Найти фундаментальную систему решений однородной системы уравнений. Решение однородных систем линейных уравнений

Линейное уравнение называется однородным , если его свободный член равен нулю, и неоднородным в противном случае. Система, состоящая из однородных уравнений, называется однородной и имеет общий вид:

Очевидно, что всякая однородная система совместна и имеет нулевое (тривиальное) решение. Поэтому применительно к однородным системам линейных уравнений часто приходится искать ответ на вопрос о существовании ненулевых решений. Ответ на этот вопрос можно сформулировать в виде следующей теоремы.

Теорема . Однородная система линейных уравнений имеет ненулевое решение тогда и только тогда, когда ее ранг меньше числа неизвестных .

Доказательство : Допустим, система, ранг которой равен, имеет ненулевое решение. Очевидно, что не превосходит . В случае система имеет единственное решение. Поскольку система однородных линейных уравнений всегда имеет нулевое решение, то именно нулевое решение и будет этим единственным решением. Таким образом, ненулевые решения возможны только при .

Следствие 1 : Однородная система уравнений, в которой число уравнений меньше числа неизвестных, всегда имеет ненулевое решение.

Доказательство : Если у системы уравнений , то ранг системы не превышает числа уравнений , т.е. . Таким образом, выполняется условие и, значит, система имеет ненулевое решение.

Следствие 2 : Однородная система уравнений с неизвестными имеет ненулевое решение тогда и только тогда, когда ее определитель равен нулю.

Доказательство : Допустим, система линейных однородных уравнений, матрица которой с определителем , имеет ненулевое решение. Тогда по доказанной теореме , а это значит, что матрица вырожденная, т.е. .

Теорема Кронекера-Капелли: СЛУ совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы. Система ур-ий называется совместной, если она имеет хотя бы одно решение.

Однородная система линейных алгебраических уравнений .

Система m линейных ур-ий с n переменными называется системой линейных однородных уравнений, если все свободные члены равны 0. Система линейных однородных ур-ий всегда совместна, т.к. она всегда имеет, по крайней мере, нулевое решение. Система линейных однородных ур-ий имеет ненулевое решение тогда и только тогда, когда ранг её матрицы коэффициентов при переменных меньше числа переменных, т.е. при rang A (n. Всякая лин. комбинация

решений системы лин. однородн. ур-ий также является решением этой системы.

Система лин.независимых решений е1, е2,…,еk называется фундаментальной, если каждое решение системы является линейной комбинацией решений. Теорема: если ранг r матрицы коэффициентов при переменных системы линейных однородных уравнений меньше числа переменных n, то всякая фундаментальная система решений системы состоит из n-r решений. Поэтому общее решение системы лин. однордн. ур-ий имеет вид: с1е1+с2е2+…+сkеk, где е1, е2,…, еk – любая фундаментальная система решений, с1, с2,…,сk – произвольные числа и k=n-r. Общее решение системы m линейных ур-ий с n переменными равно сумме

общего решения соответствующей ей системы однородн. линейных ур-ий и произвольного частного решения этой системы.

7.Линейные пространства. Подпространства. Базис, размерность. Линейная оболочка. Линейное пространство называется n-мерным , если в нем существует система из линейно независимых векторов, а любая система из большего количества векторов линейно зависима. Число называется размерностью (числом измерений) линейного пространства и обозначается . Другими словами, размерность пространства - это максимальное число линейно независимых векторов этого пространства. Если такое число существует, то пространство называется конечномерным. Если же для любого натурального числа п в пространстве найдется система, состоящая из линейно независимых векторов, то такое пространство называют бесконечномерным (записывают: ). Далее, если не оговорено противное, будут рассматриваться конечномерные пространства.

Базисом n-мерного линейного пространства называется упорядоченная совокупность линейно независимых векторов (базисных векторов ).

Теорема 8.1 о разложении вектора по базису. Если - базис n-мерного линейного пространства , то любой вектор может быть представлен в виде линейной комбинации базисных векторов:

V=v1*e1+v2*e2+…+vn+en
и притом единственным образом, т.е. коэффициенты определяются однозначно. Другими словами, любой вектор пространства может быть разложен по базису и притом единственным образом.

Действительно, размерность пространства равна . Система векторов линейно независима (это базис). После присоединения к базису любого вектора , получаем линейно зависимую систему (так как это система состоит из векторов n-мерного пространства). По свойству 7 линейно зависимых и линейно независимых векторов получаем заключение теоремы.

Даны матрицы

Найти: 1) aA - bB,

Решение : 1) Находим последовательно, используя правила умножения матрицы на число и сложения матриц..


2. Найдите А*В, если

Решение : Используем правило умножения матриц

Ответ:

3. Для заданной матрицы найдите минор М 31 и вычислите определитель.

Решение : Минор М 31 – это определитель матрицы, которая получается из А

после вычеркивания строки 3 и столбца 1. Находим

1*10*3+4*4*4+1*1*2-2*4*10-1*1*4-1*4*3 = 0.

Преобразуем матрицу А, не изменяя её определителя (сделаем нули в строке 1)

-3*, -, -4*
-10 -15
-20 -25
-4 -5

Теперь вычисляем определитель матрицы А разложением по строке 1


Ответ: М 31 = 0, detA = 0

Pешить методом Гаусса и методом Крамера.

2х 1 + х 2 + x 3 = 2

x 1 + х 2 + 3x 3 = 6

2x 1 + x 2 + 2x 3 = 5

Решение : Проверим


Можно применить метод Крамера


Решение системы: х 1 = D 1 /D = 2, х 2 = D 2 /D = -5, х 3 = D 3 /D = 3

Применим метод Гаусса.

Расширенную матрицу системы приведём к треугольному виду.

Для удобства вычислений поменяем строки местами:

Умножим 2-ю строку на (k = -1 / 2 = -1 / 2 ) и добавим к 3-й:

1 / 2 7 / 2

Умножим 1-ю строку на (k = -2 / 2 = -1 ) и добавим к 2-й:

Теперь исходную систему можно записать как:

x 1 = 1 - (1 / 2 x 2 + 1 / 2 x 3)

x 2 = 13 - (6x 3)

Из 2-ой строки выражаем

Из 1-ой строки выражаем

Решение то же.

Ответ: (2 ; -5 ; 3)

Найти общее решение системы и ФСР

13х 1 – 4х 2 – х 3 - 4х 4 - 6х 5 = 0

11х 1 – 2х 2 + х 3 - 2х 4 - 3х 5 = 0

5х 1 + 4х 2 + 7х 3 + 4х 4 + 6х 5 = 0

7х 1 + 2х 2 + 5х 3 + 2х 4 + 3х 5 = 0

Решение : Применим метод Гаусса. Расширенную матрицу системы приведём к треугольному виду.

-4 -1 -4 -6
-2 -2 -3
x 1 x 2 x 3 x 4 x 5

Умножим 1-ю строку на (-11). Умножим 2-ю строку на (13). Добавим 2-ю строку к 1-й:

-2 -2 -3

Умножим 2-ю строку на (-5). Умножим 3-ю строку на (11). Добавим 3-ю строку к 2-й:

Умножим 3-ю строку на (-7). Умножим 4-ю строку на (5). Добавим 4-ю строку к 3-й:

Второе уравнение есть линейная комбинация остальных

Найдем ранг матрицы.

-18 -24 -18 -27
x 1 x 2 x 3 x 4 x 5

Выделенный минор имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на обратной диагонали), следовательно rang(A) = 2.

Этот минор является базисным. В него вошли коэффициенты при неизвестных x 1 ,x 2 , значит, неизвестные x 1 ,x 2 – зависимые (базисные), а x 3 ,x 4 ,x 5 – свободные.

Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:

18x 2 = 24x 3 + 18x 4 + 27x 5

7x 1 + 2x 2 = - 5x 3 - 2x 4 - 3x 5

Методом исключения неизвестных находим общее решение :

x 2 = - 4 / 3 x 3 - x 4 - 3 / 2 x 5

x 1 = - 1 / 3 x 3

Находим фундаментальную систему решений (ФСР), которая состоит из (n-r) решений. В нашем случае n=5, r=2, следовательно, фундаментальная система решений состоит из 3-х решений, причем эти решения должны быть линейно независимыми.

Чтобы строки были линейно независимыми, необходимо и достаточно, чтобы ранг матрицы, составленной из элементов строк, был равен количеству строк, то есть 3.

Достаточно придать свободным неизвестным x 3 ,x 4 ,x 5 значения из строк определителя 3-го порядка, отличного от нуля, и подсчитать x 1 ,x 2 .

Простейшим определителем, отличным от нуля, является единичная матрица.

Но здесь удобнее взять

Находим, используя общее решение:

а) х 3 = 6, х 4 = 0, х 5 = 0 Þ х 1 = - 1 / 3 x 3 = -2, х 2 = - 4 / 3 x 3 - x 4 - 3 / 2 x 5 = -4 Þ

I решение ФСР: (-2; -4; 6; 0;0)

б) х 3 = 0, х 4 = 6, х 5 = 0 Þ х 1 = - 1 / 3 x 3 = 0, х 2 = - 4 / 3 x 3 - x 4 - 3 / 2 x 5 = - 6 Þ

II решение ФСР: (0; -6; 0; 6;0)

в) х 3 = 0, х 4 = 0, х 5 = 6 Þ х 1 = - 1 / 3 x 3 = 0, х 2 = - 4 / 3 x 3 - x 4 - 3 / 2 x 5 = -9 Þ

III решение ФСР: (0; - 9; 0; 0;6)

Þ ФСР: (-2; -4; 6; 0;0), (0; -6; 0; 6;0), (0; - 9; 0; 0;6)

6. Дано: z 1 = -4 + 5i, z 2 = 2 – 4i. Найти: a) z 1 – 2z 2 б) z 1 z 2 в) z 1 /z 2

Решение : a) z 1 – 2z 2 = -4+5i+2(2-4i) = -4+5i+4-8i = -3i

б) z 1 z 2 = (-4+5i)(2-4i) = -8+10i+16i-20i 2 = {i 2 = -1} = 12 + 26i


Ответ: а) -3i б) 12+26i в) -1.4 – 0.3i

Однородная система линейных уравнений над полем

ОПРЕДЕЛЕНИЕ. Фундаментальной системой решений системы уравнений (1) называется непустая линейно независимая система ее решений, линейная оболочка которой совпадает с множеством всех решений системы (1).

Отметим, что однородная система линейных уравнений, имеющая только нулевое решение, не имеет фундаментальной системы решений.

ПРЕДЛОЖЕНИЕ 3.11. Любые две фундаментальные системы решений однородной системы линейных уравнений состоят из одинакового числа решений.

Доказательство. В самом деле, любые две фундаментальные системы решений однородной системы уравнений (1) эквивалентны и линейно независимы. Поэтому в силу предложения 1.12 их ранги равны. Следовательно, число решений, входящих в одну фундаментальную систему, равно числу решений, входящих в любую другую фундаментальную систему решений.

Если основная матрица А однородной системы уравнений (1) нулевая, то любой вектор из является решением системы (1); в этом случае любая совокупность линейно независимых векторов из является фундаментальной системой решений. Если же столбцовый ранг матрицы А равен , то система (1) имеет только одно решение - нулевое; следовательно, в этом случае система уравнений (1) не обладает фундаментальной системой решений.

ТЕОРЕМА 3.12. Если ранг основной матрицы однородной системы линейных уравнений (1) меньше числа переменных , то система (1) обладает фундаментальной системой решений, состоящей из решений.

Доказательство. Если ранг основной матрицы А однородной системы (1) равен нулю или , то выше было показано, что теорема верна. Поэтому ниже предполагается, что Полагая , будем считать, что первые столбцов матрицы А линейно независимы. В этом случае матрица А строчечно эквивалентна приведенной ступенчатой матрице, а система (1) равносильна следующей приведенной ступенчатой системе уравнений:

Легко проверить, что любой системе значений свободных переменных системы (2) соответствует одно и только одно решение системы (2) и, значит, системы (1). В частности, системе нулевых значений соответствует только нулевое решение системы (2) и системы (1).

Будем в системе (2) придавать одному из свободных переменных значение, равное 1, а остальным переменным - нулевые значения. В результате получим решений системы уравнений (2), которые запишем в виде строк следующей матрицы С:

Система строк этой матрицы линейно независима. В самом деле, для любых скаляров из равенства

следует равенство

и, значит, равенства

Докажем, что линейная оболочка системы строк матрицы С совпадает с множеством всех решений системы (1).

Произвольное решение системы (1). Тогда вектор

также является решением системы (1), причем

Системы линейных однородных уравнений - имеет вид ∑a k i x i = 0. где m > n или m Однородная система линейных уравнений всегда совместна, так как rangA = rangB . Она заведомо имеет решение, состоящее из нулей, которое называется тривиальным .

Назначение сервиса . Онлайн-калькулятор предназначен для нахождения нетривиального и фундаментального решения СЛАУ. Полученное решение сохраняется в файле Word (см. пример решения).

Инструкция . Выберите размерность матрицы:

количество переменных : 2 3 4 5 6 7 8 и количество строк 2 3 4 5 6

Свойства систем линейных однородных уравнений

Для того чтобы система имела нетривиальные решения , необходимо и достаточно, чтобы ранг ее матрицы был меньше числа неизвестных.

Теорема . Система в случае m=n имеет нетривиальное решение тогда и только тогда, когда определитель этой системы равен нулю.

Теорема . Любая линейная комбинация решений системы также является решением этой системы.
Определение . Совокупность решений системы линейных однородных уравнений называется фундаментальной системой решений , если эта совокупность состоит из линейно независимых решений и любое решение системы является линейной комбинацией этих решений.

Теорема. Если ранг r матрицы системы меньше числа n неизвестных, то существует фундаментальная система решений, состоящая из (n-r) решений.

Алгоритм решения систем линейных однородных уравнений

  1. Находим ранг матрицы.
  2. Выделяем базисный минор. Выделяем зависимые (базисные) и свободные неизвестные.
  3. Вычеркиваем те уравнения системы, коэффициенты которых не вошли в состав базисного минора, так как они являются следствиями остальных (по теореме о базисном миноре).
  4. Члены уравнений, содержащие свободные неизвестные, перенесем в правую часть. В результате получим систему из r уравнений с r неизвестными, эквивалентную данной, определитель которой отличен от нуля.
  5. Решаем полученную систему методом исключения неизвестных. Находим соотношения, выражающие зависимые переменные через свободные.
  6. Если ранг матрицы не равен количеству переменных, то находим фундаментальное решение системы.
  7. В случае rang = n имеем тривиальное решение.

Пример . Найти базис системы векторов (а 1 , а 2 ,...,а m), ранг и выразить векторы по базе. Если а 1 =(0,0,1,-1), а 2 =(1,1,2,0), а 3 =(1,1,1,1), а 4 =(3,2,1,4), а 5 =(2,1,0,3).
Выпишем основную матрицу системы:


Умножим 3-ую строку на (-3). Добавим 4-ую строку к 3-ой:
0 0 1 -1
0 0 -1 1
0 -1 -2 1
3 2 1 4
2 1 0 3

Умножим 4-ую строку на (-2). Умножим 5-ую строку на (3). Добавим 5-ую строку к 4-ой:
Добавим 2-ую строку к 1-ой:
Найдем ранг матрицы.
Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:
- x 3 = - x 4
- x 2 - 2x 3 = - x 4
2x 1 + x 2 = - 3x 4
Методом исключения неизвестных находим нетривиальное решение:
Получили соотношения, выражающие зависимые переменные x 1 ,x 2 ,x 3 через свободные x 4 , то есть нашли общее решение:
x 3 = x 4
x 2 = - x 4
x 1 = - x 4

Однородные системы линейных алгебраических уравнений

В рамках уроков метод Гаусса и Несовместные системы/системы с общим решением мы рассматривали неоднородные системы линейных уравнений , где свободный член (который обычно находится справа) хотя бы одного из уравнений был отличен от нуля.
И сейчас, после хорошей разминки с рангом матрицы , мы продолжим шлифовать техникуэлементарных преобразований на однородной системе линейных уравнений .
По первым абзацам материал может показаться скучным и заурядным, однако данное впечатление обманчиво. Помимо дальнейшей отработки технических приёмов будет много новой информации, поэтому, пожалуйста, постарайтесь не пренебрегать примерами данной статьи.

Что такое однородная система линейных уравнений?

Ответ напрашивается сам собой. Система линейных уравнений является однородной, если свободный член каждого уравнения системы равен нулю. Например:

Совершенно ясно, что однородная система всегда совместна , то есть всегда имеет решение. И, прежде всего, в глаза бросается так называемое тривиальное решение . Тривиальное, для тех, кто совсем не понял смысл прилагательного, значит, беспонтовое. Не академично, конечно, но зато доходчиво =) …Чего ходить вокруг да около, давайте выясним, нет ли у данной системы каких-нибудь других решений:

Пример 1

Решение : чтобы решить однородную систему необходимо записать матрицу системы и с помощью элементарных преобразований привести её к ступенчатому виду. Обратите внимание, что здесь отпадает необходимость записывать вертикальную черту и нулевой столбец свободных членов – ведь что ни делай с нулями, они так и останутся нулями:

(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –3.

(2) К третьей строке прибавили вторую строку, умноженную на –1.

Делить третью строку на 3 не имеет особого смысла.

В результате элементарных преобразований получена эквивалентная однородная система , и, применяя обратный ход метода Гаусса, легко убедиться, что решение единственно.

Ответ :

Сформулируем очевидный критерий : однородная система линейных уравнений имееттолько тривиальное решение , если ранг матрицы системы (в данном случае 3) равен количеству переменных (в данном случае – 3 шт.).

Разогреваемся и настраиваем свой радиоприёмник на волну элементарных преобразований:

Пример 2

Решить однородную систему линейных уравнений

Из статьи Как найти ранг матрицы? вспоминаем рациональный приём попутного уменьшения чисел матрицы. В противном случае вам придётся разделывать крупную, а частенько и кусачую рыбу. Примерный образец оформления задания в конце урока.

Нули – это хорошо и удобно, однако на практике гораздо более распространен случай, когда строки матрицы системы линейно зависимы . И тогда неизбежно появление общего решения:

Пример 3

Решить однородную систему линейных уравнений

Решение : запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду. Первое действие направлено не только на получение единичного значения, но и на уменьшение чисел в первом столбце:

(1) К первой строке прибавили третью строку, умноженную на –1. Ко второй строке прибавили третью строку, умноженную на –2. Слева вверху я получил единицу с «минусом», что зачастую намного удобнее для дальнейших преобразований.

(2) Первые две строки одинаковы, одну из них удалили. Честное слово, не подгонял решение – так получилось. Если выполнять преобразования шаблонно, то линейная зависимость строк обнаружилась бы чуть позже.

(3) К третьей строке прибавили вторую строку, умноженную на 3.

(4) У первой строки сменили знак.

В результате элементарных преобразований получена эквивалентная система:

Алгоритм работает точно так же, как и для неоднородных систем . Переменные , «сидящие на ступеньках» – главные, переменная , которой не досталось «ступеньки» – свободная.

Выразим базисные переменные через свободную переменную:

Ответ : общее решение:

Тривиальное решение входит в общую формулу, и записывать его отдельно излишне.

Проверка выполняется тоже по обычной схеме: полученное общее решение необходимо подставить в левую часть каждого уравнения системы и получить законный ноль при всех подстановках.

На этом можно было бы тихо-мирно закончить, но решение однородной системы уравнений часто требуется представить в векторной форме с помощьюфундаментальной системы решений . Пожалуйста, временно забудьте обаналитической геометрии , поскольку сейчас речь пойдёт о векторах в общем алгебраическом смысле, который я немного приоткрыл в статье про ранг матрицы . Терминологии тушеваться не нужно, всё довольно просто.



Случайные статьи

Вверх