Графит - описание графита, свойства, добыча, применение, производство. Графит. Свойства, применение

В таблице представлены физические свойства графита в интервале температуры от 20 до 800 °С.

Свойства указаны в направлении, как параллельно, так и перпендикулярно главной оси кристаллов графита.

Теплопроводность графита указана для следующих типов: кристаллический, естественный, прессованный искусственный. По данным таблицы видно, что теплопроводность графита при увеличении его температуры снижается.

Удельная (массовая) теплоемкость углерода при комнатной температуре составляет величину 710 Дж/(кг·град) и при нагревании увеличивается. Плотность углерода находится в диапазоне от 1400 до 1750 кг/м 3 .

Даны следующие физические свойства графита различной плотности:

  • теплопроводность графита, Вт/(м·град);
  • сопротивление разрыву, МН/м 2 ;
  • модуль упругости графита, МН/м 2 ;
  • удельная (массовая) теплоемкость, кДж/(кг·град);
  • удельное электрическое сопротивление, Ом·м;
  • коэффициент теплового линейного расширения (КТлР), 1/град.

Свойства углерода (графита) в зависимости от температуры

В таблице представлены теплофизические свойства углерода (графита) в зависимости от температуры.
Свойства углерода в таблице указаны при температуре от 100 до 2000К в направлении вдоль (параллельно), так и перпендикулярно главной оси кристаллов углерода.

Приведены следующие свойства углерода (графита):

  • коэффициент теплового линейного расширения (КТлР), 1/град;
  • удельная (массовая) теплоемкость, Дж/(кг·град);
  • коэффициент теплопроводности, Вт/(м·град).

В таблице представлены значения теплопроводности графита различной плотности при температуре 20 °С. Теплопроводность графита указана при направлении теплового потока вдоль главной оси кристаллов и в размерности .

По данным таблицы видно, что теплопроводность графита с увеличением плотности заметно увеличивается. Плотность графита в таблице приведена в размерности 10 3 ·кг/м 3 , то есть в т/м 3 . Плотность графита изменяется в интервале от 1400 до 1750 кг/м 3 .

В таблице представлены значения теплопроводности графита плотностью 1650…1720 кг/м 3 в зависимости от температуры.

Теплопроводность графита указана при направлении теплового потока, как вдоль, так и поперек главной оси кристаллов, указано также отношение теплопроводности в этих направлениях (оно постоянно и равно приблизительно 1,5).

Значения теплопроводности графита приведены в интервале температуры от 20 до 1800 °С. По значениям в таблице видно, что теплопроводность графита с увеличением температуры уменьшается .

Теплопроводность реакторного графита плотностью 1700 кг/м 3 в зависимости от температуры

В таблице представлены значения теплопроводности реакторного графита плотностью 1700 кг/м 3 в зависимости от температуры.
Теплопроводность указана в направлении теплового потока, идущего, как параллельно, так и перпендикулярно прессованию графитовых стержней.
Значения теплопроводности реакторного графита приведены в интервале температуры от 100 до 1700 К.

Теплопроводность измельченного графита

В таблице дана теплопроводность измельченного графита (углерода) в зависимости от размера частиц при температуре 20 °С.
Размер частиц определялся в зависимости от количества отверстий в сите на 1 квадратный сантиметр (3, 6, 16 отв/см 2 и сухая сажа).

Теплопроводность графита указана в размерности Вт/(м·град). Плотность графита в таблице указана в 10 3 ·кг/м 3 , то есть в т/м 3 .

Теплопроводность слоя графитовых частиц в зависимости от его пористости

В таблице представлены значения теплопроводности слоя графитовых частиц (частиц углерода) при пористости от 0,4 до 0,7. Следует отметить, что при увеличении пористости слоя его теплопроводность снижается.

Коэффициент теплового расширения (КТР) углерода (графита) в зависимости от температуры

В таблице указаны значения коэффициента линейного теплового расширения (КТР) углерода (графита) в зависимости от температуры.
КТР в таблице приводится для различных сортов графита: пиролитический графит, графит на основе нефтяного кокса, графит на основе .
Коэффициент линейного теплового расширения графита приведен в интервале температуры от 100 до 700 °С в размерности 1/град.

Теплоемкость углерода в зависимости от температуры

В таблице представлены значения теплоемкости углерода в зависимости от температуры. Удельная теплоемкость углерода (графита) указана в интервале температуры от 200 до 2000 К.

Теплоемкость углерода в таблице дана массовая и выражена в размерности кДж/(кг·град). По данным в таблице видно, что теплоемкость углерода с увеличением температуры растет.

Теплоемкость природного углерода (графита) при низких температурах

В таблице даны значения атомной (на 1 моль вещества) и удельной теплоемкости углерода при низких температурах. Теплоемкость углерода (графита) указана в интервале температуры от -260 до 17 °С.

Атомная теплоемкость углерода выражена в размерности Дж/(моль·град). Удельная теплоемкость углерода (массовая — на 1 кг массы) выражена в размерности кДж/(кг·град).

По значениям в таблице хорошо видно, что атомная и удельная теплоемкости углерода (графита) с увеличением температуры растут и при очень низких отрицательных температурах.

Источники:
1. Агроскин А.А., Глейбман В.Б. Теплофизика твердого топлива. М., Недра, 1980 — 256 с.
2.
3. .
4. Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М., «Металлургия», 1975.- 368 с.

Помимо широко распространенных в природе соединений с кислородом (карбонатов) и водородом (углеводородов) углерод присутствует в самородном виде, образуя две полиморфные разновидности - графит и алмаз , идентичные по своему составу, но резко отличающиеся по структуре и физическим свойствам.

Синонимы:
Пломбагин (де Лиль, 1783), черный свинец, меланграфит (Хайдингер, 1845), графитоид (Зауер, 1885), графитит (Люци, 1891).

Английское название минерала Графит - Graphite

Происхождение названия

Графит известен с древних времен, назван от греческого "графо" - пишу (Вернер, 1789).

Химический состав

Даже чисто отобранный, всегда содержит абсорбированные газы - главным образом Н, N, в меньшем количестве СО з , СО, CH 4 , иногда NH 3 , H 2 S, а также Н 2 О. Нередко содержит механические примеси, которые при сжигании полностью или частью остаются в золе; иногда содержит битумы. В золе, кроме Si, Al, Fe, Mg, Са и щелочей, могут присутствовать S, Р, Си, Ni, Мо, Mn, а также Be, Ge, Ti, V, благородные металлы и др. Наличие в золе V характерно для графита органогенного происхождения. Fe, возможно, иногда содержится в виде твердого раствора.

Разновидности графита

  • Шунгит - аморфная разновидность графита (переходная разность между каменным углем и графитом).
  • (Graphitit) = аморфный разновидность графита
  • Графитовая слюдка (Graphitglimmer), излишнее название = графит

Шунгит - shungite (Иностранцев, 1879). Впервые обнаружен около с. Шунгав (Карелия, Россия). Относится к группе антраксолитов, является промежуточным продуктом между аморфным углеродом и графитом. Содержит кристаллическую фазу в виде очень тонкодисперсного графита. Выделяют четыре разновидности, отвечающие различной степени метаморфизма и различному содержанию углеродистого вещества.

Шунгит I наиболее близок к графиту. Излом его раковистый. Твердость 3,5-4. Плотность 1,84-1,98. Цвет черный; с едва заметным буроватым отливом. Блеск сильный полуметаллический. Непрозрачен. Содержит мельчайшие включения кварца , доломита , кальцита , пирита и др. Электропроводность близка к таковой графита.


В полированных шлифах латунно-желтый (напоминает пирротин). Двуотражения (в отличие от графита) не обнаруживает. Заметно анизотропен.
Содержит 93-98% С, до 3-4% соединений водорода, также N, О, S, до 8% гигроскопической воды; в золе - значительные количества V, Ni, Мо, а также W, Се, As; по спектральным анализам: Со, Ti, Mg, Sr, Си, Сг, Zr, Rh, Ru, Pt, Mn. Содержание V, характерное для шунгита, по данным Мармо, связано с примесями.
Под паяльной трубкой растрескивается и сгорает чрезвычайно медленно. Крепкие H 2 SO 4 и HNO 3 окисляют тонкий порошок лишь при длительном кипячении.
Шунгит II, III и IV - разновидности со слабым и с матовым блеском содержат соответственно всего 40-60%, 28-44% и меньше 15% углерода.
Имеет очень ограниченное распространение. Образовался, по-видимому, в результате метаморфизма докембрийских битуминозных осадочных пород под воздействием диабазов. В Карелии слагает прожилки, линзочки на контакте известняков и диабазов, пропитывает сланцы. Наблюдался в нескольких местах в р-не Онежского оз. в Карелии и в Финляндии, отмечался в Бурятии и Якутии, а также на Урале - в магнезитах Сатки (Челябинская обл.) и в породах спилито-альбитофировой формации около Красноуральска (Свердловская обл.), где приурочен к контактам спилитов и альбитофиров с прослоями метаморфизованных осадочных и туфогенно-осадочных пород.
Может быть использован как удобрение, в качестве топлива в специально приспособленных топках, как сырье для извлечения V, Мо, в металлургии (в качестве заменителя кокса и носителя легирующих

Кристаллографическая характеристика

Сингония гексагональная.

Класс гексагонально-дипирамидальный.

Кристаллическая структура. Структура слоистого типа. В бесконечной плоской сетке каждая петля представляет шестиугольник бензольного типа; около каждого атома С имеются три соседних на таком же расстоянии. Параллельные сетки отстоят друг от друга на значительном расстоянии. На период с приходятся две такие взаимно параллельные сетки, которые взаимно смещены так, что над центром шестиугольника нижней сетки находится узел верхней сетки. Ввиду слабой связи между сетками эта закономерность строения решетки графита часто нарушается, и по отношению к центру шестиугольника одного слоя верхний и нижний слои располагаются так, что тройки лучей С - С, находящиеся над и под осью среднего кольца, взаимно повернуты на 180°. Если такое нарушение строения решетки графита проявляется в большом масштабе, то говорят о ромбоэдрической (трехслойной) модификации графита. Возможны и другие нарушения в чередовании слоев. Наличие в решетке подвижных электронов обусловливает ряд свойств графита, приближающихся к свойствам металлов: цвет, блеск, электро- и теплопроводность, кислотоупорность и т. п. Различие связей в решетке в направлении слоистости и перпендикулярно к нему вызывает резко выраженную анизотропию твердости, электропроводности, магнитных, оптических и других свойств.

Главные формы : Кристаллы таблитчатые по (0001), несовершенные; образуют шестиугольные пластинки с развитыми гранями (h0hl) при отсутствии или подчиненном значении (hh2hl). Наиболее обычны формы: с, r, о, q, р.
На гранях наблюдается штриховка.

Форма нахождения в природе

Облик кристаллов . Кристаллы редки. образует мелкие пластинчатые (шестиугольные) кристаллы.

Двойники по (1121) образуются в результате действия давления, проявляются на (0001) в виде тригональной или гексагональной штриховки; редки двойники вокруг с поворотом на 30° (90°). Наблюдались ориентированные срастания с биотитом .

Агрегаты . Отдельные мелкие чешуйки и пластинки, сферические конкреции радиально-лучистого, реже концентрического строения, агрегаты чешуек различной величины, иногда землистый.

Физические свойства

Оптические

  • Цвет кристаллов темно-серый, серебристый, цвет агрегатов железно-черный до стально-серого.
  • Черта темно- свинцово-серая, черная блестящая
  • Блеск сильный металлический,
  • Отлив у скрытокристаллического - матовый.
  • Прозрачность. Просвечивает лишь в очень тонких листочках.

Показатели преломления

Ng = , Nm = и Np =

Механические

  • Твердость 1-2, на (0001) - 5,5; у высокодисперсных агрегатов твердость возрастает с увеличением степени дисперсности. Листочки упругие сопротивление их на разрыв 2 кг/мм 2 (Шапиро).
  • Плотность 2,21-2,26.
  • Спайность в одном направлении по (0001) совершенная.
  • Излом яснокристаллических агрегатов зернистый, плотных - ровный.

Химические свойства

Химическая стойкость. Кислотоупорен. В полированных шлифах графит ни одним из стандартных реактивов не травится.
При нагревании с дымящей HNO 3 чешуйчатый графит вспучивается (реакция Броди). При длительном нагревании в смеси дымящей HNO 3 с бертолетовой солью (KClO 3) образуется графитовая кислота. На основе некоторого различия в отношении к HNO 3 и KNO 3 было предложено (Люди 1891) различать две разности - α и β.

Прочие свойства

Коэффициент трения очень низкий, с чем связаны «жирность» на ощупь и применение в качестве смазочного материала.

Хороший проводник электричества. Электропроводность резко убывает при повышении температуры (Датэ) и возрастает с увеличением влажности и содержания летучих (Вада). Сильно выражена анизотропия магнитных свойств.

Термическая стойкость. Температура плавления 3550° + 50° . При нагревании в воздухе начинает окисляться выше 400° (чешуйки восточно-забайкальского при температуре ниже 300°); скорость окисления (горения) зависит от строения агрегатов: крупночешуйчатого- 720-730°, мелкочешуйчатого ботогольского - 680°.

Искусственное получение

В электрических печах при температурах выше 2200° графит получается из антрацита и из аморфного углерода (ачесоновский графит). Выделяется при раскристаллизации металлов, особенно в сером чугуне. В виде шестиугольных пластинок был получен из силикатного расплава с примесью сажи и флюорита. Образуется из алмаза при нагревании в вакууме при~2000°; при этом графита ориентируется параллельно алмаза. Может быть получен при низком давлении и при температуре до 1000° в результате раскисления СО 2 и СО, образующихся при диссоциации СаСО 3 (опыты Олинга, Винчела и Фрауэнфельдера, по Шапиро).

Диагностические признаки

Характерны цвет, жирность на ощупь, низкая твердость, мягкость (пишет на бумаге), пачкает пальцы. кислотоупорность.

Мелкие чешуйки от очень сходного молибденита отличаются более темным цветом и менее сильным блеском. В отражательном свете по характеру двуотражения и анизотропии определяется легко. Может быть принят лишь за молибденит (отличается коричневатым оттенком и низкой отражательной способностью - Re), за валлериит и тенорит , отличающиеся по парагенезису; валлериит, кроме того, характеризуется высокой отражательной способностью, тенорит - меньшим двуотражением. Изотропный скрытокристаллический графит в очень мелких выделениях трудно отличим от сульванита, отражательная способность которого, однако, выше средней отражательной способности графита.
Межплоскостные расстояния графита (по Михееву) Fe-антикатод, D = 140,00 мм

Происхождение и нахождение

Широко распространенный минерал, образующий местами крупные скопления. Возникает при высоких температурах - при кристаллизации магмы, при образовании жильных месторождений и при процессах метаморфизма.

Месторождения

Образование скоплений графита в магматических породах связано с ассимиляцией магмой известняков, битуминозных или углистых пород. Некоторые месторождения этой группы имеют промышленное значение. Наиболее известным среди них является Ботогольское (Алиберовское) месторождение в Бурятии, в котором графит образует штоки, гнезда, жилообразные тела и рассеянные выделения среди сиенитов по близости от известняков. Спутники графита - микроклин, эгирин-авгит, альбит, кальцит, сфен и др. В Черемшанском месторождении (Ильменские горы в Челябинской обл.) графит наблюдается в граните в виде сферолитов, гнезд и неправильных выделений. Выделения графита среди гранитов установлены также в округе Клей (шт. Алабама, США). В Овифаке (Зап. Гренландия) графит обнаружен в базальтах вместе с самородным железом, на Гарце (Германия) - в порфирах, порфиритах и габбро, в Малаге (Испания)-среди серпентинита и диорит-порфирита, в Новом Южном Уэльсе (Австралия)-в фельзитах, слагающих дайку. Выделения графита, частью имеющие практическое значение, наблюдаются во многих пегматитовых жилах (графитоносные пегматиты Украины, Таджикистана, Бразилии, Индии, Гренландии, США, Италии, Канады и других стран).
Из высокотемпературных жильных месторождений графита наибольшей известностью пользуются месторождения Цейлона, имеющие большое промышленное значение. Графитовые жилы здесь залегают главным образом среди гнейсов; они состоят почти нацело из графита или содержат наряду с ним пирит, титаномагнетит, кварц, биотит, ортоклаз, апатит, ортит, рутил, цеолиты, кальцит и другие минералы. Шильные месторождения графита такого же типа имеются в Канаде (пров. Квебек), США (шт. Монтана), в Англии (Камберленд) и в других странах.
Отмечается наличие графита в некоторых кварцевых жилах с вольфрамитом , в некоторых золотоносных кварцевых жилах, среднетемпературных гидротермальных свинцово-цинковых месторождениях и др.
В скарновых месторождениях графит наблюдается в ассоциации с гранатом, везувианом, диопсидом, волластонитом, тремолитом, скаполитом, кальцитом, апатитом и другими минералами; некоторые месторождения этой группы являются промышленными. Таковы месторождения Канады - Луиза (пров. Квебек) и Порт-Элнслей (пров. Онтарио). В месторождении Тас-Казган (Узбекистан) графит приурочен к контакту габбро-норитов с битуминозными породами.

Широко развит в метаморфических породах, гнейсах и сланцах, в виде отдельных рассеянных чешуек, скоплений, линзовидных и пластовых залежей. Образуется в результате глубокой метаморфизации древних осадочных пород, первоначально содержавших значительные количества органических остатков (битуминозных), или карбонатных отложений. Таковы широко развитые чешуйчатые выделения в гнейсах и сланцах Украины - результат интенсивной метаморфизации древних кристаллических пород, возможно, при участии летучих (месторождения Старо- Крымское, Завьяловское и др.), Союзное месторождение на Малом Хингане в Амурской обл., Тайгинское и Мурзинское месторождения Свердловской обл., богатые месторождения в гнейсах около Пассау (Германия), в метаморфизованных известняках Паргаса в Финляндии, Эшленд в шт. Алабама (США), крупные месторождения чешуйчатого графита на Мадагаскаре и др.
Широко развиты месторождения скрытокристаллического графита, связанные с метаморфизацией каменных углей. В соответствии с различными условиями метаморфизма степень метаморфизации углей различна. Графит образует прослойки, пласты и пластовые залежи. Под влиянием контактного воздействия траппов на угольные пласты образовались, например, крупные залежи западной части Тунгусского угольного бассейна (Красноярский край), состоящие из мельчайших выделений графита с примесью пирита, кальцита, небольших количеств апатита, рутила, магнетита и др. С метаморфизмом каменных углей связано также образование некоторых графитовых месторождений Урала (Боевское, Полтавское, Брединское, Фадинское Челябинской обл.). Тонкодисперсный графит, выявляемый лишь рентгеновским анализом, содержится во многих ископаемых каменных углях.
Графит содержится в некоторых элювиальных, реже в аллювиальных россыпях, образующихся при выветривании графитсодержащих пород.
В сублиматах вулкана Билюкай на Камчатке графит в виде налета на нашатыре образовался, вероятно, в результате действия лавового потока на растительность (по устному сообщению Набоко). Отмечается наличие графита в каменных и железных метеоритах.
Неясен генезис пленок графита на кристаллах алмаза в южноафриканских месторождениях.


Завальевское месторождение чешуйчатого графита

Графит. Крупночешуйчатый агрегат. Украина. Завалье

Многочисленные промышленные залеж и чешуйчатого графита Украинской графитоносной провинции связаны с архейскими образованиями тетерево-бугской серии в составе Украинского кристаллического массива. Эта серия сложена сильно дислоцированными амфиболитами, амфиболовыми, плагиоклазовыми, пироксеновыми, силлиманитовыми и гранатовыми гнейсами, кварцитами и кристаллическими известняками, перемежающимися с графитистыми биотитовыми, серицитовыми, биотит-хлоритовыми и хлоритовыми гнейсами, имеющими нередко промышленное значение. В пределах провинции выделяют три рудных района: Прибугский (по рекам Тетерев и Буг), Криворожский (по р. Ингулец) и Приазовский (вдоль побережья Азовского моря). Все месторождения провинции имеют большую промышленную ценность благодаря высокому качеству графита, большим масштабам оруденения, легкости о богащения руд и возможности открытой разработки.

Завальевское месторождение, расположенное на левом берегу Юж. Буга, является типичным представителем этой провинции. Геологически оно приурочено к крупной синклинальной складке запад-северо-западного направления с крутыми (вплоть до вертикальных) углами падения пород в крыльях. Центральная часть складки выполнена кристаллическими известняками, окаймляемыми кварцитами; мощность известняков 500 м, кварцитов 20-50 м. Ниже по разрезу находятся графитоносные гнейсы (продуктивная толща), мощность которых не выдержана: в северном крыле она достигает 250 м, а в южном - резко сокращается до 15 м. Продуктивная толща подстилается бёзрудными амфиболовыми гнейсами. Синклиналь зажата между гранитами, обнажающимися в северной части месторождения, и прорвана кварцевыми жилами, дайками гранитов и гранит-аплитов. Кристаллические породы на участке месторождения повсеместно перекрыты третичными и четвертичными песчано-глинистыми отложениями мощностью до 35-40 м.

Продуктивная толщ а графитоносных биотит-хлоритовых и полевошпат-гранатовых гнейсов состоит из нескольких (1-5) графитсодержащих горизонтов, разделенных безрудными гнейсами. Мощность этих горизонтов варьирует от 3,5 до 70 м, а протяж енность составляет сотни метров; в них по данным опробования оконтуриваются промышленные рудные тела пластовой и линзовидной формы, сложенные вкрапленными рудами. Графит в этих телах крупночешуйчатый (размером от 0,1 до 1-2 мм) со средним содержанием 6- 10%. Иногда чешуйки графита объединяются в пятнистые скопления - агрегаты. Помимо графита в составе руд присутствуют кварц, калиевый полевой шпат, плагиоклаз, а так ж е небольшие количества биотита, хлорита, граната,
кальцита, апатита, циркона и пирита.

В четко выраженной коре выветривания, развивающейся по графитоносным гнейсам, наблюдается зональность. В верхней (рыхлой) зоне широко развиты глинистые минералы. Минеральный состав руд: графита до 10%, до 50% глинистых минералов (гидрослюды, монтмориллонит, каолинит , нонтронит и д р.); 25% кварца; до 10% гидроксидов железа; до 10% гранатов и полевых шпатов. В средней (полурыхлой) зоне при сохранении содержания графита (до 10%) увеличивается количество кварца (30-4 0%) и полевых шпатов (10- 2 5 %), появляются слюды (10- 15%), гранат, силлиманит и апатит (до 10%), одновременно сокращается доля глинистых минералов (10-4 0 %). Нижняя (плотная) зона коры выветривания по своему минеральному составу близка первичным (твердым) рудам месторождения. Благодаря тому что в коре выветривания чешуйки графита освобождены от срастания с другими минералами (раскрыты), эти руды (так называемые мягкие) еще более легко обогатимы, представляя первоочередной объект промышленной разработки. Рыхлые и твердые руды месторождения обогащаются флотацией с получением концентрата, содержащего 85-90% графита высокого качества зольностью не выше 10- 15%. По разведанным запасам и масштабу добычи месторождение является одним из крупнейших в стране. Большинством исследователей генетически Завальевск о е месторождение рассматривается как метаморфическое, образовавшееся в процессе регионального метаморфизма первично-осадочных алюмосиликатных пород, содержащих в своем составе рассеянное углеродное вещество. Отдельные геологи (В. П. Бухаров, В. Б. П о лянский и др.) полагают, что образование графита в гнейсах происходило за счет углерода, освобождавшегося при дегазации карбонатных пород, сопровождавшейся разложением оксида углерода (реакция Будуара). Наконец, имеются данные о том, что наряду с графитом, образовавш имся за счет первично-осадочного углерода, в гнейсах может быть и более поздний графит, связанный с глубинным источником углекислоты (А. Ф. Коржинский и др.).

Практическое применение

Графит имеет очень разнообразное применение, основанное на его «жирности», кислотоупорности, огнестойкости, электропроводности. Идет на изготовление тиглей для плавки стали и цветных металлов (около 65-70% общего потребления), широко применяется в электротехнике (для изготовления электродов), как смазочный материал, при производстве красок, карандашей и др. Наиболее ценным считается кристаллический графит; скрытокристаллические разности употребляются лишь в литейном деле, как наиболее дешевое сырье.

Мировая добыча природного графита осуществляется в немногих странах и приближается к 600 тыс. т/год. Почти половина ее приходится на КНР и Россию, разрабатываю щ ие месторождения кристаллического и аморфного графита. Крупными продуцентами кристаллического графита являются Чехия, Германия, Малагасийская Республика, Норвегия, Шри-Ланка, а аморфного - Индия,
Мексика, КНДР, Южная Корея, Австрия. Мировое производств0 синтетического графита составляет около 1,5 млн т и осуществляется в промышленно развитых странах, не обладающих существенными природными запасами этого сырья: США, Канаде, Японии, странах Западной Европы.

Углерод формирует множество самородных элементов, которые имеют свою структуру. Одним из таких элементов является графит. Это распространённый материал в природе, который встречается в виде чешуек и пластинок. Скопления его отличаются по величине и содержанию материала. Кристаллические сланцы или магматическая порода - это места залегания. Часто он образовывается при метаморфическом воздействии на уголь.

Происхождение вещества

Графит чаще всего образуется от воздействия большой температуры и давления в осадочных породах - в каменном угле и битумах. Этот процесс называют метаморфизмом. В некоторых случаях материал образовывается в процессе кристаллизации. Как правило, возникает из магмы, которая богата углеродом. Иногда образуется из известняка, который был захвачен магмой.

Места образования:

В процессе кристаллизации порода получается в редких случаях. Да и практическое значение имеет порода, которая возникла метаморфическим путём. Небольшие вкрапления в породах метеоритов интересны учёным, но не промышленности.

Химический состав графита - это атомы углерода, которые связаны между собой ковалентно. То есть один атом перекрывает электронное облака трёх других атомов, которые окружают его. Атомы состоят в прочной связи. В минерале наблюдается незначительная примесь иных компонентов Различают 2 вида графита:

  1. Альфа (гексагональный).
  2. Бета (ромбоэдрический).

Между собой виды отличаются упаковкой слоёв. У вида альфа атомы имеют укладку типа ABABABA. То есть укладка в виде шестиугольника, но между слоями крайне слабая связь. Структура графита такова, что он легко ломается по слоям.

У вида бета каждый четвёртый слой повторяет первый. Получается своеобразная ромбоэдрическая связь. Бета-графит в чистом виде не существует - это метастабильная фаза. Природные породы материала имеют до 30% в своём составе эту фазу. При температуре около 2,5 тыс. Кельвинов происходит полная трансформация ромбоэдрической структуры в гексагональную.

Материал имеет одинаковый состав с алмазом, но свойства различаются кардинально. Виной всему разница в атомных связях. После закаливания в печи при высокой температуре твёрдость графита увеличивается, но растёт и хрупкость. Это качество используют для создания искусственных алмазов.

Таблица характеристик:

Порода не плавится. При достижении критической температуры кристаллическая решётка начинает разрушаться. На ощупь порода скользкая, жирная. При трении раскалывается на небольшие чешуйки, которые остаются на поверхности. Эта характеристика позволяет использовать минерал для ведения записей.

Графит широкого используют в промышленности. Большинству отраслей необходим этот материал в чистом виде или же с добавлением. Список того, что делают из графита, огромен: начиная от карандашей и огнеупорного покрытия, оканчивая стержнями для атомных реакторов и смазкой.

Сферы применения:

Пищевая отрасль - это ещё одна сфера где используется графит, пусть и в связанном виде. Но перед использованием компонент проходит определённую обработку. Железо, этиловый спирт, графит и сахар имеют разную плотность. Но рассматриваемое вещество может входить в состав других пищевых продуктов. Он встречается в эфирах, спирте и сахаре.

Несложный опыт с сахаром показывает содержание в нём графита. Для этого кубик сахара кладут на крышку и накрывают колпачком. Снизу крышку греют на огне до тех пор, пока из-под колпачка не начнёт выделяться дым. Если к нему поднести источник огня, то дым загорится. После окончания выделения газа огонь снизу крышки тушат. На крышке будет находиться чёрная масса углерода.

Китай является ведущим экспортёром минерала. Страна поставляет до 70% мирового объёма. И китайцы не собираются останавливаться на этом результате, поскольку производители расширяют связи с западными компаниями. Последние выступают потребителями.

Канада, Бразилия, Мексика и Шри-Ланка - это остальные мировые лидеры производства минерала. Эти страны добывают 8−12% мирового объёма. В Российской Федерации запасы графита составляют порядка 13 млн тонн. Значительная часть запасов сосредоточена в Сибири. Более 75% отечественных запасов - это бедная руда, которая содержит не более 6% минерала. Отечественные балансовые запасы требуют переоценки, поскольку некоторую их часть нецелесообразно разрабатывать из-за низкого качества руды. Расположение на природоохранных территориях тоже накладывает ограничения к разработке рудников.

Более половины добываемого материала потребляют США, Япония, Германия и Китай. Стоимость графита на рынке определяют по его кристаллу и содержанию в нём углерода. Средняя цена порядка 0,75 центов на 1 кг материала. Месторасположение производителя тоже влияет на стоимость.

Смесь, состоящая из тонких чередующихся пластинок феррита и цементита)
Сорбит (дисперсный перлит)
Троостит (высокодисперсный перлит)
Бейнит (устар: игольчатый троостит) - ультрадисперсная смесь кристаллов низкоуглеродистого мартенсита и карбидов железа

Физические свойства

Электрическая проводимость монокристаллов графита анизотропна , в направлении, параллельном базисной плоскости, близка к металлической, в перпендикулярном - в сотни раз меньше. Минимальное значение проводимости наблюдается в интервале 300-1300 К, причём положение минимума смещается в область низких температур для совершенных кристаллических структур. Наивысшую электрическую проводимость имеет рекристаллизованный графит.

Применение

Использование графита основано на ряде его уникальных свойств.

  • для изготовления плавильных тиглей, футеровочных плит - применение основано на высокой температурной стойкости графита (в отсутствие кислорода), на его химической стойкости к целому ряду расплавленных металлов.
  • электродов , нагревательных элементов - благодаря высокой электропроводности и химической стойкости к практически любым агрессивным водным растворам (намного выше, чем у благородных металлов).
  • Для получения химически активных металлов методом электролиза расплавленных соединений. В частности, при получении алюминия используются сразу два свойства графита:
  1. Хорошая электропроводность, и как следствие - его пригодность для изготовления электрода
  2. Газообразность продукта реакции, протекающей на электроде - это углекислый газ . Газообразность продукта означает, что он выходит из электролизёра сам, и не требует специальных мер по его удалению из зоны реакции. Это свойство существенно упрощает технологию производства алюминия .

Единственными в России производителями синтетического графита в промышленных масштабах являются предприятия ООО «Донкарб Графит», дочернее общество АО «ЭНЕРГОПРОМ», входящее в состав ГК «РЕНОВА» Виктора Вексельберга и ООО «ГрафитЭл - Московский электродный завод». Принадлежность к предприятиям полного цикла определяется способностью исполнять все этапы технологического процесса производства графита.

Литература

  • Графит / Р. В. Лобзова // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . - 3-е изд. - М. : Советская энциклопедия, 1969-1978.
  • // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). - СПб. , 1890-1907.
  • Klein, Cornelis and Cornelius S. Hurlbut, Jr. (1985) Manual of Mineralogy: after Dana 20th ed.

Графит - минерал из класса самородных элементов, одна из аллотропных модификаций углерода. Распространенный в природе минерал. Встречается обычно в виде отдельных чешуек, пластинок и скоплений, разных по величине и содержанию графита. Различают месторождения кристаллического графита, связанного с магматическими горными породами или кристаллическими сланцами, и скрытокристаллического графита, образовавшегося при метаморфизме углей.

Смотрите так же:

СТРУКТУРА

Гексагональная кристаллическая полиморфная (аллотропная) модификация чистого углерода, наиболее устойчивая в условиях земной коры. Слои кристаллической решетки могут по-разному располагаться относительно друг друга, образуя целый ряд политипов, с симметрией от гексагональной сингонии (дигексагонально-дипирамидальный вид симметрии), до тригональной (дитригонально-скаленоэдрический в.с.). Кристаллическая решетка графита — слоистого типа. В слоях атомы С расположены в узлах гексагональных ячеек слоя. Каждый атом С окружен тремя соседними с расстоянием 1,42Α

Различают две модификации графита: α-графит (гексагональный P63/mmc) и β-графит (ромбоэдрический R(-3)m). Различаются упаковкой слоёв. У α-графита половина атомов каждого слоя располагается над и под центрами шестиугольника (укладка …АВАВАВА…), а у β-графита каждый четвёртый слой повторяет первый. Ромбоэдрический графит удобно представлять в гексагональных осях, чтобы показать его слоистую структуру.

β-графит в чистом виде не наблюдается, так как является метастабильной фазой. Однако, в природных графитах содержание ромбоэдрической фазы может достигать 30 %. При температуре 2500-3300 К ромбоэдрический графит полностью переходит в гексагональный.

СВОЙСТВА

Хорошо проводит электрический ток. В отличие от алмаза обладает низкой твёрдостью (1 по шкале Мооса). Относительно мягкий. После воздействия высоких температур становится немного твёрже, и становится очень хрупким. Плотность 2,08-2,23 г/см³. Цвет тёмно-серый, блеск металлический. Неплавкий, устойчив при нагревании в отсутствие воздуха. Жирный (скользкий) на ощупь. Природный графит содержит 10-12 % примесей глин и окислов железа. При трении расслаивается на отдельные чешуйки (это свойство используется в карандашах).

Теплопроводность графита от 278,4 до 2435 Вт/(м*К), зависит от марки графита, от направления относительно базисных плоскостей и от температуры.

Электрическая проводимость монокристаллов графита анизотропна, в направлении, параллельном базисной плоскости, близка к металлической, в перпендикулярном - в сотни раз меньше. Минимальное значение проводимости наблюдается в интервале 300-1300 К, причём положение минимума смещается в область низких температур для совершенных кристаллических структур. Наивысшую электрическую проводимость имеет рекристаллизованный графит.

Коэффициент теплового расширения графита до 700 К отрицателен в направлении базисных плоскостей (графит сжимается при нагревании), его абсолютное значение с повышением температуры уменьшается. Выше 700 К коэффициент теплового расширения становится положительным. В направлении, перпендикулярном базисным плоскостям, коэффициент теплового расширения положителен, практически не зависит от температуры и более чем в 20 раз выше среднего абсолютного значения для базисных плоскостей.

Монокристаллы графита диамагнитны, магнитная восприимчивость незначительна в базисной плоскости и велика в ортогональных базисным плоскостях. Коэффициента Холла меняется с положительного на отрицательный при 2400 К.

МОРФОЛОГИЯ

Хорошо образованные кристаллы редки. Кристаллы пластинчатые, чешуйчатые, кривогранные, обычно имеют пластинчатую несовершенную форму. Чаще бывает представлен листочками без кристаллографических очертаний и их агрегатами. Образует сплошные скрытокристаллические, листоватые или округлые радиально-лучистые агрегаты, реже — сферолитовые агрегаты концентрически-зонального строения. У крупнокристаллических выделений часто наблюдается треугольная штриховка на плоскостях (0001).

ПРОИСХОЖДЕНИЕ

Образуется при высокой температуре в вулканических и магматических горных породах, в пегматитах и скарнах. Встречается в кварцевых жилах с вольфрамитом и др. минералами в среднетемпературных гидротермальных полиметаллических месторождениях. Широко распространён в метаморфических породах — кристаллических сланцах, гнейсах, мраморах. Крупные залежи образуются в результате пиролиза каменного угля под воздействием траппов на каменноугольные отложения (Тунгусский бассейн). Акцессорный минерал метеоритов.
Сопутствующие минералы: кварц, пирит, гранаты, шпинель.

ПРИМЕНЕНИЕ

Для изготовления плавильных тиглей, футеровочных плит - применение основано на высокой температурной стойкости графита (в отсутствие кислорода), на его химической стойкости к целому ряду расплавленных металлов.
Применяется в электродах, нагревательных элементах - благодаря высокой электропроводности и химической стойкости к практически любым агрессивным водным растворам (намного выше, чем у благородных металлов).
Для получения химически активных металлов методом электролиза расплавленных соединений, твёрдых смазочных материалов, в комбинированных жидких и пастообразных смазках, наполнитель пластмасс.

Является замедлителем нейтронов в ядерных реакторах, компонентом состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином).
Используется для получения синтетических алмазов, в качестве эталона длины нанометрового диапазона для калибровки сканеров сканирующего туннельного микроскопа и атомно-силового микроскопа, для изготовления контактных щёток и токосъёмников для разнообразных электрических машин, электротранспорта и мостовых подъёмных кранов с троллейным питанием, мощных реостатов, а также прочих устройств, где требуется надёжный подвижный электрический контакт, для изготовления тепловой защиты носовой части боеголовок баллистических ракет и возвращаемых космических аппаратов.

Графит (англ. Graphite) — C

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 1/B.02-10
Nickel-Strunz (10-ое издание) 1.CB.05a
Dana (7-ое издание) 1.3.5.2
Dana (8-ое издание) 1.3.6.2
Hey’s CIM Ref. 1.25


Случайные статьи

Вверх