всегда находится в жидком состоянии, хотя условия для образования внутрисосудистых тромбов существуют постоянно. Поддержание жидкого состояния крови обеспечивается механизмами саморегуляции благодаря существованию соответствующих функциональных систем. Главными звеньями поддержания жидкого состояния крови являются свертывающая и противосвертывающая системы. В настоящее время принято выделять две противосвертывающие системы - первую и вторую.



Первая противосвертывающая система (ППС) осуществляет нейтрализацию тромбина в циркулирующей крови при условии его медленного образования и в небольших количествах. Нейтрализация тромбина осуществляется антикоагулянтами, которые постоянно находятся в крови и поэтому ППС функционирует постоянно. К таким веществам относятся:

Фибрин, который адсорбирует часть тромбина;

Антитромбины препятствуют превращению протромбина в тромбин;

Гепарин блокирует фазу перехода протромбина в тромбин и фибриногена в фибрин, а также тормозит первую фазу свертывания крови;

Продукты лизиса (разрушения фибрина) , которые обладают антитромбиновой активностью, тормозят образование протромбиназы;

Клетки ретикуло-эндотелиальной системы поглощают тромбин плазмы крови.

При быстром нарастании количества тромбина в крови ППС не может предотвратить образование внутрисосудистых тромбов. В этом случае в действие вступает вторая противосвертывающая система (ВПС), которая обеспечивает поддержание жидкого состояния крови в сосудax рефлекторно-гуморальным путем. Резкое повышение концентрации тромбина в циркулирующей крови приводит к раздражению сосудистых хеморецепторов. Импульсы от них поступают в гигантоклеточное ядро ретикулярной формации продолговатого мозга, а затем по эфферентным путям к ретикуло-эндотелиальной системе (печень, легкие и др.) . В кровь выделяются в больших количествах гепарин и вещества, которые осуществляют и стимулируют фибринолиз (например, активаторы плазминогена).

Гепарин ингибирует первые три фазы свертывания крови, вступает в связь с веществами, которые принимают участие в свертывании крови. Образующиеся при этом комплексы с тромбином, фибриногеном, адреналином, серотонином, фактором X11I и др. обладают антикоагулянтной активностью и литическим действием на нестабилизированный фибрин.

Регуляция свертывания крови.

Регуляция свертывания крови осуществляется с помощью нейро-гуморальных механизмов. Возбуждение симпатического отдела вегетативной нсрвнои системы, возникающее при страхе, боли, при стрессовых состояниях, приводит к значительному ускорению свертывания крови, что называется гиперкоагуляцией. Основная роль в этом механизме принадлежит адреналину и норадреналину. Адреналин запускает ряд плазменных и тканевых реакций: высвобождение из сосудистой стенки тромбопластина, который быстро превращается в тканевую протромбиназу; адреналин активирует фактор XII, который является инициатором образования кровяной протромбиназы; адреналин активирует тканевые липазы, которые расщепляют жиры и тем самым увеличивается содержание жирных кислот в крови, обладающих тромбопластической активностью; адреналин усиливает высвобождение фосфолипидов из форменных элементов крови, особенно из эритроцитов.

Раздражение блуждающего нерва или введение ацетилхолина приводит к выделению из стенок сосудов веществ, аналогичных тем, которые выделяются при действии адреналина. Следовательно, в процессе эволюции в системе гемокоагуляции сформировалась лишь одна защитно-приспособительная реакция - гиперкоагулемия, направленная на срочную остановку кровотечения. Идентичность сдвигов гемокоагуляции при раздражении симпатического и парасимпатического отделов вегетативной нервной системы свидетельствует о том, что первичной гипокоагуляции не существует, она всегда вторична и развивается после первичной гиперкоагуляции как результат (следствие) расходования части факторов свертывания крови.

Ускорение гемокоауляции вызывает усиление фибринолиза, что обеспечивает расщепление избытка фибрина. Активация фибринолиза наблюдается при физической работе, эмоциях, болевом раздражении.

На свертывание крови оказывают влияние высшие отделы ЦНС, в том числе и кора больших полушарий головного мозга, что подтверждается возможностью изменения гемокоауляции условно-рефлекторно. Она реализует свои влияния через вегетативную нервную систему и эндокринные железы, гормоны которых обладают вазоактивным действием. Импульсы из ЦНС поступают к кроветворным органам, к органам, депонирующим кровь и вызывают увеличение выхода крови из печени, селезенки, активацию плазменных факторов. Это приводит к быстрому образованию протромбиназы. Затем включаются гуморальные механизмы, которые поддерживают и продолжают активацию свертывающей системы и одновременно снижают действия противосвертывающей. Значение условно-рефлекторной гиперкоагуляции состоит, видимо, в подготовке организма к защите от кровопотери.

Система свертывания крови входит в состав более обширной системы - системы регуляции агрегатного состояния крови и коллоидов (PACK), которая поддерживает постоянство внутренней среды организма и ее агрегатное состояние на таком уровне, который необходим для нормальной жизнедеятельности путем обеспечения поддержания жидкого состояния крови, восстановления свойств стенок сосудов, которые изменяются даже при нормальном их функционировании. Система свертывания крови в организме все время находится в активном состоянии, что обусловлено непрерывным выделением тромбопластина из естественно разрушающихся клеток. Гиперкоагуляция развивается в состояниях болевого и эмоционального стресса, протекающего с активацией симпатического отдела автономной нервной системы. Катехоламины способствуют освобождению из стенок тромбопластина. Адреналин непосредственно активирует фактор Хагемана, активирует тканевые липазы, что способствует повышению тромбопластической активности. Раздражение блуждающего нерва приводит к эффектам, аналогичным эффектам адреналина.



Случайные статьи

Вверх