Лучевая симметрия характерна для. Что такое лучевая симметрия? Какие животные имеют лучевую симметрию

Что такое лучевая симметрия?





  1. Многоклеточные животные образуют самую многочисленную группу живых организмов планеты, насчитывающую более 1,5 млн. видов. Ведя свое происхождение от простейших, они претерпели в процессе эволюции существенные преобразования, связанные с усложнением организации.
    Одной из важнейших черт организации многоклеточных является морфологическое и функциональное различие клеток их тела. В ходе эволюции сходные клетки в теле многоклеточных животных специализировались на выполнении определенных функций, что привело к формированию тканей.
    Разные ткани объединились ворганы, а органы асистемы органов. Для осуществления взаимосвязи между ними и координации их работы образовалисьрегуляторные системы нервная и эндокринная. Благодаря нервной и гуморальной регуляции деятельности всех систем, многоклеточный организм функционирует как целостная биологическая система.
    Процветание группы многоклеточных животных связано с усложнением анатомического строения и физиологических функций. Так, увеличение размеров тела привело к развитию пищеварительного канала, что позволило им питаться крупным пищевым материалом, поставляющим большое количество энергии для осуществления всех процессов жизнедеятельности. Развившиеся мышечная и скелетная системы обеспечили передвижение организмов, поддержание определенной формы тела, защиту и опору для органов. Способность к активному передвижению позволила животным осуществлять поиск пищи, находить укрытия и расселяться.
    С увеличением размеров тела животных возникла необходимость в появлении внутритранспортных циркуляторных систем, доставляющих удаленным от поверхности тела тканям и органам средства жизнеобеспечения питательные вещества, кислород, а также удаляющих конечные продукты обмена веществ.
    Такой циркуляторной транспортной системой стала жидкая ткань кровь.
    Интенсификация дыхательной активности шла параллельно с прогрессивным развитием нервной системы и органов чувств. Произошло перемещение центральных отделов нервной системы в передний конец тела животного, в результате чего обособился головной отдел. Такое строение передней части тела животного позволило ему получать информацию об изменениях в окружающей среде и адекватно реагировать на них.
    По наличию или отсутствию внутреннего скелета животные подразделяются на две группы беспозвоночные (все типы, кроме Хордовых) и позвоночные (тип Хордовые) .
    В зависимости от происхождения ротового отверстия у взрослого организма выделяют две группы животных: первично- и вто-ричноротые. Первичноротые объединяют животных, у которых первичный рот зародыша на стадии гаструлы бластопор остается ртом взрослого организма. К ним относятся животные всех типов, кроме Иглокожих и Хордовых. У последних первичный рот зародыша превращается в анальное отверстие, а истинный рот закладывается вторично в виде эктодермального кармана. По этой причине их называют вторичноротыми животными.
    По типу симметрии тела выделяют группу лучистых, или радиально-симметричных, животных (типы Губки, Кишечнополостные и Иглокожие) и группу двусторонне-симметричных (все остальные типы животных) . Лучевая симметрия формируется под влиянием сидячего образа жизни животных, при котором весь организм поставлен по отношению к факторам среды в совершенно одинаковые условия. Эти условия и формируют расположение одинаковых органов вокруг главной оси, проходящей через рот до противоположного ему прикрепленного полюса.
    Двусторонне-симметричные животные подвижны, обладают одной плоскостью симметрии, по обе стороны которой располагаются различные парные органы. У них различают левую и правую, спинную и брюшную стороны, передний и задний концы тела.
    Многоклеточные животные чрезвычайно разнообразны по строению, особенностям жизнедеятельности, различны по размерам, массе тела и т. д. На основе наиболее существенных общих черт строения они подразделяются на 14 типов, часть из которых рассматривается в данном пособии.
  2. Лучевая (радиальная) симметрия форма симметрии, при которой тело (или фигура) совпадает само с собой при вращении объекта вокруг определнной точки или прямой.
    Как правило, у многоклеточных животных два конца (полюса) единственной оси симметрии неравноценны (например, у медуз на одном полюсе (оральном) находится рот, а на противоположном (аборальном) - верхушка колокола. Такая симметрия (вариант радиальной симметрии) в сравнительной анатомии называется одноосно-гетеропольной. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.
    Лучевая симметрия характерна, в основном, для кишечнополостных животных. Кишечнополостным, как сидячим, так и пелагическим (медузы) , свойственна радиально-осевая симметрия, при которой сходственные части расположены вокруг оси вращения, причем эта симметрия может быть самого различного порядка в зависимости от того, на какой угол следует повернуть тело животного, чтобы новое положение совпало с исходным. Таким образом, может получаться 4-, 6-, 8лучевая симметрия и более, до симметрии порядка бесконечности. У радиолярий встречается радиально-осевая симметрия с одинаковыми полюсами, или, как говорят, гомополярная. У кишечнополостных гетерополярная осевая симметрия: один полюс симметрии несет рот и щупальца (оральный) , другой (а б о р а л ь н ы й) служит для прикрепления (стадия полипа) , или у плавающих форм несет орган чувств (ктенофоры) , или ничем не вооружен (медузы) .
    У некоторых медуз на этой аборальной стороне образуется стебелек для прикрепления к подводным предметам (Lucernariida). Нарушение радиал ьно-осевой симметрии возникает при уменьшении числа шупалец или изменении формы ротовой щели, пищевода и разветвлений пищеварительной системы. Количество щупалец может уменьшаться до одного (Мопоbrachium), и тогда их радиальное расположение сменяется двубоковым. Глотка может сплющиваться, и тогда тоже получается двубоковая симметрия, этому способствует и образование в глотке сифоноглифов (желобок вдоль глотки) .
    Наибольшее усложнение радиально-осевой симметрии наблюдается у ктенофор, где, помимо 8-лучевой симметрии, в расположении отдельных частей тела и органов наблюдается 4-лучевая и двубоковая симметрия. Это весьма существенный момент, так как большинство зоологов именно от ктенофорообразных предков выводит оба ствола высших животных, как первично-, так и вторичноротых.
    Гетерополярная радиальноосевая симметрия вполне соответствует образу жизни кишечнополостных неподвижному существованию в прикрепленном положении или медленному плаванию при помощи реактивного движения.
    С другой стороны, от сложного типа радиально-осевой симметрии ктенофор можно перейти к двусторонней симметрии, или, как говорят, симметрии зеркального изображения, единственного плана симметрии трехслойных животных, симметрии быстрого движения, с выработкой переднего по движению конца тела, с центральным мозговым скоплением и основными органами чувств, спинной и брюшной, правой и левой сторонами тела.
    ..подробнее - ссылка заблокирована по решению администрации проекта. berl. ru/article/ nauka/cimmetria_u_givotnyh.htm здесь (уберите про)

Внимательное наблюдение обнаруживает, что основу красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды - от простейших до самых сложных. Симметрия в строение животных - почти общее явление, хотя почти всегда встречаются исключения из общего правила.

Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии. Строение тела многих многоклеточных организмов отражает определённые формы симметрии, такие как радиальную (лучевая) или билатеральную (двусторонняя), которые являются основными типами симметрии. Кстати, склонность к регенерации (восстановление) зависит от типа симметрии животного .

В биологии о радиальной симметрии идёт речь, когда через трёхмерное существо проходят две или более плоскости симметрии. Эти плоскости пересекаются в прямой. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.

При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии.

Радиальная симметрия характерна для многих стрекающих, а также для большинства иглокожих, кишечнополостных. Взрослые формы иглокожих приближаются к радиальной симметрии, в то время как их личинки билатерально симметричны.

Лучевую симметрию мы также видим у медуз, кораллов, актиний, морских звёзд. Если вращать их вокруг собственной оси, они несколько раз «совместятся сами с собой». Если отрезать у морской звезды любое из пяти щупалец, оно сумеет восстановить всю звезду. От радиальной симметрии различаются двулучевая радиальная симметрия (две плоскости симметрии, к примеру, гребневики), а также билатеральная симметрия (одна плоскость симметрии, к примеру, двусторонне-симметричные).

При билатеральной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны - брюшная и спинная - друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих. Например, черви, членистоногие, позвоночные. У большинства многоклеточных (у человека в том числе) другой тип симметрии - двусторонняя. Левая половина их тела -- это как бы «отражённая в зеркале правая». Этот принцип, однако, не относится к отдельным внутренним органам, что демонстрирует, например, расположение печени или сердца у человека. Плоский червь планария имеет двустороннюю симметрию. Если разрезать его вдоль оси тела или поперёк, из обеих половинок вырастут новые черви. Если же измельчить планарию как-нибудь иначе -- скорее всего ничего не выйдет.

Можно сказать также, что каждое животное (будь то насекомое, рыба или птица) состоит из двух энантиоморфов - правой и левой половин. Энантиоморфы - пара зеркально асимметричных объектов (фигур), являющихся зеркальным изображением один другого (например, пара перчаток). Иными словами - это объект и его зазеркальный двойник при условии, что сам объект зеркально асимметричен.

Сферическая симметрия имеет место у радиолярий и солнечников, тело которых сферической формы, а его части распределены вокруг центра сферы и отходят от неё. У таких организмов нет ни передней, ни задней, ни боковых частей тела, любая плоскость, проведённая через центр, делит животное на одинаковые половинки.

Губки и пластинчатые не проявляют симметрию.

На вопрос Что такое лучевая симметрия? заданный автором Катя Черных лучший ответ это Лучевая (радиальная) симметрия - форма симметрии, при которой тело (или фигура) совпадает само с собой при вращении объекта вокруг определённой точки или прямой.
Как правило, у многоклеточных животных два конца (полюса) единственной оси симметрии неравноценны (например, у медуз на одном полюсе (оральном) находится рот, а на противоположном (аборальном) - верхушка колокола. Такая симметрия (вариант радиальной симметрии) в сравнительной анатомии называется одноосно-гетеропольной. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.
Лучевая симметрия характерна, в основном, для кишечнополостных животных. Кишечнополостным, как сидячим, так и пелагическим (медузы) , свойственна радиально-осевая симметрия, при которой сходственные части расположены вокруг оси вращения, причем эта симметрия может быть самого различного порядка в зависимости от того, на какой угол следует повернуть тело животного, чтобы новое положение совпало с исходным. Таким образом, может получаться 4-, 6-, 8лучевая симметрия и более, до симметрии порядка бесконечности. У радиолярий встречается радиально-осевая симметрия с одинаковыми полюсами, или, как говорят, гомополярная. У кишечнополостных - гетерополярная осевая симметрия: один полюс симметрии несет рот и щупальца (оральный) , другой (а б о р а л ь н ы й) служит для прикрепления (стадия полипа) , или у плавающих форм несет орган чувств (ктенофоры) , или ничем не вооружен (медузы) .
У некоторых медуз на этой аборальной стороне образуется стебелек для прикрепления к подводным предметам (Lucernariida). Нарушение радиал ьно-осевой симметрии возникает при уменьшении числа шупалец или изменении формы ротовой щели, пищевода и разветвлений пищеварительной системы. Количество щупалец может уменьшаться до одного (Мопоbrachium), и тогда их радиальное расположение сменяется двубоковым. Глотка может сплющиваться, и тогда тоже получается двубоковая симметрия, этому способствует и образование в глотке сифоноглифов (желобок вдоль глотки) .
Наибольшее усложнение радиально-осевой симметрии наблюдается у ктенофор, где, помимо 8-лучевой симметрии, в расположении отдельных частей тела и органов наблюдается 4-лучевая и двубоковая симметрия. Это весьма существенный момент, так как большинство зоологов именно от ктенофорообразных предков выводит оба ствола высших животных, как первично-, так и вторичноротых.
Гетерополярная радиальноосевая симметрия вполне соответствует образу жизни кишечнополостных - неподвижному существованию в прикрепленном положении или медленному плаванию при помощи реактивного движения.
С другой стороны, от сложного типа радиально-осевой симметрии ктенофор можно перейти к двусторонней симметрии, или, как говорят, симметрии зеркального изображения, единственного плана симметрии трехслойных животных, симметрии быстрого движения, с выработкой переднего по движению конца тела, с центральным мозговым скоплением и основными органами чувств, спинной и брюшной, правой и левой сторонами тела.
..подробнее - . berl. ru/article/ nauka/cimmetria_u_givotnyh.htm здесь (уберите про)

Ответы к госам (11)

11. Типы симметрии беспозвоночных животных

Симметрия, или соразмерность частей целого организма, имеет непосредственное отношение к характеру приспособленности животных к условиям существования. Симметрия косвенно или прямо отражает особенности функциональной морфологии, образа жизни и поведения животного.

Элементы симметрии необходимы для определения типа симметрии, характерного для того или иного организма или группы организмов.

Центр симметрии - это точка, вокруг которой вращается какое-либо тело. Во время вращения контуры тела непрерывно совпадают при повороте на любой угол в любом направлении. Из живых объектов примером может условно служить шаровидное яйцо с ядром, расположенным в центре. Близкую форму имеет колониальный жгутиконосец Volvox globator, тело которого непрерывно вращается в толще озерной или прудовой воды.

Ось симметрии - это ось вращения. В этом случае у животных, как правило, отсутствует центр симметрии. Тогда вращение может происходить только вокруг оси. При этом ось чаще всего имеет разнокачественные полюса. Например, у свободноплавающей личинки кишечнополостных - гаструлы на одном полюсе расположен рот, а на противоположном - чувствительный аборальный орган. При естественном вращении вокруг оси личинка плывет аборальным органом вперед, а ртом назад. У взрослых кишечнополостных, например у гидры или актинии, на одном полюсе расположен рот, а на другом - подошва, которой эти неподвижные животные прикреплены к субстрату. Ось симметрии может совпадать морфологически с переднезадней осью тела.

Плоскость симметрии - это плоскость, проходящая через ось симметрии, совпадающая с ней и рассекающая тело на две зеркальные половины. Эти половины, расположенные друг против друга, называют антимерами. Например, у гидры плоскость симметрии должна пройти через ротовое отверстие и через подошву. Антимеры противоположных половин должны иметь равное число щупалец, расположенных вокруг рта гидры. У гидры можно провести несколько плоскостей симметрии, число которых будет кратно числу щупалец. У актиний с очень большим числом щупалец и гастральных перегородок можно провести много плоскостей симметрии. У медузы с четырьмя щупальцами на колоколе число плоскостей симметрии будет ограничено числом, кратным четырем. У гребневиков только две плоскости симметрии - глоточная и щупальцевая. Наконец, у двусторонне-симметричных организмов только одна плоскость и только две зеркальные антимеры - соответственно правая и левая стороны животного.

Типы симметрии В.Н. Беклемишева. Подробный анализ элементов симметрии и подробную классификацию типов симметрии протистов:

Анаксонная . Простейшие с наиболее примитивной архитектоникой (амёбы) характеризуются полным отсутствием симметрии.

Сферическая (гомаксонная). Симметричность относительно вращений в трехмерном пространстве на произвольные углы. Имеется центр симметрии, в котором пересекается бесконечное число осей симметрии бесконечно большого порядка. Характерна для колониальных радиолярий и кокцидий.

Неопределенно полиаксонная (есть центр симметрии и конечное, но неопределённое число осей и плоскостей) - многие солнечники.

Правильная полиаксонная (строго определенное число осей симметрии определённого порядка) - многие радиолярии.

Ставраксонная (монаксонная) гомополярная (есть одна ось симметрии с равноценными полюсами, то есть пересекаемая в центре плоскостью симметрии, в которой лежат не менее двух дополнительных осей симметрии) - некоторые радиолярии.

Монаксонная гетерополярная (есть одна ось симметрии с двумя неравноценными полюсами, центр симметрии исчезает) - многие радиолярии и жгутиковые, раковинные корненожки, грегарины, примитивные инфузории.

Билатеральная - дипломонады, бодониды, фораминиферы.

Симметрия многоклеточных.

Радиальная симметрия - форма симметрии, при которой тело (или фигура) совпадает само с собой при вращении объекта вокруг определённой точки или прямой. Часто эта точка совпадает с центром симметрии объекта, то есть той точкой, в которой пересекается бесконечное количество осей или плоскостей двусторонней симметрии. В биологии о радиальной симметрии говорят, когда через трёхмерное существо проходят одна или более осей симметрии. При этом радиальносимметричные животные могут и не иметь плоскостей симметрии. Обычно через ось симметрии проходят две или более плоскости симметрии. Эти плоскости пересекаются по прямой - оси симметрии. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе (совпадать само с собой). Как правило, у многоклеточных животных два конца (полюса) единственной оси симметрии неравноценны (например, у медуз на одном полюсе (оральном) находится рот, а на противоположном (аборальном) - верхушка колокола. Такая симметрия (вариант радиальной симметрии) в сравнительной анатомии называется одноосно-гетеропольной. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения. Радиальная симметрия характерна для многих стрекающих, а также для большинства иглокожих. Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии. У иглокожих радиальная симметрия вторична: их личинки двустороннесимметричны, а у взрослых животных наружная радиальная симметрия нарушается наличием мадрепоровой пластинки.

Билатера́льная симме́трия (двусторонняя симметрия) - симметрия зеркального отражения, при которой объект имеет одну плоскость симметрии, относительно которой две его половины зеркально симметричны. У животных появление билатеральной симметрии в эволюции связано с ползанием по субстрату (по дну водоема), в связи с чем появляются спинная и брюшная, а также правая и левая половины тела. В целом среди животных билатеральная симметрия более выражена у активно подвижных форм, чем у сидячих. Билатеральная симметрия свойственна всем достаточно высокоорганизованным животным, кроме иглокожих.

Вращательно-поступательная симметрия . Этот тип симметрии имеет ограниченное распространение в животном мире. Эта симметрия характерна тем, что при повороте на определенный угол часть тела немного проступает вперед и ее размеры каждый следующий шаг логарифмически увеличивает на определенную величину. Таким образом, происходит совмещение актов вращения и поступательного движения. Примером могут служить спиральные камерные раковины фораминифер (одноклеточные), а также спиральные камерные раковины некоторых головоногих моллюсков (современный наутилус или ископаемые раковины аммонитов). С некоторым условием к этой группе можно отнести также и некамерные спиральные раковины брюхоногих моллюсков.

Мы уже упоминали о том, что возникающий в калейдоскопе узор обладает не только зеркальной, но и поворотной симметрией. Это означает, что внешний вид узора не изменится, если его повернуть на определенный угол вокруг оси, проходящей через центр. Угол поворота зависит от угла между зеркалами. Операция симметрии в этом случае сводится к повороту на конкретный угол, а элементом симметрии служит воображаемая ось, вокруг которой происходит поворот. (В калейдоскопе ось поворота совпадает с линией пересечения зеркал). Если угол поворота равен 90 градусов, то чтобы совершить полный оборот на 360 градусов, необходимо совершить один за другим 4 поворота. В этом случае ось называется осью симметрии четвертого порядка. Если угол поворота равен 120 градусам, то мы имеем дело с осью третьего порядка, а если угол поворота равен 60 градусам, - с осью шестого порядка.

Существуют также узоры с поворотной симметрией, не обладающие плоскостями зеркальной симметрии. Такие узоры встречаются нескольких типов, и мы отмечаем их и в плоских орнаментах, и в трехмерных предметах, и в движениях. Детская вертушка может служить примером фигуры с поворотной симметрией, но не обладающей плоскостями симметрии.

Симметрия, возникающая при вращении фигуры вокруг центра вращения, называется центральной или радиально-лучевой симметрией. Образцами такой симметрии могут служить цветы различных растений, например ромашка, василек, подсолнух. Данный вид симметрии используется при создании розеток и плафонов. Он лежит в основе таких форм как колесо со спицами, солнце с лучами. Наивысшей степенью симметрии обладает шар, так как в центре его пересекается бесконечное множество осей и плоскостей симметрии.

5.3. Узоры и разбиения. Упражнения на основе симметрии трансляции и узоров на плоскости

Перечисленные виды симметрии широко используют художники в своих произведениях. Так, работы голландского художника Морица Эшера представляют собой хитроумные орнаменты, заполняющие всю плоскость картины. Замечательным примером орнаментальной симметрии является его работа "Ящерицы". Одинаковыми фигурами - ящерицами, неправильными с точки зрения геометрии, составлена мозаика. Эти фигуры плотно упаковывают поверхность, не образуя ни промежутков, ни накладок. Основательный с научной точки зрения разбор этой работы сделал доктор технических наук С. Алегин в статье "Симметрия орнамента" (журнал "Наука и жизнь", 1974, № 4). Симметрия является одним из важных средств достижения единства и художественной выразительности композиции. Однако наряду с ней широко применяется и асимметрия такое сочетание и расположение элементов, при котором ось или плоскость симметрии отсутствует. В такой композиции для достижения единства формы особенно важна зрительная уравновешенность всех ее частей по массе, фактуре и цвету.

В сложной композиции симметричные группы элементов могут сочетаться с асимметричными. Асимметричная композиция применяется обычно для подчеркивания динамичности образа изделия или сооружения. В асимметричных композициях равновесие достигается путем приближения более легких форм к краю картинной плоскости. Симметрия предполагает: слабость, строгость, отдых, спокойствие, классицизм, силу как в совокупности, так и в деталях. Асимметрия означает: движение, динамизм, "жизнь", свободу. Если симметрия связывается с равновесием, покоем, то асимметрия говорит об отсутствии равновесия, нарушении покоя. Асимметрия по своей природе настроена на более активные связи с окружающей средой, поэтому она всегда вызывает повышенный интерес у художников. Проблема более быстрого вхождения новой формы в жизненную среду или же, наоборот, проблема выделения из окружающей среды чаще всего решается на динамичных формах, так как среда в целом тяготеет к статике. Стремление асимметричных форм к активному воздействию на среду объясняется тем, что объект с ярко выраженной асимметрией образует как бы прорыв в общем природном, симметричном поле.

Симметрия и асимметрия в искусстве - два взаимно проникающих, взаимно сцепляющихся метода, которые дают множество произведений с гармоничным сосуществованием и статики, и динамики. Они как бы выражают две стороны жизни человека, его характер. Знание особенностей статичных и динамичных построений дает возможность выхода на композиции с нюансированным преобладанием тех или других начал.

Признавая огромную роль простого равновесия (равного «веса» составляющих целое частей) в понятии о симметрии, мы осознаём важное значение его закономерностей в проектировании. Изображения предметов, имеющих разную форму, цвет, размер и находящихся на неодинаковом расстоянии от оси симметрии, имеют разный «вес» в композиции. Это психологически обоснованно. В прикладном искусстве кроме главной оси, объединяющей целое, бывают и подчиненные оси, обеспечивающие внутреннюю симметрию деталей.

Абсолютная, жесткая симметрия характерна для неживой природы - кристаллов (минералов, снежинок). Для органической природы, для живых организмов характерна неполная симметрия (квазисимметрия), (например, в строении человека). Нарушение симметрии, асимметрия (отсутствие симметрии) используется в искусстве как художественное средство. Небольшое отклонение от правильной симметрии, то есть некоторая асимметричность, нарушая равновесие, привлекает к себе внимание, вносит элемент движения и создает впечатление живой формы. Различные виды симметрии обладают различным воздействием на эстетическое чувство: зеркальная симметрия - равновесие, покой; винтовая симметрия вызывает ощущение движения. Хзмбидж причисляет все простые геометрические фигуры к статичной симметрии, (разделяя все виды симметрии на статичные и динамичные), а к динамичной симметрии относит спираль. В основе статичной симметрии часто лежит пятиугольник (срез цветка или плода) или квадрат (в минералах). В искусстве строгая математическая симметрия используется редко. Роли симметрии в науке, искусстве, в природе посвящена масса работ, список которых непрерывно пополняется. Классические определения симметрии сегодня соседствуют с понятиями о криволинейной симметрии, симметрии подобия и антисимметрии, динамической симметрии и т. д.

Симметрия и асимметрия, - характеризуется местоположением элементов относительно оси или центра вращения. Благодаря симметрии фиксируются правая и левая части изобразительного целого, акцентируется центр и воображаемая ось. Симметрия подразумевает равноценность, равновеликость. Благодаря симметрии композиция приобретает устойчивость, равновесие. Симметрия означает родство, сходство, но может служить и средством противопоставления (симметричное изображение, контрастное по тону или цвету; противопоставление двух контрастных фигур) в психологическом плане. Симметрия придает изображению статичность. Асимметрия ее нарушает, сохраняя, однако ориентацию относительно оси, хотя при этом и отклоняется от нее. Асимметрия несет динамическое начало.

В пропорции и соразмерности проявляются количественные отношения между частями целого и целым. Греки к ним присоединяли и симметрию, рассматривая ее как вид соразмерности, - как ее частный случай - тождество. Она, как и пропорция, почиталась необходимым условием гармонии и красоты.

Симметрия основана на подобии. Она означает такое соотношение между элементами, фигурами, когда они повторяют и уравновешивают друг друга. В математике под симметрией подразумевается совмещение частей фигуры при перемещении ее относительно оси или центра симметрии. Существуют различные виды симметрии.



Случайные статьи

Вверх