Физиология восприятия вкуса. Физиология вкуса

Изобретение нового блюда важнее для счастья
человечества, нежели открытие новой планеты.
Жан-Антельм Брийя-Саварен

Самая простая радость в нашей жизни - вкусно поесть. Но как же трудно объяснить с точки зрения науки что при этом происходит! Впрочем, физиология вкуса еще в самом начале своего пути. Так, например, рецепторы сладкого и горького были открыты только лет десять назад. Но их одних совсем недостаточно для того, чтобы объяснить все радости гурманства.

От языка до мозга

Сколько вкусов чувствует наш язык? Все знают сладкий вкус, кислый, соленый, горький. Сейчас к этим четырем основным, которые описал в ХIХ веке немецкий физиолог Адольф Фик, официально добавили еще и пятый - вкус умами (от японского слова «умаи» - вкусный, приятный). Этот вкус характерен для белковых продуктов: мяса, рыбы и бульонов на их основе. В попытке выяснить химическую основу этого вкуса японский химик, профессор Токийского императорского университета Кикунаэ Икеда проанализировал химический состав морской водоросли Laminariajaponica , основного ингредиента японских супов с выраженным вкусом умами. В 1908 году он опубликовал работу о глутаминовой кислоте, как носителе вкуса умами. Позднее Икеда запатентовал технологию получения глутамата натрия, и компания «Адзиномото» начала его производство. Тем не менее умами признали пятым фундаментальным вкусом только в 1980-х годах. Обсуждаются сегодня и новые вкусы, пока не входящие в классификацию: например, металлический вкус (цинк, железо), вкус кальция, лакричный, вкус жира, вкус чистой воды. Ранее считалось, что «жирный вкус» - это просто специфическая текстура и запах, но исследования на грызунах, проведенные японскими учеными в 1997 году, показали, что их вкусовая система распознает и липиды. (Подробнее об этом мы расскажем дальше.)

Язык человека покрыт более 5000 сосочков разной формы (рис. 1). Грибовидные занимают в основном две передние трети языка и рассеяны по всей поверхности, желобовидные (чашевидные) расположены сзади, у корня языка, - они большие, их легко увидеть, листовидные - это тесно расположенные складки в боковой части языка. Каждый из сосочков содержит вкусовые почки. Немного вкусовых почек есть также в надгортаннике, задней стенке глотки и на мягком нёбе, но в основном они, конечно, сосредоточены на сосочках языка. Почки имеют свой специфический набор вкусовых рецепторов. Так, на кончике языка больше рецепторов к сладкому - он чувствует его гораздо лучше, края языка лучше ощущают кислое и соленое, а его основание - горькое. В общей сложности у нас во рту примерно 10 000 вкусовых почек, и благодаря им мы чувствуем вкус.

Каждая вкусовая почка (рис. 2) содержит несколько дюжин вкусовых клеток. На их поверхности есть реснички, на которых и локализована молекулярная машина, обеспечивающая распознавание, усиление и преобразование вкусовых сигналов. Собственно сама вкусовая почка не достигает поверхности слизистой языка - в полость рта выходит только вкусовая пора. Растворенные в слюне вещества диффундируют через пору в наполненное жидкостью пространство над вкусовой почкой, и там они соприкасаются с ресничками - наружными частями вкусовых клеток. На поверхности ресничек находятся специфические рецепторы, которые избирательно связывают молекулы, растворенные в слюне, переходят в активное состояние и запускают каскад биохимических реакций во вкусовой клетке. В результате последняя высвобождает нейротрансмиттер, он стимулирует вкусовой нерв, и по нервным волокнам в мозг уходят электрические импульсы, несущие информацию об интенсивности вкусового сигнала. Рецепторные клетки обновляются примерно каждые десять дней, поэтому если обжечь язык, то вкус теряется только на время.

Молекула вещества, вызывающего определенное вкусовое ощущение, может связаться только со своим рецептором. Если такого рецептора нет или он или сопряженные с ним биохимические каскады реакций не работают, то вещество и не вызовет вкусового ощущения. Существенный прогресс в понимании молекулярных механизмов вкуса был достигнут относительно недавно. Так, горькое, сладкое и умами мы распознаем благодаря рецепторам, открытым в 1999 - 2001 годах. Все они относятся к обширному семейству GPCR (G protein-coupled receptors ), сопряженных с G-белками. Эти G-белки находятся внутри клетки, возбуждаются при взаимодействии с активными рецепторами и запускают все последующие реакции. Кстати, помимо вкусовых веществ рецепторы типа GPCR могут распознавать гормоны, нейромедиаторы, пахучие вещества, феромоны - словом, они похожи на антенны, принимающие самые разнообразные сигналы.

Сегодня известно, что рецептор сладких веществ - это димер из двух рецепторных белков T1R2 и T1R3, за вкус умами отвечает димер T1R1-T1R3 (у глутамата есть и другие рецепторы, причем некоторые из них расположены в желудке, иннервируются блуждающим нервом и отвечают за чувство удовольствия от пищи), а вот ощущению горечи мы обязаны существованию около тридцати рецепторов группы T2R. Горький вкус - это сигнал опасности, поскольку такой вкус имеют большинство ядовитых веществ.

Видимо, по этой причине «горьких» рецепторов больше: умение вовремя различить опасность может быть вопросом жизни и смерти. Некоторые молекулы, такие, как сахарин, могут активировать как пару сладких рецепторов T1R2-T1R3, так и горькие T2R (в частности, hTAS2R43 у человека), поэтому сахарин на языке кажется одновременно сладким и горьким. Это позволяет нам отличить его от сахарозы, которая активирует только T1R2-T1R3.

Принципиально иные механизмы лежат в основе формирования ощущений кислого и соленого. Химическое и физиологическое определения «кислого», по сути, совпадают: за него отвечает повышенная концентрация ионов Н + в анализируемом растворе. Пищевая соль - это, как известно, хлорид натрия. Когда происходит изменение концентрации этих ионов - носителей кислого и соленого вкусов, - тут же реагируют соответствующие ионные каналы, то есть трансмембранные белки, избирательно пропускающие ионы в клетку. Рецепторы кислого - это фактически ионные каналы, проницаемые для катионов, которые активируются внеклеточными протонами. Рецепторы соленого - это натриевые каналы, поток ионов через которые возрастает при увеличении концентрации солей натрия во вкусовой поре. Впрочем, ионы калия и лития тоже ощущаются как «соленые», но соответствующие рецепторы однозначно пока не найдены.

Почему при насморке теряется вкус? Воздух с трудом проходит в верхнюю часть носовых ходов, где расположены обонятельные клетки. Временно пропадает обоняние, поэтому мы плохо чувствуем и вкус тоже, поскольку эти два ощущения теснейшим образом связаны (причем обоняние тем важнее, чем богаче пища ароматами). Пахучие молекулы высвобождаются во рту, когда мы пережевываем пищу, поднимаются вверх по носовым ходам и там распознаются обонятельными клетками. Насколько важно обоняние в восприятии вкуса, можно понять, зажав себе нос. Кофе, например, станет просто горьким. Кстати, люди, которые жалуются на потерю вкуса, на самом деле в основном имеют проблемы с обонянием. У человека примерно 350 типов обонятельных рецепторов, и этого достаточно, чтобы распознать огромное множество запахов. Ведь каждый аромат состоит из большого числа компонентов, поэтому задействуется сразу много рецепторов. Как только пахучие молекулы связываются с обонятельными рецепторами, это запускает цепочку реакций в нервных окончаниях, и формируется сигнал, который также отправляется в мозг.

Теперь о температурных рецепторах, которые также очень важны. Почему мята дает ощущение свежести, а перец жжет язык? Ментол, входящий в мяту, активирует рецептор TRPM8. Это катионный канал, открытый в 2002 году, начинает работать при падении температуры ниже 37 о С - то есть он отвечает за формирование ощущение холода. Ментол снижает температурный порог активации TRPM8, поэтому, когда он попадает в рот, ощущение холода возникает при неизменной температуре окружающей среды. Капсаицин, один из компонентов жгучего перца, наоборот активирует рецепторы тепла TRPV1 - ионные каналы, близкие по структуре TRPM8. Но в отличие от холодовых, TRPV1 активируются при повышении температуры выше 37 о С. Именно поэтому капсаицин вызывает ощущение жгучести. Пикантные вкусы других пряностей - корицы, горчицы, тмина - также распознаются температурными рецепторами. Кстати, температура пищи имеет огромное значение - вкус выражен максимально, когда она равна или чуть выше температуры полости рта.

Как ни странно, зубы тоже участвуют в восприятии вкуса. О текстуре пищи нам сообщают датчики давления, расположенные вокруг корней зубов. В этом принимают участие и жевательные мускулы, которые «оценивают» твердость пищи. Доказано, что, когда во рту много зубов с удаленными нервами, ощущение вкуса меняется.

Вообще вкус - это, как говорят медики, мультимодальное ощущение. Должна воедино свестись следующая информация: от химических избирательных вкусовых рецепторов, тепловых рецепторов, данные от механических датчиков зубов и жевательных мускулов, а также обонятельных рецепторов, на которые действуют летучие компоненты пищи.

Примерно за 150 миллисекунд первая информация о вкусовой стимуляции доходит до центральной коры головного мозга. Доставку осуществляют четыре нерва. Лицевой нерв передает сигналы, приходящие от вкусовых почек, которые расположены на передней части языка и на нёбе, тройничный нерв передает информацию о текстуре и температуре в той же зоне, языкоглоточный нерв переправляет вкусовую информацию с задней трети языка. Информацию из горла и надгортанника передает блуждающий нерв. Потом сигналы проходят через продолговатый мозг и оказываются в таламусе. Именно там вкусовые сигналы соединяются с обонятельными и вместе уходят во вкусовую зону коры головного мозга (рис. 3).

Вся информация о продукте обрабатывается мозгом одновременно. Например, когда во рту клубника, это будут сладкий вкус, клубничный запах, сочная с косточками консистенция. Сигналы от органов чувств, обработанные во многих частях коры головного мозга, смешиваются и дают комплексную картину. Через секунду мы уже понимаем, что едим. Причем общая картина создается нелинейным сложением составляющих. Например, кислотность лимонного сока можно замаскировать сахаром, и он будет казаться не таким кислым, хотя содержание протонов в нем не уменьшится.

Маленькие и большие

У маленьких детей больше вкусовых почек, поэтому они так обостренно все воспринимают и настолько разборчивы в еде. То, что в детстве казалось горьким и противным, легко проглатывается с возрастом. У пожилых людей многие вкусовые почки отмирают, поэтому еда им часто кажется пресной. Существует эффект привыкания к вкусу - со временем острота ощущения снижается. Причем привыкание к сладкому и соленому развивается быстрее, чем к горькому и кислому. То есть люди, которые привыкли сильно солить или подслащивать пищу, не чувствуют соли и сахара. Есть и другие интересные эффекты. Например, привыкание к горькому повышает чувствительность к кислому и соленому, а адаптация к сладкому обостряет восприятие всех других вкусов.

Ребенок учится различать запахи и вкус уже в утробе матери. Проглатывая и вдыхая амниотическую жидкость, эмбрион осваивает всю палитру запахов и вкусов, которые воспринимает мать. И уже тогда формирует пристрастия, с которыми придет в этот мир. Например, беременным женщинам за десять дней до родов предлагали конфеты с анисом, а потом смотрели, как вели себя новорожденные в первые четыре дня жизни. Те, чьи мамы ели анисовые конфетки, явно различали этот запах и поворачивали в его сторону голову. По другим исследованиям, тот же эффект наблюдается с чесноком, морковью или алкоголем.

Конечно, вкусовые пристрастия сильно зависят от семейных традиций питания, от обычаев страны, в которой вырос человек. В Африке и Азии кузнечики, муравьи и прочие насекомые - вкусная и питательная еда, а у европейца она вызывает рвотный рефлекс. Так или иначе, природа нам оставила немного простора для выбора: как именно вы будете ощущать тот или иной вкус, в значительной мере предопределено генетически.

Гены диктуют меню

Нам иногда кажется, будто мы сами выбираем, какую пищу любить, в крайнем случае - что мы едим то, к чему нас приучили родители. Но ученые все больше склоняются к тому, что выбор за нас делают гены. Ведь люди ощущают вкус одного и того же вещества по-разному, и пороги вкусовой чувствительности у разных людей также сильно отличаются - вплоть до «вкусовой слепоты» к отдельным веществам. Сегодня исследователи всерьез задались вопросом: действительно ли некоторые люди запрограммированы есть картофель фри и набирать вес, пока другие с удовольствием едят вареную картошку? Особенно это волнует США, которые столкнулись с настоящей эпидемией ожирения.

Впервые вопрос о генетической предопределенности обоняния и вкуса был поднят в 1931 году, когда химик фирмы «Дюпон» Артур Фокс синтезировал пахучую молекулу фенилтиокарбамида (ФТК). Его коллега заметил острый запах, который исходил от этого вещества, к большому удивлению Фокса, который ничего не чувствовал. Он также решил, что вещество безвкусно, а тот же коллега нашел его очень горьким. Фокс проверил ФТК на всех членах своей семьи - никто не чувствовал запаха...

Эта публикация 1931 года породила целый ряд исследований чувствительности - не только к ФТК, но и вообще к горьким веществам. Нечувствительными к горечи фенилтиокарбамида оказались примерно 50% европейцев, но лишь 30% азиатов и 1,4% индейцев Амазонии. Ген, ответственный за это, обнаружили только в 2003 году. Оказалось, что он кодирует рецепторный белок вкусовых клеток. У разных индивидов этот ген существует в разных версиях, и каждая из них кодирует немного другой белок-рецептор - соответственно фенилтиокарбамид может взаимодействовать с ним хорошо, плохо или вообще никак. Поэтому разные люди различают горечь в различной степени. С тех пор обнаружено около 30 генов, кодирующих распознавание горького вкуса.

Как это влияет на наши вкусовые пристрастия? Многие пытаются ответить на этот вопрос. Вроде бы известно, что те, кто различает горький вкус ФТК, испытывают отвращение к брокколи и брюссельской капусте. Эти овощи содержат молекулы, структура которых похожа на ФТК. Профессор Адам Древновски из Мичиганского университета в 1995 году сформировал три группы людей по их способности распознавать в растворе близкое к ФТК, но менее токсичное соединение. Эти же группы проверили на вкусовые пристрастия. Те, кто чувствовал уже очень маленькие концентрации тестового вещества, находили кофе и сахарин слишком горькими. Обычная сахароза (сахар, который получают из тростника и свеклы) казалась им более сладкой, чем другим. И жгучий перец жег гораздо сильнее.

По-прежнему спорным остается вопрос о вкусе жира. Долгое время считали, что жир мы распознаем с помощью обоняния, поскольку липиды выделяют пахучие молекулы, а также благодаря определенной текстуре. Специальные вкусовые рецепторы на жир никто даже не искал. Эти представления поколебала в 1997 году исследовательская группа Тору Фусики из университета Киото. Из эксперимента было известно, что крысята предпочитали бутылочку с едой, содержащую жиры. Чтобы проверить, связано ли это с консистенцией, японские биологи предложили грызунам без обоняния два раствора - один с липидами, а другой с похожей консистенцией, сымитированной благодаря загустителю. Крысята безошибочно выбрали раствор с липидами - видимо, руководствуясь вкусом.

В самом деле, выяснилось, что язык грызунов может распознать вкус жира с помощью специального рецептора - гликопротеина CD36 (транспортера жирных кислот). Французские исследователи под руководством Филлипа Бенара доказали, что, когда ген, кодирующий CD36, заблокирован, животное перестает отдавать предпочтение жирной пище, а в желудочно-кишечном тракте при попадании жира на язык не происходит изменения секреции. При этом животные по-прежнему предпочитали сладкое и избегали горькое. Значит, был найден специфический рецептор именно на жир.

Но человек - не грызун. Присутствие в нашем организме транспортного белка CD36 доказано. Он переносит жирные кислоты в мозг, сердце, вырабатывается в желудочно-кишечном тракте. Но есть ли он на языке? Две лаборатории, американская и немецкая, пытались прояснить этот вопрос, однако публикаций пока нет. Исследования на афроамериканцах, у которых обнаружено большое разнообразие гена, кодирующего белок CD36, как будто показывают, что способность распознавать жир в пище действительно связана с некоторыми модификациями конкретного гена. Есть надежда, что, когда будет найден ответ на вопрос «может ли наш язык чувствовать вкус жира», у врачей появятся новые возможности для лечения ожирения.

Животные-гурманы?

В XIX веке знаменитый французский гастроном и автор широко цитируемой книги «Физиология вкуса» Жан-Антельм Брийя-Саварен настаивал на том, что только человек разумный испытывает удовольствие от еды, которая вообще-то нужна просто для поддержания жизни. Действительно, современные исследования показали, что животные воспринимают вкус иначе, чем мы. Но так ли сильно отличаются вкусовые ощущения у людей и других представителей отряда приматов?

Опыты проводили на 30 видах обезьян, которым давали пробовать чистую воду и растворы с разными вкусами и разными концентрациями: сладкие, соленые, кислые, горькие. Оказалось, что их вкусовая чувствительность сильно зависит от того, кто и что пробует. Приматы ощущают, как и мы, сладкое, соленое, кислое и горькое. Обезьяна отличает фруктозу плода от сахарозы свеклы, а также танины коры дерева. Но, к примеру, уистити - порода обезьян, которая питается листьями и зеленью, более чувствительна к алкалоидам и хинину в коре деревьев, чем фруктоядные приматы Южной Америки.

Вместе с американскими коллегами из университета штата Висконсин, французские исследователи подтвердили это еще и электрофизиологическими экспериментами и свели воедино картину, полученную на разных видах обезьян. В электрофизиологических экспериментах регистрировали электрическую активность волокон одного из вкусовых нервов - в зависимости от того, какой продукт ест животное. Когда наблюдалась электрическая активность, это значило, что животное ощущает вкус данной пищи.

А как обстоит дело у человека? Чтобы определить пороги чувствительности, добровольцам вслепую давали пробовать сначала очень разбавленные, а потом все более концентрированные растворы, пока они не формулировали четко, каков же вкус раствора. Человеческое «дерево вкуса» в целом похоже на те, что получили для обезьян. У человека так же далеко разнесены в противоположные стороны вкусовые ощущения от того, что приносит энергию организму (сахара), и того, что может навредить (алкалоиды, танин). Бывает и корреляция между субстанциями одного типа. Тот, кто очень чувствителен к сахарозе, имеет шансы быть также чувствительным к фруктозе. Но зато нет никакой корреляции между чувствительностью к хинину и танину, а некто, чувствительный к фруктозе, не обязательно чувствителен к танину.

Коль скоро у нас и обезьян так похож механизм вкуса, значит ли это, что мы стоим совсем рядом на эволюционном дереве? Согласно наиболее правдоподобной версии, к концу палеозоя и появлению первых земных существ эволюция растений и животных шла параллельно. Растения должны были как-то сопротивляться активному ультрафиолетовому излучению молодого солнца, поэтому только те экземпляры, которые имели достаточно полифенолов для защиты, смогли выжить на суше. Эти же соединения защищали растения от травоядных животных, поскольку они токсичны и затрудняют переваривание.

У позвоночных в ходе эволюции развивалась способность различать горький или вяжущий вкус. Именно эти вкусы окружали приматов, когда они появились в кайнозойскую эру (эоцен), а затем и первых людей. Появление растений с цветами, которые превращались в плоды со сладкой мякотью, сыграло большую роль в эволюции вкуса. Приматы и плодовые растения эволюционировали совместно: приматы поедали сладкие фрукты и рассеивали их семена, способствуя росту деревьев и лиан в тропических лесах. А вот способность распознавать вкус соли (особенно поваренной) едва ли могла возникнуть в ходе коэволюции с растениями. Возможно, она пришла от водных позвоночных, а приматы просто унаследовали ее.

Интересно, приматы при выборе еды руководствуются только питательной ценностью и вкусом? Нет, оказывается, они могут поедать растения и с лечебной целью. Майкл Хаффман из Киотского университета в 1987 году на западе Танзании наблюдал за шимпанзе, у которого были проблемы с желудком. Обезьяна поедала стебли горького растения Vernonia amygdalina (вернония), которые шимпанзе обычно не едят. Выяснилось, что побеги дерева содержат вещества, помогающие против малярии, дизентерии и шистосомоза, а также обладающие антибактериальными свойствами. Наблюдение за поведением диких шимпанзе дало ученым пищу для размышлений: были созданы новые растительные лекарственные препараты.

В общем, вкус не сильно изменился в процессе эволюции. И приматам, и людям вкус сладкого приятен - в их организмах идет выработка эндорфинов. Поэтому, возможно, великий французский кулинар был не совсем прав - приматы тоже могут быть гурманами.

По материалам журнала
«La Recherche», №7-8, 2010

Каков механизм восприятия вкусовых ощущений , точно не известно. Некоторые авторы считают, что в основе вкусоощущения лежит электролиз слюны под влиянием вкусовых веществ.

Значение слюны для органа вкуса подчеркивает тот факт, что человек ощущает вкус только растворимых веществ. Известно также, что состав и консистенция слюны определяются консистенцией и составом самой пищи.

Движения языка играют большую роль во вкусовосприятии, так как благодаря им пища приходит в соприкосновение с большей поверхностью слизистой рта и лучше распознается.

Интенсивность вкусового ощущения зависит от концентрации вкусового вещества, величины раздражаемого поля и продолжительности действия вкусового вещества. Степень возбудимости вкусового анализатора может быть определена не только силой раздражения, но и хронаксией, т. е. отрезком времени, необходимым для того, чтобы электрический ток двойной пороговой силы вызвал возбуждение данного рецептора. Особенности измерения хронаксии вкуса только в способе подведения тока.

Прикладывая маленькие электроды к поверхности языка, С. А. Харитонов обнаружил, что вкусовая хронаксия равна 0,08-0,24 миллисекунды. В. Г. Куневич в этих же условиях получил 0,7-3,8 миллисекунды.

Отмечены колебания хронаксии в норме. В. Г. Куневич наблюдал колебания хронаксии вкуса в широких пределах в разных условиях. Так, после 24-часового бодрствования она увеличилась на 224%. Пиерон также указывал на колебания вкусовой хронаксии в пределах от 1 до 100 а.

A. А. Маркосян, изучая вкусовую хронаксию, зарегистрировал следующие величины: хронаксия восприятия кислого вкуса 2,86, сладкого - 4,92, горького - 2,6, соленого - 4,6.

В патологических случаях наблюдали повышение хронаксии вкуса.

Установлено, что для возникновения и исчезновения различных вкусовых ощущений требуется различное время.

Последействие вкусовых раздражений возрастает по мере увеличения концентрации раствора. Для кислых и горьких веществ оно достигает нескольких минут. Это объясняет причины притупления вкуса.

B. К. Киселев привел карту языка, характеризующую расположение специфических рецепторов для каждого из основных вкусовых ощущений.

Пфафман осциллографически записывал импульсы с chorda tympani и с n. glossopharyngeus кошки. Оба нерва при наложении на электроды показывают некоторую степень активности, которая резко увеличивается при нанесении на язык растворов соли, соляной кислоты и хины. Растворы сахара не вызывают электрических импульсов. Если же растворы наносились на область языка, лишенную вкусовых бокалов, то импульсов также не получалось. Автор обнаружил, что кончик и края языка более чувствительны к соленому, основание языка - к горькому, а чувствительность к кислому имеется во всех областях. Запись импульсов с отдельных волокон показала три главнейшие типа последних: 1) волокна, отвечающие на раздражение кислотами; 2) волокна, отвечающие на раздражение хинином и кислотами; 3) волокна, отвечающие на раздражение солями и кислотами.

Таким образом, большинство волокон отвечает на раздражение кислотами и только небольшая часть их не реагирует на кислоту.

Предполагали, что для каждого из четырех основных видов, вкуса имеются свои специальные вкусовые сосочки. Дальнейшее изучение этого вопроса показало, что один и тот же сосочек может воспринимать различные вкусовые вещества. По-видимому, для каждого рода вкуса имеются специфические луковицы в сосочке, раздражение которых связано с определенным видом вкусового ощущения.

Неодинаковая чувствительность разных участков языка к вкусовым веществам доказывает существование четырех самостоятельных видов вкусовой чувствительности. Это подтверждают и выпадение отдельных видов чувствительности при действии химических веществ, и другие факты.

Установлено, что кокаин вначале угнетает болевую чувствительность, а затем восприятие горького, сладкого, соленого и кислого. Тактильное ощущение исчезает последним.

Отмечено также, что адаптация наступает только к определенному вкусовому веществу при действии нескольких раздражителей.

Пороги вкусовых восприятий определяются минимальным количеством веществ, способных вызвать ощущение.

Г. А. Шрейбер нашел, что возбуждение вкусового анализатора способно вызывать: 1 % водный раствор сахара (температура 30°), 0,0001% раствор хинина, 0,05% раствор поваренной соли и 0,0025% раствор лимонной кислоты.

Е. П. Барышева для определения вкусовых порогов, использовала молярные растворы сахара и поваренной соли, 0,1 молярный раствор соляной кислоты и 0,001 молярный раствор солянокислого цинка. Она обнаружила, что пороги восприятия сахара колеблются в пределах от 2,41 до 3,21%, соли - от 0,41 до 0,55°/о, соляной кислоты - от 0,12 до 0,17% и хинина - от 0,00002 до 0,00008°/о от исходных растворов.

При определении разностных порогов вкуса встречаются большие трудности, так как одновременно нельзя использовать растворы разной концентрации и, кроме того, вкусовые ощущения сопровождаются длительными следовыми процессами.

С. Д. Ролле, проверяя пороги вкуса, отметил, что у 20 из 30 здоровых людей пороги ниже на левой половине языка. Автор объяснил это наличием большого количества вкусовых сосочков на левой половине языка, чем на правой.

Отмечено влияние различных факторов на пороги вкуса .

Г. А. Шрейбер изучал зависимость порогов вкуса от температуры. Так, при комнатной температуре он получил следующие данные.

При температуре от 0 до 50°, по его данным, пороги выше для кончика и краев языка, они меньше для корня и всей полости рта.

Падение остроты вкуса отмечается выше 50° или ниже 10°.

Автор считает, что такая температура раствора изменяет свойства веществ и разрыхляет эпителиальный покров. Теплые растворы легче диффундируют через эпителиальный покров. Наивысшая возбудимость отмечается при температуре 30-40°, но при 50° разбухание эпителия, наоборот, препятствует диффузии.

С. А. Харитонов указывает, что различные вкусовые системы, воспринимающие горькое, соленое, сладкое, кислое, по-разному отвечают на различные раздражители (температурные, химические, механические).

По его данным, повышение температуры от 17 до 42° не меняет пороги ощущения соляной кислоты, для сахара пороги возрастают, а для соли понижаются. Тактильные раздражения понижают порог ощущения горького и повышают порог ощущения сладкого.

На основании своих исследований С. А. Харитонов приходит к выводу, что существуют различные вкусовые афферентные системы, воспринимающие различные вкусовые вещества, но работающие не изолированно.

Установлено изменение вкусовой чувствительности в связи с динамикой потребности в пище.

Обнаружено обострение вкуса к сладкому и меньше к соленому по мере развития голода (характерно при соблюдении строгих диет). Чувствительность к кислому и горькому понижалась в этих условиях.

Обнаружена зависимость порогов вкуса от физико-химических свойств пищевого раствора. Так, показано, что добавление жира снижает пороги, а добавление коллоидов повышает их.

На пороги вкуса влияет минеральный обмен.

При кормлении собак избыточным количеством хлористого натрия и другими солями отмечено повышение порогов на соленое и снижение на кислое.

Изучалось влияние различных профессиональных факторов, на пороги вкуса.

Ю. М. Уфлянд, производя массовое исследование вкуса у рабочих свинцовых производств, нашел изменения порогов в зависимости от стажа работы в данной профессии.

Н. В. Тимофеев также находил изменения порогов вкуса у рабочих кожевенных, химических и свинцовых предприятий.

Имеются указания на зависимость вкусоощущения от факторов внешней и внутренней среды, каковы курение, утомление, острая пища.

Отмечена зависимость вкуса от состояния других органов, чувств.

П. О. Макаров наблюдал повышение чувствительности зрительного анализатора при вкусовых раздражениях, а О. А. Добрякова отметила понижение электрочувствительности глаза при вкусовой адаптации.

Установлена независимая способность к адаптации каждой из четырех основных вкусовых систем; адаптация к сладкому и соленому происходит раньше, чем к горькому и кислому.

Ранее полагали, что в основе вкусовой адаптации лежит прекращение диффузии вкусового вещества в чувствительную клетку при уравнивании концентрации вещества внутри и вне клетки.

Диффузионная теория адаптации Бакмана объясняет снижение чувствительности анализатора процессами, происходящими в периферическом органе.

Н. С. Зайко нашел доказательства тому, что в основе приспособляемости вкусового анализатора к изменившимся условиям внешней среды лежит функциональная мобильность, как и в других анализаторах (кожном, зрительном). Мобильность характеризуется тем, что растворы одной и той же концентрации в одном и том же сосочке могут вызывать ощущения различной силы. Автор полагает, что в данном случае имеет место неодновременное функционирование вкусовых почек в сосочке.

Обоняние и вкус относятся к висцеральным чувствам, поскольку они в значительной степени связаны с функцией пищеварения (например, ароматы пищи обычно сочетаются с её вкусом) и дыхания. Воспринимающие структуры органов обоняния и вкуса - хеморецепторы, они возбуждаются молекулами вкусовых веществ и одорантами.

Обоняние

Обонятельные пути начинаются от рецепторных клеток слизистой оболочки обонятельной области и проецируются в обонятель-ный мозг, они не имеют ни переключения в таламусе, ни прямого представительства в коре больших полушарий.

Обонятельная слизистая оболочка

Воспринимающие обонятельные структуры (периферическая часть обонятельного анализатора, орган обоняния) образуют в слизистой оболочке носа специализированную область - парную обонятельную выстилку (обонятельное поле), расположенную под решётчатой пластинкой. Суммарная площадь обонятельного поля (обонятельного эпителия) около 5 см 2 .

Обонятельный эпителий (рис. 12-1) содержит опорные эпителиальные клетки и 10-20 млн расположенных между ними рецеп- торных обонятельных клеток - биполярных обонятельных нейронов. Короткий и толстый дендрит (периферический отросток, направленный к поверхности обонятельной выстилки) каждого рецепторного нейрона имеет расширенный конец - обонятельную булаву. От булавы отходит 8-40 тонких обонятельных волосков - ресничек. Именно в эти погружённые в слизь волоски «вмонтированы» обонятельные молекулярные рецепторы. От ба-

Рис. 12-1. Строение обонятельного эпителия.

зальной части рецепторного нейрона отходит его центральный отросток - аксон. Пучки этих аксонов в виде обонятельных нитей (filaolfactoria) пронизывают подэпителиальную соединительную ткань, костную решётчатую пластинку и входят в обонятельные луковицы. Под эпителием и в самой эпителиальной выстилке расположено множество обонятельных (боуменовых) желёз. Секретируемая ими слизь покрывает поверхность обонятельной выстилки. Слизь содержит воду, гликозаминогликаны, АТ, связывающие молекулы одорантов белки, ферменты и полностью обновляется в течение 10 мин.

Втягивание воздуха. Область, содержащая обонятельные рецепторы, плохо вентилируется. Обычно воздух спокойно движется над носовыми раковинами во время каждого дыхательного движения. Количество воздуха, достигающего обонятельной области, заметно возрастает при интенсивном втягивании воздуха (принюхива-ние). Это происходит за счёт сокращения нижней части ноздрей, прижимающихся ближе к носовой перегородке и помогающих отклонять струю воздуха вверх. Втягивание воздуха - полурефлекторный акт, возникающий в случаях, когда внимание привлечено новым запахом.


Болевые рецепторы. В обонятельной слизистой оболочке расположено много свободных нервных окончаний, имеющихся в волокнах тройничного нерва. Эти ноцирецепторы стимулируются раздражающими веществами, и этот раздражающий компонент - часть характеристики «запаха» ряда веществ (аммиак, хлорная из- весть и др.). Другими словами, эти рецепторы боли ответственны за чиханье, слёзы, задержку дыхания и другие рефлексы, вызванные раздражением слизистой оболочки носа.

Восходящие пути и обонятельный мозг

Обонятельные нервы (пучки аксонов рецепторных обонятельных клеток) в виде 18-20 тонких ветвей вступают в обонятельную луковицу. Последняя переходит в обонятельный тракт, заканчивающийся в первичных обонятельных центрах (обонятельный треугольник, переднее продырявленное вещество, прозрачная перегородка). От первичных обонятельных центров сигналы направляются к корковым центрам обоняния своей (ипсилатеральной) и противоположной (контралатеральной) стороны - к извилине гиппокампа и крючку.

Обонятельный мозг (rhinencephalon) образуют обонятельная луковица, обонятельный тракт, обонятельный треугольник, переднее продырявленное вещество, гиппокампова борозда, зубчатая извилина и ряд прилежащих структур.

Обонятельная луковица

В обонятельной луковице (рис. 12-2) аксоны рецепторных клеток образуют синапсы с дендритами митральных и пучковых клеток, формируя характерные комплексы - обонятельные клубочки. В каждый клубочек входит (конвергирует) в среднем 25 000 аксонов рецепторных клеток, но не любых, а только тех, что имеют идентичные обонятельные рецепторы. В каждом обонятельном клубочке с аксонами рецепторных клеток контактируют дендриты примерно 25 митральных и 60 пучковых клеток. В следующем слое обонятельной луковицы дендриты митральных, зернистых и пучковых клеток образуют реципрокные синапсы. Эти синаптические связи осуществляют контроль за ис- ходящей из обонятельной луковицы информацией, вероятно, закодированной в спектрах ПД.

Рис. 12-2. Архитектоника нейронов и связей в обонятельной луковице. ПК -

пучковая клетка, МК - митральная клетка с возвратными коллатералями (К), ЗК - зернистая клетка, ВПЯ - нисходящие в обонятельную луковицу нервные волокна из переднего обонятельного ядра, ВПС - комиссуральные нервные волокна передней спайки мозолистого тела (commissuraanterior). Прерывистые линии - границы между анатомическими структурами.

Одоранты

Молекулы, создающие запахи (одоранты), исчисляются миллионами. Они имеют небольшие размеры и содержат от 3-4 до 18-20 атомов углерода. Молекулы однородного химического состава, но с неодинаковой конфигурацией обладают различным запахом. Принято различать следующие основные запахи: мятный, едкий, гнилостный, эфирный, мускусный, камфорный и цветочный. В реальной жизни человек встречается со смесями запахов. Обо-нятельные рецепторы контактно реагируют только на вещества, растворённые в тонком слое слизи на поверхности обонятельного эпителия. У порогов восприятия разных одорантовзначителен

диапазон величин - от 5,8 мг в литре воздуха (этиловый эфир) до 0,5 нг/л (метилмеркаптан). Это значит, что чувствительность различается в 10 млн раз. Человек различает от 2000 до 4000 тыс. различных запахов, но хуже регистрирует их концентрацию (чтобы обнаружилась разница, концентрация пахучего вещества должна измениться не менее чем на 30%).

Регистрация и преобразование обонятельного сигнала

Рецепторные клетки обонятельной выстилки регистрируют небольшое количество первичных запахов, но их комбинации фор-мируют ощущение многих и многих воспринимаемых запахов. Возникает вопрос: каким образом обонятельная система может различать множество различных запахов? Варианты ответа таковы: или рецепторные обонятельные нейроны имеют множество различных молекулярных рецепторов (в том числе и каждый нейрон), или/и они содержат один или несколько типов молекулярных обонятельных рецепторов, но посылают в ЦНС различные спектры ПД. Наконец, ощущение конкретного запаха может формироваться в зависимости от фиксированных связей между нервными клетками обонятельной системы.

Обонятельные рецепторные белки кодируют гены, расположенные практически во всех хромосомах, кроме аутосомы 20 и половой хромосомы Y. В геноме человека идентифицировано более 900 генов, кодирующих белки обонятельных рецепторов, что практически равно одной тридцатой всего генома. Эти белки относятся к семейству связанных с G-белком рецепторов.

Последовательность событий при регистрации обонятельного сигнала (рис. 12-3) можно представить следующим образом: взаимодействие пахучего вещества с белком-рецептором в плазмолемме обонятельных волосков - активация G-белка - повышение активности аденилатциклазы - увеличение уровня цАМФ - активация цАМФ-зависимых воротных катионных каналов - деполяризация рецепторных нейронов - генерация ПД и его проведение по аксону.

Механизмы адаптации. Адаптация к обонятельному сигналу на уровне рецепторных нейронов (регуляция чувствительности к обонятельному сигналу) происходит достаточно быстро (50% в течение 1 с). Некоторые механизмы такой быстрой адаптации известны и осуществляются при помощи внутриклеточных вторых посредников и β-аррестинов - веществ, десенситизирующихадренорецепторы и тормозящих функцию рецепторов, которые связаны с G-белками.

Рис. 12-3. Трансформация сигнала в обонятельном рецепторе. А - рецеп- торный обонятельный нейрон; Б - вход Na+ в клетку; В - пахучие молекулы соединяются с рецептором (R). Рецептор активирует G-белок (G), G-белок активирует аденилатциклазу (Ац), образующийся цАМФ открывает Na+-каналы.

Центральные механизмы

Пребывание в условиях воздействия даже очень неприятного запаха уменьшает и может полностью подавить восприятие запаха. Этот феномен - результат быстрой адаптации или десенситизации на уровне рецепторных нейронов (см. выше). При этом порог для других запахов не изменяется. В центральных обонятельных структурах также существует чёткий контроль обонятельной афферентной импульсации. Так, возбуждение нервных клеток, вызванное афферентной импульсацией, сменяется последующим торможением электрической активности нейронов, что и объясняет суще-

ствование ритмической активности в обонятельной коре. Пример, демонстрирующий центральную регуляцию потоков импульсов от обонятельной луковицы, приведён выше. Обонятельнаяимпульсация направляется в лимбическую систему (здесь осуществляется подсознательное восприятие обоняния), к передним обонятельным ядрам, миндалевидному телу (формирование эмоционального ответа на обонятельные стимулы) и обонятельной борозде (формирование так называемой обонятельной памяти).

Обоняние, половое поведение и память. Между запахом и половой функцией у многих видов животных существует тесная взаимосвязь [скорее всего, реализуемая через cошниково-носовой (вомероназальный) орган Якобсона - участок слизистой оболочки носовых ходов, аналогичный обонятельной выстилке], а использование духов даёт достаточные основания считать, что подобная взаимосвязь существует и у людей (орган Якобсона у человека отсутствует). Обоняние у женщин развито сильнее, и оно обостряется ещё больше в период овуляции. Запах и (в меньшей степени) вкус обладают уникальной способностью оживлять воспоминания, заложенные в долговременной памяти. Этот факт отмечен писателями и экспериментально доказан психологами.

Комбинаторное кодирование. Эта концепция подразумевает, что каждый из миллионов отдельных запахов (одорантов) имеет уникальный код; кодирование происходит на уровне органа обоняния, а декодирование - в обонятельных центрах.

Вкус

Рецепторы вкуса - контактные, а пути проведения от них проходят через ствол мозга к таламусу и проецируются вдоль постцен- тральной извилины. Периферическая часть вкусового анализатора - вкусовые почки - расположена в слизистой оболочке полости рта, переднего отдела глотки, пищевода и гортани. Основная масса вкусовых почек (>90% их общего количества - до 10 000) находится в хемочувствительных сосочках языка (рис. 12-4) - листовидных, грибовидных и желобоватых.

Вкусовые почки (вкусовые луковицы) - тельца яйцевидной формы со средним размером 50-70 мкм, состоят из клеток различных типов. На верхушечной (апикальной) части большинства клеток расположены микроворсинки - вкусовые волоски, занимаю-

Рис. 12-4. Вкусовые области языка. А - иннервация языка; Б - вкусовые зоны языка. Вкус сладкого регистрируется преимущественно на кончике языка, солёного - ближе к кончику языка, кислого - на боковых сторонах языка, горького - в задней части языка и в мягком нёбе.

щие вкусовой канал, который открывает на поверхность эпителия вкусовой порой. В микроворсинки «вмонтированы» рецепторные вкусовые белки. В базальной части вкусовой луковицы рецепторные клетки образуют синапсы с терминальными разветвлениями периферических отростков первичных чувствительных нейронов. Каждая вкусовая почка иннервирована примерно 59 нервными волокнами, а каждый чувствительный нейрон получает сигналы при- мерно от пяти вкусовых луковиц.

Восходящие пути вкусовой чувствительности состоят из трёх нейронов: 1) первичного чувствительного нейрона; 2) нервной клеткиядра одиночного пути (одиночное ядро, nucleustractussolitarius); 3) нейрона вентромедиального ядра таламуса (рис. 12-5).

Рис. 12-5. Восходящие пути вкусовой чувствительности.

Часть аксонов одиночного пути направляется к верхнему и нижнему слюнным ядрам, что обеспечивает выполнение некоторых рефлексов, связанных со слюноотделением.

Основные вкусы. Человек различает четыре первичных вкуса (сладкий, кислый, горький и солёный), а также «умами» (от японского«изысканный», вкус глутамата натрия). Существуют карты топографической привязанности преимущественного восприятия основных вкусов (см. рис. 12-4, А), но необходимо иметь в виду, что такие карты действительны только для низких концентраций тестируемых вкусовых веществ. Так, при низких концентрациях деполяризуются и формируют рецепторный (генераторный) потенциал лишь отдельные вкусовые клетки. Некоторые вкусовые клетки и вкусовые луковицы отвечают преимущественно на горькие стимулы, в то время как другие - на сладкие, кислые или солёные. Часть вкусовых клеток и луковицы в целом отвечают на две или три, а иные даже на все вкусовые модальности. Если же концентрация вкусовых веществ увеличивается, происходит возбуждение практически вкусовых луковиц самой различной локализации.

Классы вкусовых веществ и основные вкусы

Существует некоторая связь между ионами и молекулами вкусовых веществ и вызываемыми ими первичными вкусовыми ощу-щениями сладкого, кислого, горького и солёного.

Ощущение кислого создают кислоты. Интенсивность ощущения пропорциональна логарифму концентрации водородных ионов (H+).

Ощущение солёного вкуса формируется при воздействии катионов ионизированных солей.

Ощущение сладкого вызывают сахара, гликоли, спирты, альдегиды и некоторые другие вещества органической природы. Сахароза, мальтоза, лактоза и глюкоза - типичные примеры. Однако существует большой круг веществ иной природы (белок мореллин, искусственные подсластители - сахарин, аспартам и цикламат, а также хлороформ, соли бериллия), вызывающих ощущение сладкого, причём в некоторых случаях в концентрациях, которые в десятки и сотни тысяч раз меньше, чем у классической глюкозы.

Ощущение горького характерно для длинноцепочечных азотсодержащих органических соединений и алкалоидов (например, хинина, кофеина, никотина, стрихнина), а также для некоторых неорганических соединений (соли магния, кальция, аммония).

Вкусовой порог. Наиболее значительные различия наблюдаются между веществами, создающими ощущение горького и всех остальных первичных вкусов. Так, ощущение солёного возникает при воздействии вещества в концентрации 0,01 М, а наличие хинина можно выявить при его концентрации, которая в миллион раз меньше. Пороги вкусовой чувствительности у людей заметно различаются. Значительное влияние на чувствительность оказывает состояние организма (например, стресс, беременность, голодание). Часто наблюдают «вкусовую слепоту» (классический пример - производные тиомочевины, например фенилтиокарбамид, наличие которого не чувствует каждый пятый). Способность человека различать интенсивность вкусовых ощущений сравнительно груба. Так, 20% раствор сахара ощущается как максимально сладкий, 10% раствор поваренной соли - как максимально солёный и т.д.

Адаптация к воздействию вкусового вещества развивается мед- ленно (минуты) и пропорциональна его концентрации. Адаптация к сладкому и солёному развивается быстрее, чем к горькому и кислому.

Механизмы возбуждения вкусовых клеток

Последовательность событий между воздействием вкусового вещества на вкусовые рецепторные клетки и генерацией ПД в пери-ферических нервных отростках первичного чувствительного нейрона в общем виде можно представить следующим образом:

вкусовое вещество - молекулярный вкусовой рецептор вкусовых волосков - вторые посредники - деполяризация клеточной мембраны и генерация рецепторного потенциала - поступление Ca 2 + в цитоплазму из межклеточного пространства и/или внутриклеточных кальциевых депо - экзоцитозсинаптических пузырьков из базальной части клетки - постсинаптический потенциал - генерация ПД.

Промежуточные и финальные этапы процесса (от деполяризации клеточной мембраны до генерации ПД в чувствительных нервных волокнах) практически одинаковы для всех вкусовых клеток. В то же время начальные этапы значительно различаются при воздействии веществ, вызывающих формирование различных первичных вкусов. Более того, отдельные этапы процесса восприятия отсутствуют или даже не известны. Ниже рассмотрены последова- тельные этапы хемовосприятия и электрогенеза, происходящие в рецепторных вкусовых клетках при формировании разных вкусовых ощущений.

Солёное. Основное действующее начало - Na+. Молекулярный рецептор не обнаружен. В клеточной мембране вкусовой клетки имеются многочисленные ионные каналы, в том числе селективные натриевые (чувствительные к амилориду) и потенциалзависимые кальциевые каналы. При воздействии ионизированных солей, т.е. при увеличении содержания внеклеточного Na+, этот катион входит в рецепторную клетку через натриевые каналы. Результат увеличения внутриклеточной концентрации Na+ - деполяризация клеточной мембраны

(появление рецепторного потенциала). Следствие деполяризации клеточной мембраны - активация кальциевых каналов, вход в цитоплазму рецепторной клетки внеклеточного Ca 2 +, который и запускает слияние синаптических пузырьков с пресинаптической мембраной и дальнейшие события по приве-дённой выше схеме.

Кислое. Действующее начало - протоны (H+). Молекулярный рецептор не обнаружен. В клеточной мембране вкусовой клетки имеются многочисленные амилоридчувствительные натриевые каналы и К+-селективные каналы. Протоны H+ входят в клетку через натриевые каналы (что вызывает деполяризацию клеточной мембраны) и одновременно блокируют калиевые каналы (что усиливает степень деполяризации мембраны). Дальнейшие события развиваются по приведённой выше схеме.

Сладкое на примере глюкозы как действующего начала. В мембрану вкусовой клетки (особенно в мембрану вкусовых волосков) «вмонтированы» молекулярные вкусовые рецепторы, регистрирующие наличие молекул сладкого. Эти рецепторы относятся к связанным с G-белком рецепторам. Взаимодействие глюкозы с белком-рецептором активирует G-белок; повышается активность аденилатциклазы и увеличивается содержание цАМФ, что приводит к блокаде К+-селективных каналов и деполяризации клеточной мембраны. Дальнейшие события развиваются по приведённой выше схеме.

Горькое. Некоторые молекулы: непосредственно блокируют К+-селективные каналы (в результате происходит деполяризация клеточной мембраны). Другие молекулы горького взаимодействуют с молекулярными вкусовыми рецепторами. В мембрану вкусовой клетки вмонтировано несколько типов таких рецепторов. Эти рецепторы относятся к связанным с G-белком рецепторам. В части G-белков их α-субъединица представлена специфичным для вкусовых клеток гастдуцином. При активации такого G-белка происходит активация фосфодиэстеразы, что влечёт за собой уменьшение внутриклеточной концентрации цАМФ, в итоге приводящее к деполяризации клеточной мембраны, входу Ca 2 + в клетку и к выбросу содержимого синаптических пузырьков. При взаимодействии молекул горького со вкусовыми рецепторами

Другого типа активируется G-белок, что вызывает активацию фосфолипазы C, увеличение внутриклеточной концентрации второго посредника ИТФ, его взаимодействие с мембраной внутриклеточных кальциевых депо, выброс из них Ca 2 + и т.д. Изысканное. Действующее начало - глутамат. В мембране вкусовых клеток имеется множество ионотропных рецепторов глутамата (неселективный катионный канал). При взаимодействии глутамата с такими рецепторами в цитоплазму вкусовой клетки входят Na+ и Ca 2 +, что приводит к деполяризации клеточной мембраны. Дальнейшие события развиваются по вышеприведённой схеме.

Федеральное агентство по образованию

Государственное образовательное образовательное учреждение

Высшего профессионального образования

«Карельский государственный педагогический университет»

КОНТРОЛЬНАЯ РАБОТА

Физиология сенсорных систем.

Физиология Вкуса.

Выполнила: Войтенко Н.Д.

Студентка 2 курса ОЗО группа 823-3

Преподаватель: Зорова О.В.

Петрозаводск

1. Физиология сенсорных систем

1.1. Периферический (рецепторный) отдел анализаторов……………………………….3

1.2. Проводникового отдела анализаторов………………………………………………...7

1.3. Центральный или корковый отдел анализатора……………………………………...8

2. Физиология вкуса

2.1. Морфология органов вкуса; субъективная физиология вкуса. Ориентация и строение вкусовых почек………………………………………………………………9

2.2. Центральные связи…………………………………………………………………....11

2.3. Основные вкусовые ощущения………………………………………………………11

2.4. Интенсивность ощущений……………………………………………………………12

2.5. Объективная физиология вкуса………………………………………………………13

2.6. Первичный процесс…………………………………………………………………...13

2.7. Роль вкусовой чувствительности…………………………………………………….14

Литература………………………………………………………………………………………14

1. Физиология сенсорных систем

Человек и животное непрерывно получают информацию о бесконечном многообразии изменений, которые происходят во внешней и внутренней среде. Это осуществляется благодаря наличию у организма специализированных структур, которые получили название анализаторы (сенсорные системы).

Под анализаторами понимают совокупность образований, обеспечивающих восприятие энергии раздражителя, трансформацию ее в специфические процессы возбуждения, проведение этого возбуждения в структуры ЦНС и к клеткам коры, анализ и синтез специфическими зонами коры этого возбуждения с последующим формированием ощущения.

Понятие об анализаторах введено в физиологию И. П. Павловым в связи с учением о высшей нервной деятельности. Каждый анализатор состоит из трех отделов:

Периферический или рецепторный отдел, который осуществляет восприятие энергии раздражителя и трансформацию ее в специфический процесс возбуждения.

Проводниковый отдел, представленный афферентными нервами и подкорковыми центрами, он осуществляет передачу возникшего возбуждения в кору головного мозга.

Центральный или корковый отдел анализатора, представленный соответствующими зонами коры головного мозга, где осуществляется высший анализ и синтез возбуждений и формирование соответствующего ощущения.

Роль анализаторов при формировании приспособительных реакций чрезвычайно велика и многообразна. Согласно концепции функциональной системы П. К. Анохина формирование любой приспособительной реакции осуществляется в несколько этапов. Анализаторы принимают непосредственное участие в формировании всех этапов функциональной системы. Они являются поставщиками афферентных посылок определенной модальности и различного функционального назначения, причем, одна и та же афферентация может быть обстановочной, пусковой, обратной и ориентировочной в зависимости от этапа формирования приспособительной деятельности.

1.1 Периферический (рецепторный) отдел анализаторов

Рецепторы играют ведущую роль в получении организмом информации о состоянии внешней и внутренней среды. Благодаря большому многообразию рецепторов человек способен воспринимать стимулы разных модальностей.

Рецепторы представляют собой конечные специализированные образования, которые предназначены для восприятия энергии раздражителя и трансформации ее в специфическую активность нервной клетки. У большинства рецепторных аппаратов основной структурной единицей является клетка, снабженная подвижными волосками или ресничками, которые представляют собой как бы периферические подвижные антенны. В составе волосков выделяют 9 пар периферических фибрилл, которые сокращаются под действием атф, благодаря чему осуществляется непрерывные поиски адекватного стимула и обеспечиваются условия взаимодействия с ним. Центральные 2 фибриллы выполняют опорную функцию.

Общий механизм рецепции слагается из механохимических молекулярных процессов, обеспечивающих движение антенн, и общих биохимических циклов при взаимодействии специфического стимула с рецепторными мембранами антенн. Однако, у некоторых рецепторов во взаимодействии со стимулом принимает участие вся клетка (например, хеморецепторные клетки, чувствительные к напряжению кислорода в крови), у других восприятие осуществляется микроворсинками (вкусовые луковицы). У большинства рецепторов кожи, внутренних органов и мышц участки преобразования стимула находятся в окончаниях нервных волокон.

Классификация рецепторов. В основу классификации рецепторов положено несколько критериев.

Психофизиологический характер ощущения: тепловые, холодовые, болевые и др.

Природа адекватного раздражителя: механо-, термо-, хемо-, фото-, баро-, осмбрецепторы и др.

Среда, в которой рецептор воспринимает раздражитель: экстеро-, интерорецепторы.

Отношение к одной или нескольким модальностям: моно- и полимодальные (мономодальные преобразуют в нервный импульс только один вид раздражителя - световой, температурный и т. д., полимодальные могут несколько раздражителей преобразовать в нервный импульс - механический и температурный, механический и химический и т. д.).

Способность воспринимать раздражитель, находящийся на расстоянии от рецептора или при непосредственном контакте с ним: контактные и дистантные.

Уровень чувствительности (порог раздражения): низкопороговые (механорецепторы) и высокопороговые (ноцицепторы).

Скорость адаптации: быстроадаптирующиеся, (тактильные), медленноадаптирующиеся (болевые) и неадаптирующиеся (вестибулярные рецепторы и проприорецепторы).

Отношение к различным моментам действия раздражителя: при включении раздражителя, при его выключении, на протяжении всего времени действия раздражителя.

Морфофункциональная организация и механизм возникновения возбуждения: первичночувствующие и вторичночувствующие.

В первичночувствующих рецепторах стимул действует на воспринимающий субстрат, заложенный в самом сенсорном нейроне, который при этом возбуждается непосредственно (первично) раздражителем. К первичночувствующим рецепторам относятся: обонятельные, тактильные рецепторы и мышечные веретена.

К вторичночувствующим относятся те рецепторы, у которых между действующим стимулом и сенсорным нейроном располагаются дополнительные рецептирующие клетки, при этом сенсорный нейрон возбуждается не непосредственно стимулом, а опосредовано (вторично) - потенциалом рецептирующей клетки. К вторичночувствующим рецепторам относятся: рецепторы слуха, зрения, вкуса, вестибулярные рецепторы.

Механизм возникновения возбуждения у этих рецепторов различен. В первичночувствующем рецепторе транформация энергии раздражителя и возникновение импульсной активности идет в самом сенсорном нейроне. У вторичночувствующих рецепторов между сенсорным нейроном и стимулом расположена рецептирующая клетка, в которой под влиянием раздражителя идут процессы трансформации энергии раздражителя в процесс возбуждения. Но в этой клетке не возникает импульсной активности. Рецепторные клетки синапсами соединены с сенсорными нейронами. Под влиянием потенциала рецептирирующей клетки выделяется медиатор, который возбуждает нервное окончание сенсорного нейрона и вызывает в нем появление локального ответа - постсинаптического потенциала. Он оказывает деполяризующее действие на отходящее нервное волокно, в котором возникает импульсная активность.

Свойства периферического (рецепторного) отдела анализаторов. В деятельности каждого анализатора и его отделов независимо от характеристики раздражителей различают ряд общих свойств. Для периферического отдела анализаторов характерны следующие свойства.

1. Специфичность - способность воспринимать определенный, т. е. адекватный данному рецептору, раздражитель. Эта способность рецепторов сформировалась в процессе эволюции.

2. Высокая чувствительность - способность реагировать на очень малые по интенсивности параметры адекватного раздражителя. Например, для возбуждения фоторецепторов сетчатки глаза достаточно нескольких, а иногда и одного, квантов света. Обонятельные рецепторы информируют организм о появлении в атмосфере единичных молекул пахучих веществ.

3. Способность к ритмической генерации импульсов возбуждения в ответ на однократное действие раздражителя.

4. Способность к адаптации - т. е. способность приспосабливаться ("привыкать") к постоянно действующему стимулу. Адаптация может выражаться в снижении активности рецептора и частоты генерации импульсов возбуждения, вплоть до полного его прекращения. В зависимости от скорости адаптации различают:

быстроадаптирующиеся (тактильные);

медленноадаптирующиеся (терморецепторы);

неадаптирующиеся (вестибулярные и проприорецепторы). Выделяют несколько видов адаптации:

изменение возбудимости рецептора в сторону снижения - десенсибилизация;

изменение возбудимости в сторону повышения - сенсибилизация.

Адаптация проявляется в снижении абсолютной чувствительности рецептора и в повышении дифференциальной чувствительности к стимулам, близким по силе к адаптируемому. Сенсибилизация проявляется в стойком повышении возбудимости, которое вызывается многократными действиями пороговых раздражителей, наносимых один за другим.

Сочинение Брийя-Саварена, переведенное на немецкий язык и дополненное Карлом Фогтом

1. Мир ничто без жизни, а все, что живет, питается.
2. Животные жрут, человек ест; только образованный человек ест сознательно.
3. Судьба наций зависит от способа их питания.
4. Скажи мне, что ты ешь; я скажу тебе, что ты.
5. Так как Творец поставил человеку в обязанность есть, чтобы жить, то зовет его к пище аппетитом и награждает его наслаждением.
6. Гастрономия есть проявление нашей способности судить, почему мы даем предпочтение приятным на вкус веществам пред теми, которые не имеют этого свойства.
7. Наслаждение столом принадлежит всем возрастам, всем состояниям, всем странам и всем временам; оно мирится со всеми другими наслаждениями и остается до. конца, чтобы утешать нас в потере остальных.
8. Стол есть единственное место, где не скучно в течение первых часов.
9. Открытие нового блюда важнее для счастья человечества, чем открытие нового светила.
10. Обжоры и пьяницы не знают, что значит есть и пить.
11. Порядок кушаний идет от тяжелых к легким.
12. Порядок напитков идет от легких к тяжелым.
13. Утверждать, что не должно переменять вино, - ересь. После трех стаканов вкус притупляется, и самое лучшее вино не пробудит уже его.
14. Десерт без сыра - красавица без глаз.
15. Поваром можно сделаться, но, чтобы искусно жарить, надо родиться.
16. Аккуратность - необходимое свойство повара, но должна быть присуща и гостям.
17. Ждать отсутствующего гостя долго, значит оскорблять уже присутствующих гостей.
18. Кто принимает друзей, не заботясь сам о приготовляемом для них угощении, тот не достоин иметь друзей.
19. Хозяйка прежде всего должна увериться, хорош ли будет кофе, а хозяин - вино.
20. Пригласить кого-нибудь - значит позаботиться о его удовольствии во все время, пока он будет под кровлей приглашающего.

О ГАСТРОНОМИИ

Начало науки
Науки не то, что Минерва, которая выскочила из головы Юпитера во всеоружии.
Они суть дети времени и развивались медленно, сперва через собрание методов, добытых путем опыта, и уже позднее через открытие принципов, которые являются следствием комбинации методов.
Старцы, которых призывали к постели больных в надежде на их опытность и которые из сострадания перевязывали раны, были первыми вранами.
Египетские пастухи, которые заметили, что некоторые звезды через известные периоды времени снова возвращаются на тот же пункт неба, были первыми астрономами.
Первый, кто изобразил знаками простое отношение изобрел математику, эту могущественную науку, которая по истине возвела человека на трон вселенной.
В течении последних 60-ти лет открыто много новых наук, а между прочим стереотомия, описательная геометрия и химия газов.
Все эти науки в будущем сделают успехи тем более несомненные, что книгопечатание избавляет от опасности пятиться назад.
Кто знает, например, может быть, химия газов придет к тому, что овладеет этими, доселе столь упорными, элементами, смешает и соединит их в неиспытанные доселе отношения и произведет таким образом действия, которые бесконечно расширят наше могущество.

Начало гастрономии
В свое время явилась гастрономия, и ее сестры посторонились, чтобы дать ей место.
Как могли отрицать эту науку, которая поддерживает нас от колыбели до могилы, увеличивает наслаждения любви и преданность дружбы, обезоруживает ненависть, облегчает занятия и которая доставляет нам единственное наслаждение на нашем кратком жизненном поприще, не сопровождаемое утомлением и в то же время укрепляющее нас для других наслаждений.
Пока приготовление кушаний было вполне предоставлено нашим слугам, пока секрет оставался в подвале, пока одни повара имели право на этот предмет, пока писались только поваренные книги, - результатом всех этих работ были только продукты искусства.
Наконец, может быть, слишком поздно, вступились люди науки; они исследовали, анализировали, классифицировали питательные вещества и разложили их на составные.элементы.
Они исследовали тайны питания и, преследуя мертвые вещества в их превращениях, видели, как принимают они жизнь.
Они наблюдали питание в его действиях мимолетных и оставляющих по себе следы на несколько дней, месяцев и на всю жизнь.

Они даже оценили влияние питания на мыслительные способности и возвели высокую теорию, которая обнимает все человечество и всю оживленную часть творения.
Между тем как все эти работы совершались в кабинетах ученых, в обществе громко заговорили, что наука, которая питает человека, так же драгоценна, как и та, которая учит его умирать. Поэты воспели удовольствия стола, а книги, которые трактовали о хорошей кухне, выигрывали в глубине воззрений и представляли более общий интерес.
Все эти обстоятельства предшествовали появлению гастрономии.
Определение гастрономии
Гастрономия есть научное знание всего того, что относится до питания человека. Цель ее - заботиться о поддержании человека, доставляя ему наилучшее питание.
Она достигает этой цели, руководя теми, которые отыскивают, доставляют или приготовляют все, что может быть употреблено в пищу. ()



Случайные статьи

Вверх