Новые и перспективные лекарственные препараты, блокирующие ренин-ангиотензин-альдостероновую систему. Ренин-ангиотензин-альдостероновая система (раас.) Разные фракции раас и их эффекты


Для цитирования: Леонова М.В. Новые и перспективные лекарственные препараты, блокирующие ренин-ангиотензин-альдостероновую систему // РМЖ. Медицинское обозрение. 2013. №17. С. 886

Роль ренин-ангиотензин-альдостероновой системы (РААС) в развитии артериальной гипертонии (АГ) и других сердечно-сосудистых заболеваний в настоящее время считается главенствующей. В кардиоваскулярном континууме АГ находится среди факторов риска, а главным патофизиологическим механизмом поражения сердечно-сосудистой системы является ангиотензин II (АТII). АТII является ключевым компонентом РААС - эффектором, который реализует вазоконстрикцию, задержку натрия, активацию симпатической нервной системы, клеточную пролиферацию и гипертрофию, развитие оксидативного стресса и процессов воспаления сосудистой стенки.

В настоящее время уже получили развитие и широкое клиническое применение два класса препаратов, блокирующих РААС, - ингибиторы АПФ и блокаторы рецепторов АТII. Фармакологические и клинические эффекты этих классов имеют отличия. АПФ является пептидазой из группы цинк-металлопротеиназ, которая метаболизирует АТI, АТ1-7, брадикинин, субстанцию Р и многие другие пептиды . Механизм действия ингибиторов АПФ главным образом связан с предотвращением образования АТII, что способствует вазодилатации, натрийурезу и устраняет провоспалительный, пролиферативный и другие эффекты АТII. Кроме того, ингибиторы АПФ препятствуют деградации брадикинина и повышают его уровень. Брадикинин - мощный вазодилататор, он потенцирует натрийурез, а главное - обладает кардиопротективным (предотвращает гипертрофию, уменьшает ишемическое повреждение миокарда, улучшает коронарное кровоснабжение) и вазопротективным действием, улучшая эндотелиальную функцию. Вместе с тем, высокий уровень брадикинина - причина развития ангионевротического отека, что является одним из серьезных недостатков ингибиторов АПФ, которые значительно повышают уровень кининов.
Ингибиторам АПФ не всегда удается полностью блокировать образование АТII в тканях. В настоящее время установлено, что в его превращении в тканях могут участвовать и другие ферменты, не связанные с АПФ, прежде всего эндопептидазы, на которые действие ингибиторов АПФ не распространяется. В результате ингибиторы АПФ не могут полностью устранить эффекты АТII, что может быть причиной их недостаточной эффективности.
Решению этой проблемы способствовало открытие рецепторов АТII и первого класса препаратов, селективно блокирующих АТ1-рецепторы. Через АТ1-рецепторы реализуются неблагоприятные эффекты АТII: вазоконстрикция, секреция альдостерона, вазопрессина, норадреналина, задержка жидкости, пролиферация гладкомышечных клеток и кардиомиоцитов, активация САС, а также механизм отрицательной «обратной связи» - образование ренина. АТ2-рецепторы выполняют «полезные» функции, такие как вазодилатация, процессы репарации и регенерации, антипролиферативное действие, дифференцировка и развитие эмбриональных тканей. Клинические эффекты блокаторов рецепторов АТII опосредованы через устранение «вредных» эффектов АТII на уровне АТ1-рецепторов, что обеспечивает более полное блокирование неблагоприятных эффектов АТII и усиление влияния АТII на АТ2-рецепторы, что дополняет вазодилатирующий и антипролиферативный эффекты. Блокаторы рецепторов АТII обладают специфичным действием на РААС, не вмешиваясь в кининовую систему. Отсутствие влияния на активность кининовой системы, с одной стороны, уменьшает выраженность нежелательных эффектов (кашель, ангионевротический отек), но, с другой, лишает блокаторы рецепторов АТII важного антиишемического и вазопротективного действия, что отличает их от ингибиторов АПФ. По этой причине показания к применению блокаторов рецепторов АТII в большинстве повторяют показания к назначению ингибиторов АПФ, делают их альтернативными препаратами.
Несмотря на внедрение блокаторов РААС в широкую практику лечения АГ, проблемы улучшения исходов и прогноза остаются. К ним относятся: возможность улучшения контроля АД в популяции, эффективность лечения резистентной АГ, возможности дальнейшего снижения риска сердечно-сосудистых заболеваний.
Поиск новых путей воздействия на РААС активно продолжается; изучаются другие тесно взаимодействующие системы и создаются препараты с множественным механизмом действия, такие как ингибиторы АПФ и нейтральной эндопептидазы (НЭП), ингибиторы эндотелин-превращающего фермента (ЭПФ) и НЭП, ингибиторы АПФ/НЭП/ЭПФ .
Ингибиторы вазопептидаз
К вазопептидазам кроме известного АПФ относятся еще 2 других цинк-металлопротеиназы - неприлизин (нейтральная эндопептидаза, НЭП) и эндотелин-превращающий фермент, которые также могут быть мишенями для фармакологического воздействия.
Неприлизин - фермент, вырабатываемый эндотелием сосудов и участвующий в деградации натрийуретического пептида, а также брадикинина.
Система натрийуретического пептида представлена тремя разными изоформами: предсердным натрий-уретическим пептидом (А-тип), мозговым натрийуретическим пептидом (В-тип), которые синтезируются в предсердии и миокарде, и эндотелиальным С-пептидом, которые по своим биологическим функциям являются эндогенными ингибиторами РААС и эндотелина-1 (табл. 1) . Кардиоваскулярные и ренальные эффекты натрийуретического пептида заключаются в снижении АД через влияние на сосудистый тонус и водноэлектролитный баланс, а также в антипролиферативном и антифибротическом действии на органы-мишени. По самым последним данным, система натрийуретического пептида участвует в метаболической регуляции: окислении липидов, образовании и дифференцировке адипоцитов, активации адипонектина, секреции инсулина и толерантности к углеводам, что может обеспечивать защиту от развития метаболического синдрома .
К настоящему времени стало известно, что развитие сердечно-сосудистых заболеваний ассоциируется с дизрегуляцией системы натрийуретического пептида. Так, при АГ наблюдается дефицит натрийуретического пептида, приводящий к солечувствительности и нарушению натрийуреза; при хронической сердечной недостаточности (ХСН) на фоне дефицита наблюдается аномалия функционирования гормонов системы натрийуретического пептида .
Поэтому для потенцирования системы натрийуретического пептида с целью достижения дополнительного гипотензивного и протективных кардиоренальных эффектов возможно применение ингибиторов НЭП. Ингибирование неприлизина приводит к потенцированию натрийуретического, диуретического и вазодилатирующего эффектов эндогенного натрийуретического пептида и в результате - к снижению АД. Однако НЭП участвует в деградации и других вазоактивных пептидов, в частности АТI, АТII и эндотелина-1. Поэтому баланс эффектов воздействия на сосудистый тонус ингибиторов НЭП вариабельный и зависит от преобладания констрикторных и дилатирующих влияний. При длительном применении антигипертензивное действие ингибиторов неприлизина выражено слабо вследствие компенсаторной активации образования АТII и эндотелина-1 .
В этой связи сочетание эффектов ингибиторов АПФ и ингибиторов НЭП может существенно потенцировать гемодинамические и антипролиферативные эффекты в результате комплементарного механизма действия, что привело к созданию препаратов с двойным механизмом действия, объединенных названием - ингибиторы вазопептидаз (табл. 2, рис. 1) .
Известные ингибиторы вазопептидаз характеризуются разной степенью селективности к НЭП/АПФ: омапатрилат - 8,9:0,5; фазидоприлат - 5,1:9,8; сампатрилат - 8,0:1,2 . В результате ингибиторы вазопептидаз получили гораздо большие возможности в достижении гипотензивного эффекта вне зависимости от активности РААС и уровня задержки натрия и в органопротекции (регресс гипертрофии, альбуминурии, жесткости сосудов). Наиболее изученным в клинических исследованиях был омапатрилат, который показал более высокую гипотензивную эффективность в сравнении с ингибиторами АПФ, а у пациентов с ХСН приводил к увеличению фракции выброса и улучшению клинических исходов (исследования IMPRESS, OVERTURE), но без преимуществ перед ингибиторами АПФ .
Однако в крупных клинических исследованиях с применением омапатрилата была установлена более высокая частота развития ангионевротического отека в сравнении с ингибиторами АПФ. Известно, что частота развития ангионевротического отека при использовании ингибиторов АПФ составляет от 0,1 до 0,5% в популяции, из них 20% случаев являются жизнеугрожающими, что связано с многократным повышением концентраций брадикинина и его метаболитов . Результаты крупного многоцентрового исследования OCTAVE (n=25 302), которое было специально спланировано для изучения частоты развития ангионевротического отека, показало, что частота развития этого побочного эффекта на фоне лечения омапатрилатом превышает таковую в группе эналаприла - 2,17% против 0,68% (относительный риск 3,4) . Это объяснялось усилением влияния на уровень кининов при синергичном ингибировании АПФ и НЭП, связанным с ингибированием аминопептидазы Р, участвующей в деградации брадикинина .
Новый двойной ингибитор вазопептидаз, блокирующий АПФ/НЭП, - илепатрил, который имеет более высокую аффинность к АПФ в сравнении с НЭП . При изучении фармакодинамических эффектов илепатрила по влиянию на активность РААС и натрийуретического пептида у здоровых добровольцев было установлено, что препарат дозозависимо (в дозах 5 и 25 мг) и значимо (более 88%) подавляет АПФ в плазме крови продолжительностью более 48 ч вне зависимости от солечувствительности. Одновременно препарат значимо повышал активность ренина плазмы в течение 48 ч и уменьшал уровень альдостерона . Эти результаты показали выраженное и более продолжительное подавление РААС в отличие от ингибитора АПФ рамиприла в дозе 10 мг, что объяснялось более значимым тканевым действием илепатрила на АПФ и большей аффинностью к АПФ, и сопоставимую степень блокады РААС в сравнении с комбинацией 150 мг ирбесартана + 10 мг рамиприла. В отличие от действия на РААС, эффект илепатрила на натрийуретический пептид проявлялся кратковременным увеличением уровня его экскреции в период 4-8 ч после приема дозы 25 мг, что свидетельствует о меньшей и слабой аффинности к НЭП и отличает его от омапатрилата. Причем по уровню экскреции электролитов дополнительного натрийуретического действия в сравнении с рамиприлом или ирбесартаном у препарата нет, как впрочем, и у других ингибиторов вазопептидаз. Максимальное гипотензивное действие развивается через 6-12 ч после приема препарата, и снижение среднего АД составляет 5±5 и 10±4 мм рт.ст. при низкой и высокой солечувствительности соответственно . По фармакокинетическим характеристикам илепатрил представляет собой пролекарство с активным метаболитом, который быстро образуется с достижением максимальной концентрации через 1-1,5 ч и медленно элиминирует. В настоящее время проводятся клинические исследования III фазы.
Альтернативный путь к двойному подавлению РААС и НЭП представлен сочетанием блокады рецепторов АТII и НЭП (рис. 2) . Блокаторы рецепторов АТII не влияют на метаболизм кининов в отличие от ингибиторов АПФ, поэтому потенциально имеют меньший риск развития ангионевротических осложнений. В настоящее время проходит фазу III клинических исследований первый препарат - блокатор рецепторов АТII с эффектом ингибирования НЭП в соотношении 1:1 - LCZ696. Объединенная молекула препарата содержит валсартан и ингибитор НЭП (AHU377) в форме пролекарства . В крупном исследовании у больных с АГ (n=1328) препарат LCZ696 в дозах 200-400 мг показал преимущество в гипотензивном эффекте перед валсартаном в дозах 160-320 мг в виде дополнительного снижения АД на 5/3 и 6/3 мм рт.ст. . Гипотензивный эффект LCZ696 сопровождался более выраженным снижением пульсового АД: на 2,25 и 3,32 мм рт.ст. соответственно в дозах 200 и 400 мг, что в настоящее время рассматривается как положительный прогностический фактор по влиянию на жесткость сосудистой стенки и сердечно-сосудистые исходы. При этом изучение нейрогуморальных биомаркеров на фоне лечения LCZ696 показало увеличение уровня натрийуретического пептида при сопоставимой степени увеличения уровня ренина и альдостерона в сравнении с валсартаном. Переносимость у больных с АГ была хорошей, и случаев ангионевротического отека не было отмечено. В настоящее время завершено исследование PARAMOUMT у 685 пациентов с ХСН и ненарушенной ФВ . Результаты исследования показали, что LCZ696 быстрее и выраженнее снижает уровень NT-proBNP (первичная конечная точка - маркер повышения активности натрий-уретического пептида и неблагоприятного прогноза при ХСН) в сравнении с валсартаном, а также уменьшает размеры левого предсердия, что свидетельствует о регрессе его ремоделирования . Исследование у пациентов с ХСН и сниженной ФВ продолжается в настоящее время (исследование PARADIGM-HF).
Ингибиторы системы эндотелина
Система эндотелина играет важную роль в регуляции сосудистого тонуса и регионального кровотока. Среди трех известных изоформ эндотелин-1 является наиболее активным. Кроме известных вазоконстрикторных эффектов эндотелин стимулирует пролиферацию и синтез межклеточного матрикса, а также вследствие прямого воздействия на тонус почечных сосудов участвует в регуляции водно-электролитного гомеостаза. Эффекты эндотелина реализуются через взаимодействие со специфическими рецепторами А-типа и В-типа, функции которых взаимопротивоположны: через А-тип рецепторов происходит вазоконстрикция, а через В-тип - вазодилатация . В последние годы установлено, что рецепторы В-типа играют большую роль в клиренсе эндотелина-1, т.е. при блокаде этих рецепторов нарушается рецепторзависимый клиренс эндотелина-1 и увеличивается его концентрация . Кроме того, рецепторы В-типа участвуют в регуляции почечных эффектов эндотелина-1 и поддержании водно-электролитного гомеостаза, что имеет важное значение.
В настоящее время роль эндотелина доказана в развитии ряда заболеваний, в т.ч. АГ, ХСН, легочной гипертензии, хронических заболеваний почек; показана тесная связь между уровнем эндотелина и метаболическим синдромом, дисфункцией эндотелия и атерогенезом. С 1990-х гг. ведется поиск антагонистов рецепторов эндотелина, пригодных для клинического использования; уже известно 10 препаратов («сентаны») с разной степенью селективности к А/B-типу рецепторов . Первый неселективный антагонист рецепторов эндотелина - бозентан - в клиническом исследовании у больных с АГ показал гипотензивную эффективность, сопоставимую с таковой ингибитора АПФ эналаприла . Дальнейшие исследования эффективности применения антагонистов эндотелина при АГ показали их клиническую значимость в лечении резистентной АГ и при высоком сердечно-сосудистом риске. Эти данные были получены в двух крупных клинических исследованиях DORADO (n=379) и DORADO-АС (n=849), в которых пациентам с резистентной АГ добавлялся дарусентан к тройной комбинированной терапии . В исследовании DORADO у пациентов резистентная АГ сочеталась с хронической болезнью почек и протеинурией, в результате добавления дарусентана наблюдалось не только значительное снижение АД, но и уменьшение экскреции белка. Антипротеинурический эффект антагонистов рецепторов эндотелина был в последующем подтвержден в исследовании у пациентов с диабетической нефропатией при использовании авосентана . Однако в исследовании DORADO-АС преимуществ в дополнительном снижении АД перед препаратами сравнения и плацебо не было выявлено, что послужило поводом к прекращению дальнейших исследований. Кроме того, в 4 крупных исследованиях антагонистов эндотелина (бозентана, дарусентана, энрасентана) у пациентов с ХСН были получены противоречивые результаты, что объяснялось увеличением концентрации эндотелина-1 . Дальнейшее изучение антагонистов рецепторов эндотелина было приостановлено ввиду нежелательных эффектов, связанных с задержкой жидкости (периферические отеки, перегрузка объемом). Развитие этих эффектов связывают с воздействием антагонистов эндотелина на В-тип рецепторов, что изменило поиск препаратов, влияющих на систему эндотелина через другие пути; а антагонисты рецепторов эндотелина в настоящее время имеют только одно показание - лечение легочной гипертензии.
С учетом высокой значимости системы эндотелина в регуляции сосудистого тонуса ведется поиск другого механизма воздействия через вазопептидазу - ЭПФ, участвующий в образовании активного эндотелина-1 (рис. 3) . Блокирование ЭПФ и сочетание с ингибированием НЭП позволяют эффективно подавлять образование эндотелина-1 и потенцировать эффекты натрий-уретического пептида. Преимущества двойного механизма действия заключаются, с одной стороны, в предупреждении недостатков ингибиторов НЭП, связанных с возможной вазоконстрикцией, опосредованной активацией эндотелина, с другой, натрийуретическая активность ингибиторов НЭП позволяет компенсировать задержку жидкости, связанную с неселективной блокадой эндотелиновых рецепторов. Даглутрил является двойным ингибитором НЭП и ЭПФ, который находится во II фазе клинических исследований . В исследованиях показаны выраженные кардиопротективные эффекты препарата благодаря уменьшению ремоделирования сердца и сосудов, регрессу гипертрофии и фиброза.
Прямые ингибиторы ренина
Известно, что ингибиторы АПФ и блокаторы рецепторов АТII по механизму обратной связи повышают активность ренина, что является причиной ускользания эффективности блокаторов РААС. Ренин представляет собой самый первый этап каскада РААС; он вырабатывается юкстагломерулярными клетками почек. Ренин через ангиотензиноген способствует образованию АТII, вазоконстрикции и секреции альдостерона, а также регулирует механизмы обратной связи. Поэтому ингибирование ренина позволяет достичь более полной блокады системы РААС. Поиск ингибиторов ренина ведется с 1970-х гг.; долгое время не удавалось получить пер-оральную форму ингибиторов ренина ввиду их низкой биодоступности в ЖКТ (менее 2%). Первый прямой ингибитор ренина, пригодный для перорального применения, - алискирен - был зарегистрирован в 2007 г. Алискирен имеет низкую биодоступность (2,6%), большой период полувыведения (24-40 ч), внепочечный путь элиминации . Фармакодинамика алискирена связана с 80% уменьшением уровня АТII. В клинических исследованиях у пациентов с АГ алискирен в дозах 150-300 мг/сут приводил к снижению САД на 8,7-13 и 14,1-15,8 мм рт.ст. соответственно и ДАД - на 7,8-10,3 и 10,3-12,3 мм рт.ст. . Гипотензивный эффект алискирена наблюдался в разных подгруппах пациентов, включая больных с метаболическим синдромом, ожирением; по выраженности он был сопоставим с эффектом ингибиторов АПФ, блокаторов рецепторов АТII, а также отмечен аддитивный эффект в комбинации с валсартаном, гидрохлоротиазидом и амлодипином. В ряде клинических исследований были показаны органопротективные эффекты препарата: антипротеинурический эффект у пациентов с диабетической нефропатией (исследование AVOID, n=599) , регресс гипертрофии левого желудочка у пациентов с АГ (исследование ALLAY, n=465) . Так, в исследовании AVOID после 3-месячного лечения лозартаном в дозе 100 мг/сут и достижения целевого уровня АД (<130/80 мм рт.ст.) при компенсированном уровне гликемии (гликированный гемоглобин 8%) больных рандомизировали к приему алискирена в дозах 150-300 мг/сут или плацебо. Отмечено достоверное снижение индекса альбумин/креатинин в моче (первичная конечная точка) на 11% через 3 мес. и на 20% - через 6 мес. в сравнении с группой плацебо. В ночное время экскреция альбумина на фоне приема алискирена снизилась на 18%, а доля пациентов со снижением экскреции альбумина на 50% и более была вдвое большей (24,7% пациентов в группе алискирена против 12,5% в группе плацебо) . Причем нефропротективный эффект алискирена не был связан со снижением АД. Одним из объяснений выявленного нефропротективного эффекта у алискирена авторы считают полученные ранее в экспериментальных исследованиях на моделях диабета данные о способности препарата снижать количество рениновых и прорениновых рецепторов в почках, а также уменьшать профибротические процессы и апоптоз подоцитов, что обеспечивает более выраженный эффект в сравнении с эффектом ингибиторов АПФ . В исследовании ALLAY у пациентов с АГ и увеличением толщины миокарда ЛЖ (более 1,3 см по данным ЭхоКГ) применение алискирена ассоциировалось с одинаковой степенью регресса ИММЛЖ в сравнении с лозартаном и комбинацией алискирена с лозартаном: −5,7±10,6 , −5,4±10,8, −7,9±9,6 г/м2 соответственно. У части пациентов (n=136) проводилось изучение динамики нейрогормонов РААС, и было выявлено достоверное и значительное снижение уровня альдостерона и активности ренина плазмы на фоне применения алискирена или комбинации алискирена с лозартаном, тогда как на фоне применения монотерапии лозартаном эффект влияния на альдостерон отсутствовал, а на активность ренина - был противоположным, что объясняет значимость подавления альдостерона в достижении регресса ГЛЖ.
Кроме того, проводится серия клинических исследований алискирена при лечении других сердечно-сосудистых заболеваний с оценкой влияния на прогноз больных: исследования ALOFT (n=320), ASTRONAUT (n=1639), ATMOSPHERE (n=7000) у пациентов с ХСН, исследование ALTITUDE у пациентов с сахарным диабетом и высоким сердечно-сосудистым риском, исследование ASPIRE у пациентов с постинфарктным ремоделированием.
Заключение
Для решения проблем предупреждения сердечно-сосудистых заболеваний продолжается создание новых лекарственных препаратов со сложным множественным механизмом действия, позволяющих обеспечивать более полную блокаду РААС через каскад механизмов гемодинамической и нейрогуморальной регуляции. Потенциальные эффекты таких препаратов позволяют не только обеспечивать дополнительный гипотензивный эффект, но и достигать контроля уровня АД у пациентов высокого риска, включая резистентную форму АГ. Лекарственные препараты с множественным механизмом действия демонстрируют преимущества в более выраженном органопротективном действии, что позволит предупреждать дальнейшее поражение сердечно-сосудистой системы. Изучение преимуществ новых препаратов, блокирующих РААС, требует дальнейших исследований и оценки их влияния на прогноз больных с АГ и другими сердечно-сосудистыми заболеваниями.




Литература
1. Campbell D.J. Vasopeptidase inhibition: a doubleedged sword? // Hypertension. 2003. Vol. 41. P. 383-389.
2. Laurent S., Schlaich M., Esler M. New drugs, procedures, and devices for hypertension // Lancet. 2012. Vol. 380. P. 591-600.
3. Corti R., Burnett J.C., Rouleau J.L. et al. Vasopeptidase inhibitors: a new therapeutic concept in cardiovascular disease? // Circulation. 2001. Vol. 104. P. 1856-1862.
4. Mangiafico S., Costello-Boerrigter L.C., Andersen I.A. et al. Neutral endopeptidase inhibition and the natriuretic peptide system: an evolving strategy in cardiovascular therapeutics // Eur. Heart J. 2012, doi:10.1093/eurheartj/ehs262.
5. Rouleau J.L., Pfeffer M.A., Stewart D.J. et al. Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial // Lancet. 2000. Vol. 356. P. 615-620.
6. Packer M., Califf R.M., Konstam M.A. et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: The Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE) // Circulation. 2002. Vol. 106. P. 920-926.
7. Warner K.K., Visconti J.A., Tschampel M.M. Angiotensin II receptor blockers in patients with ACE inhibitor-induced angioedema // Ann. Pharmacother. 2000. Vol. 34. P. 526-528.
8. Kostis J.B., Packer M., Black H.R. et al. Omapatrilat and enalapril in patients with hypertension:the Omapatrilat Cardiovascular Treatment vs Enalapril (OCTAVE) trial // Am. J. Hypertens. 2004. Vol. 17. P. 103-111.
9. Azizi M., Bissery A., Peyrard S. et al. Pharmacokinetics and pharmacodynamics of the vasopeptidase inhibitor AVE7688 in humans // Clin. Pharmacol. Ther. 2006. Vol. 79. P. 49-61.
10. Gu J., Noe A., Chandra P. et al. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dualacting angiotensin receptorneprilysin inhibitor (ARNi) // J. Clin. Pharmacol. 2010. Vol. 50. P. 401-414.
11. Ruilope L.M., Dukat A., Buhm M. et al. Bloodpressure reduction with LCZ696, a novel dualacting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study // Lancet. 2010. Vol. 375. P. 1255-1266.
12. Solomon S.D., Zile M., Pieske B. et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial // Lancet. 2012. Vol. 380(9851). P. 1387-1395.
13. Levin E.R. Endothelins // N. Engl. J. Med. 1995. Vol. 333. P. 356-363.
14. Dhaun N., Goddard J., Kohan D.E. et al. Role of endothelin-1 in clinical hypertension: 20 years on // Hypertension. 2008. Vol. 52. P. 452-459.
15. Burnier M., Forni V. Endothelin receptor antagonists: a place in the management of essential hypertension? // Nephrol. Dial. Transplant. 2011. 0: 1-4. doi: 10.1093/ndt/gfr704.
16. Krum H., Viskoper R.J., Lacourciere Y. et al. The effect of an endothelin-receptor antagonist, bosentan, on blood pressure in patients with essential hypertension. Bosentan Hypertension Investigators // N. Engl. J. Med. 1998. Vol. 338. P. 784-790.
17. Weber M.A., Black H., Bakris G. et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial // Lancet. 2009. Vol. 374. P. 1423-1431.
18. Bakris G.L., Lindholm L.H., Black H.R. et al. Divergent results using clinic and ambulatory blood pressures: report of a darusentan-resistant hypertension trial // Hypertension. 2010. Vol. 56. P. 824-830.
19. Mann J.F., Green D., Jamerson K. et al. Avosentan for overt diabetic nephropathy // J. Am. Soc. Nephrol. 2010. Vol. 21. P. 527-535.
20. Kalk P., Sharkovska Y., Kashina E. et al. Endothelinconverting enzyme/neutral endopeptidase inhibitor SLV338 prevents hypertensive cardiac remodeling in a blood pressure-independent manner // Hypertension. 2011. Vol. 57. P. 755-763.
21. Nussberger J., Wuerzner G., Jensen C. et al. Angiotensin II suppression in humans by theorally active renin inhibitor Aliskiren (SPP100): comparison with enalapril // Hypertension. 2002. Vol. 39(1). P. E1-8.
22. Alreja G., Joseph J. Renin and cardiovascular disease: Wornout path, or new direction? // World J. Cardiol. 2011. Vol. 3(3). P. 72-83.
23. Ingelfinger J.R. Aliskiren and dual therapy in type 2 diabetes mellitus // N. Engl. J. Med. 2008. Vol. 358(23). P. 2503-2505.
24. Pouleur A.С., Uno H., Prescott M.F., Desai A. (for the ALLAY Investigators). Suppression of aldosterone mediates regression of left ventricular hypertrophy in patients with hypertension // J. Renin-Angiotensin-Aldosterone System. 2011. Vol. 12. P. 483-490.
25. Kelly D.J., Zhang Y., Moe G. et al. Aliskiren, a novel renin inhibitor, is renoprotective in a model of advanced diabetic nephropathy in rats // Diabetol. 2007. Vol. 50. P. 2398-2404.


Который образуется в особых клетках юкстагломерулярного аппарата почки (ЮГА). Секрецию ренина стимулируют уменьшение объёма циркулирующей крови, снижение кровяного давления, b 2 -агонисты, простагландины Е 2 , I 2 , ионы калия. Повышение активности ренина в крови вызывает образование ангиотензина I - это пептид из 10 аминокислот, который отщепляется от ангиотензиногена. Ангиотензин I при действии ангиотензинпревращающего фермента (АПФ) в легких и в плазме крови переходит в ангиотензи II.

Он вызывает синтез в клубочковой зоне коры надпочечников гормона альдостерона. Альдостерон поступает в кровь, переносится к почке и действует через свои рецепторы на дистальные канальцы мозгового вещества почки. Суммарный биологический эффект альдостерона - задержка NaCl, воды. В результате восстанавливается объём жидкости, циркулирующей в кровеносной системе, в том числе увеличивается почечный кровоток. Это замыкает отрицательную обратную связь и синтез ренина прекращается. Помимо этого, альдостерон вызывает потерю с мочой Mg 2+ , K + , H + .В норме эта система поддерживает артериальное давление (рис.25).

Рис. 25. Ренин-ангиотензин-альдостеровая система

Избыток альдостерона - альдостеронизм , бывает первичным и вторичным. Первичный альдостеронизм может быть вызван гипертрофией клубочковой зоны надпочечников, эндокринной эпатологией, опухолью (альдостеронома). Вторичный альдостеронизм наблюдается при заболеваниях печени, (альдостерон не обезвреживается и не выводится), или при заболеваниях сердечно-сосудистой системы, в результате которых ухудшается кровоснабжение почки.

Результат одинаковый - гипертензия, а при хроническом процессе альдостерон вызывает пролиферацию, гипертрофию и фиброз сосудов и миокарда (ремоделирование), что ведет к хронической сердечной недостаточности. Если она связана с избытком альдостерона, назначают блокаторы рецепторов альдостерона. Например, спиронолактон, эплеренон это калийсберегающие диуретики, они способствуют выведению натрия и воды.

Гипоальдостеронизм - недостаток альдостерона, возникает при некоторых заболеваниях. Причинами первичного гипоальдостеронизма могут быть туберкулез , аутоиммунное воспаление надпочечников, метастазы опухолей, резкая отмена стероидов. Как правило, это недостаточность всей коры надпочечников. Острая недостаточность может быть вызвана некрозом клубочковой зоны, кровоизлиянием или острой инфекцией. У детей может наблюдаться молниеносная форма при многих инфекционных заболеваниях (грипп, менингит), когда ребёнок может умереть за одни сутки.


При недостаточности клубочковой зоны снижается реабсорбция натрия, воды, падает объём циркулирующей плазмы; увеличивается реабсорбция К + , Н + . В результате резко снижается АД, нарушается электролитный баланс и кислотно-щелочное равновесие, состояние опасно для жизни. Лечение: внутривенное введение солевых растворов и агонисты альдостерона (флудрокортизон).

Ключевое звено в РААС - это ангиотензин II, который:

Действует на клубочковую зону и увеличивает секрецию альдостерона;

Действует на почку и вызывает задержку Na + , Cl - и воды;

Действует на симпатические нейроны и вызывает освобождение норадреналина, мощного вазоконстриктора;

Вызывает вазоконстрикцию - суживает сосуды (в десятки раз активнее норадреналина);

Стимулирует солевой аппетит и жажду.

Таким образом, эта система приводит АД к норме при его снижении. Избыток ангиотензина II влияет на сердце, так же как и избыток КА и тромбоксанов, вызывает гипертрофию и фиброз миокарда, способствует гипертонии и хронической сердечной недостаточности.

При повышении АД начинают работать в основном три гормона: НУП (натрийуретические пептиды), дофамин, адреномедуллин. Их эффекты противоположны эффектам альдостерона и АТ II. НУП вызывают экскрецию Na + , Cl - , H 2 O, вазодилатацию, увеличивают проницаемость сосудов и снижают образование ренина.

Адреномедуллин действует так же, как НУП: это экскреция Na + , Cl - , H 2 O, вазодилатация. Дофамин синтезируется проксимальными канальцами почек, действует как паракринный гормон. Его эффекты: экскреция Na + и Н 2 О. Дофамин снижает синтез альдостерона, действие ангиотензина II и альдостерона, вызывает вазодилатацию и увеличение почечного кровотока. В совокупности эти эффекты приводят к снижению АД.

Уровень артериального давления зависит от многих факторов: работы сердца, тонуса периферических сосудов и их эластичности, а также от объёма электролитного состава и вязкости циркулирующей крови. Всё это контролируется нервной и гуморальной системой. Гипертоническая болезнь в процессе хронизации и стабилизации связана с поздними (ядерными) эффектами гормонов. При этом возникают ремоделирование сосудов, их гипертрофия и пролиферация, фиброз сосудов и миокарда.

В настоящее время эффективными гипотензивными лекарствами являются ингибиторы вазопептидаз АПФ и нейтральной эндопептидазы. Нейтральная эндопептидаза участвует в разрушении брадикинина, НУП, адреномедуллина. Все три пептида являются вазодилататорами, снижают АД. Например, ингибиторы АПФ (периндо-, эналоприл) снижают АД, уменьшая образование АТ II и задерживая распад брадикинина.

Открыты ингибиторы нейтральной эндопептидазы (омапатрилат), являющиеся одновременно ингибиторами АПФ и нейтральной эндопептидазы. Они не только снижают образование АТ II, но и предотвращают распад гормонов, снижающих АД - адреномедуллина, НУП, брадикинина. Ингибиторы АПФ не полностью выключают РААС. Более полного выключения этой системы можно достигнуть блокаторами рецепторов ангиотензина II (лозартан, эпросартан).

Альдостерон у человека является основным представителем минералокортикоидных гормонов, производных холестерола.

Синтез

Осуществляется в клубочковой зоне коры надпочечников. Образованный из холестерола прогестерон на пути к альдостерону подвергается последовательному окислению 21-гидроксилазой, 11-гидроксилазой и 18-гидроксилазой . В конечном итоге образуется альдостерон.

Схема синтеза стероидных гормонов (полная схема)

Регуляция синтеза и секреции

Активируют :

  • ангиотензин II , выделяемый при активации ренин-ангиотензиновой системы,
  • повышение концентрации ионов калия в крови (связано с деполяризацией мембран, открытием кальциевых каналов и активацией аденилатциклазы).

Активация ренин-ангиотензиновой системы

  1. Для активации этой системы существует два пусковых момента:
  • снижение давления в приносящих артериолах почек, которое определяется барорецепторами клеток юкстагломерулярного аппарата. Причиной этого может быть любое нарушение почечного кровотока – атеросклероз почечных артерий, повышенная вязкость крови, обезвоживание, кровопотери и т.п.
  • снижение концентрации ионов Na + в первичной моче в дистальных канальцах почек, которое определяется осморецепторами клеток юкстагломерулярного аппарата. Возникает в результате бессолевой диеты, при длительном использовании диуретиков.

Постоянная и независимая от почечного кровотока секреция ренина (базовая) поддерживается симпатической нервной системой.

  1. При выполнении одного или обоих пунктов клетки юкстагломерулярного аппарата активируются и из них в плазму крови секретируется фермент ренин .
  2. Для ренина в плазме имеется субстрат – белок α2-глобулиновой фракции ангиотензиноген . В результате протеолиза от белка отщепляется декапептид под названием ангиотензин I . Далее ангиотензин I при участии ангиотензин-превращающего фермента (АПФ) превращается в ангиотензин II .
  3. Главными мишенями ангиотензина II служат гладкие миоциты кровеносных сосудов и клубочковая зона коры надпочечников:
  • стимуляция кровеносных сосудов вызывает их спазм и восстановление артериального давления .
  • из надпочечников после стимуляции секретируется альдостерон , действующий на дистальные канальцы почек.

При воздействии альдостерона на канальцы почек увеличивается реабсорбция ионов Na + , вслед за натрием движется вода . В результате давление в кровеносной системе восстанавливается и концентрация ионов натрия увеличивается в плазме крови и, значит, в первичной моче, что снижает активность РААС.

Активация ренин-ангиотензин-альдостероновой системы

Механизм действия

Цитозольный.

Мишени и эффекты

Воздействует на слюнные железы, на дистальные канальцы и собирательные трубочки почек. В почках усиливает реабсорбцию ионов натрия и потерю ионов калия посредством следующих эффектов:

  • увеличивает количество Na + ,K + -АТФазы на базальной мембране эпителиальных клеток,
  • стимулирует синтез митохондриальных белков и увеличение количества нарабатываемой в клетке энергии для работы Na + ,K + -АТФазы,
  • стимулирует образование Na-каналов на апикальной мембране клеток почечного эпителия.

Патология

Гиперфункция

Синдром Конна (первичный альдостеронизм) – возникает при аденомах клубочковой зоны. Характеризуется триадой признаков: гипертензия, гипернатриемия, алкалоз.

Вторичный гиперальдостеронизм – гиперплазия и гиперфункция юкстагломерулярных клеток и избыточная секреция ренина и ангиотензина II. Отмечается повышение артериального давления и появление отеков.

проф. Круглов Сергей Владимирович (слева), Кутенко Владимир Сергеевич (справа)

Редактор страницы: Кутенко Владимир Сергеевич

Кудинов Владимир Иванович

Кудинов Владимир Иванович , Кандидат медицинских наук, Доцент Ростовского Государственного медицинского университета, Председатель ассоциации эндокринологов Ростовской области, Врач – эндокринолог высшей категории

Джериева Ирина Саркисовна

Джериева Ирина Саркисовна Доктор медицинских наук, доцент, врач-эндокринолог

ГЛАВА 6. РЕНИН-АНГИОТЕНЗИНОВАЯ СИСТЕМА

Т. А. КОЧЕН, М. У. РОИ

(Т . A. KOTCHEN, М . W. ROY)

В 1898 г. Tigerstedt и соавт. указали, что почки выделяют прессорное вещество, получившее впоследствии название «ре­нин». Было установлено, что это же вещество через образова­ние ангиотензина стимулирует секрецию альдостерона надпо­чечниками. Появление методов биологического, позднее - радиоиммунологического определения активности ренина во многом способствовало выяснению роли ренина и альдостеро­на в регуляции артериального давления как в норме, так и при гипертензии. Кроме того, поскольку ренин продуцируется в афферентных артериолах почек, широко изучалось влияние- ренина и ангиотензина на скорость клубочковой фильтрации в норме и при ее снижении в условиях почечной патологии. В данной главе излагаются современные сведения о регуляции секреции ренина, взаимодействии ренина, с его субстратом, в результате чего образуется ангиотензин, и роли ренин-ангиотензиновой системы в регуляции артериального давления и СКФ.

СЕКРЕЦИЯ РЕНИНА

Ренин образуется в той части афферентных артериол почек, которая прилежит к начальному сегменту дистальных извитых канальцев - плотному пятну. Юкстагломерулярный аппарат включает ренинпродуцирующий сегмент афферентной артериолы и плотное пятно. Рениноподобные ферменты - изоренины - образуются и в ряде других тканей, например: в беременной матке, головном мозге, корковом слое надпочечников, стенках крупных артерий и вен и в подчелюстных железах. Однако доказательства идентичности этих ферментов почечному рени­ну часто отсутствуют и нет данных, которые свидетельствовали бы об участии изоренинов в регуляции артериального давле­ния. После двусторонней нефрэктомии уровень ренина в плаз­ме резко снижается или даже становится неопределимым.

ПОЧЕЧНЫЙ БАРОРЕЦЕПТОР

Секреция ренина почкой контролируется по меньшей мере двумя независимыми структурами: почечным барорецептором и плотным пятном. При увеличении давления в афферентной артериоле или напряжения ее стенок секреция ренина тормозится, тогда как при пониженном напряжении стенок артериолы она возрастает. Наиболее убедительные доказательства существования барорецепторного механизма были получены с помощью такой экспериментальной модели, в которой не происходит клубочковой фильтрации и, следова­тельно, отсутствует ток жидкости в канальцах. Лишенная фильтрационной функции почка сохраняет способность секретировать ренин в ответ на кровопускание и сужение аорты (выше отхождения почечных артерий). Инфузия в почеч­ную артерию папаверина, который расширяет почечные арте­риолы, блокирует реакцию ренина в денервированной и не­фильтрующей почке на кровопускание и сужение полых вен в грудной полости. Это свидетельствует о реакции сосудистых рецепторов именно на изменение напряжения стенок артериол.

ПЛОТНОЕ ПЯТНО

Секреция ренина зависит и от состава жидкости в каналь­цах на уровне плотного пятна; инфузия в почечную арте­рию хлорида натрия и хлорида калия угнетает секрецию рени­на в условиях сохранения почкой фильтрационной функции. Увеличение объема фильтруемой жидкости с помощью хлористого натрия сильнее тормозит секрецию ренина, чем та­кое же увеличение объема с помощью декстрана, что объяс­няется, по-видимому, влиянием хлорида натрия на плотное пятно. Предполагается, что снижение активности ренина плазмы (АРП) при введении натрия зависит от одновремен­ного присутствия хлорида. При введении с другими анионами натрий не снижает АРП. АРП снижается и при введении хлорида калия, холинхлорида, лизинхлорида и НСl, но не бикарбоната калия, глутамата лизина или H 2 SO 4 . Главным сигналом служит, по-видимому, именно транспорт хлорида натрия через стенку канальца, а не его поступление в фильтрат; секреция ренина находится в обратной зави­симости от транспорта хлорида в толстой части восходящего колена петли Генле. Секреция ренина тормозится не только хлоридом натрия, но и его бромидом, транспорт которого в большей степени, чем других галогенов, напоминает транспорт хлорида. Транспорт бромида конкурентно угнетает перенос хлорида через стенку толстой части восходящего колена петли Генле, и бромид может активно реабсорбироваться в условиях низкого клиренса хлорида. В свете данных об активном транспорте хлорида в восходящем колене петли Генле эти ре­зультаты можно трактовать в поддержку гипотезы, согласно которой секреция ренина тормозится активным транспортом хлорида в области плотного пятна. Торможение секреции ренина бромидом натрия может отражать неспособность рецеп­тора, локализующегося в области плотного пятна, отличать бромид от хлорида. С этой гипотезой согласуются и прямые данные опытов с микропункцией, в которых снижение АРП при инфузии NaCl сопровождалось повышением реабсорбции хлорида в петле Генле. Как снижение уровня калия, так и диуретики, действующие на уровне петли Генле, могут сти­мулировать секрецию ренина за счет торможения транспорта хлорида в толстой части восходящего колена этой петли.

Исходя из результатов ряда исследований с ретроградной микроперфузией и определением содержания ренина в юкстагломерулярном аппарате одиночного нефрона, Thurau так­же заключил, что транспорт хлорида через плотное пятно слу­жит Основным сигналом для «активации» ренина. В очевидном противоречии с наблюдениями in vivo Thurau нашел, что ре­нин ЮГА одиночного нефрона «активируется» не снижением, а увеличением транспорта хлорида натрия. Однако активация ренина в ЮГА одиночного нефрона может и не отражать изме­нений секреции ренина целой почкой. Действительно, Thurau считает, что повышение активности ренина в ЮГА отражает активацию преформированного ренина, а не усиление его сек­реции. С другой стороны, можно предположить, что уве­личение содержания ренина в ЮГА отражает острое торможе­ние секреции.этого вещества.

НЕРВНАЯ СИСТЕМА

Секреция ренина модулируется ЦНС главным образом че­рез симпатическую нервную систему. В юкстагломерулярном аппарате присутствуют нервные терминали, и секреция ренина возрастает при электрической стимуляции почечных нервов, инфузии катехоламинов и повышении активности сим­патической нервной системы с помощью ряда приемов (напри­мер, индукция гипогликемии, стимуляция сердечно-легочных механорецепторов, окклюзия сонных артерий, не вызывающее гипотензии кровопускание, шейная ваготомия или охлаждение блуждающего нерва). Исходя в основном из результатов опы­тов с применением адренергических антагонистов и агонистов, можно заключить, что нервные влияния на секрецию ренина опосредуются β-адренергическими рецепторами (конкретнее β 1 -рецепторами) и что β-адренергическая стимуляция секреции ренина может осуществляться через активацию аденилатциклазы и накопление циклического аденозинмонофосфата. Данные, полученные на почечных срезах in vitro и в исследованиях на изолированных перфузируемых почках, ука­зывают на то, что активация α-адренорецепторов почек тор­мозит секрецию ренина. Однако результаты изучения роли α-адренорецепторов в регуляции секреции ренина in vivo про­тиворечивы. Помимо почечных аденорецепторов, в регуляции секреции, ренина принимают участие предсередные и сердечно-легочные рецепторы растяжения; афферентные сигна­лы от этих рецепторов проходят через блуждающий нерв, а эфферентные - через симпатические нервы почек. У здо­рового человека погружение в воду или «подъем» в барока­мере подавляет секрецию ренина, возможно, вследствие увели­чения центрального объема крови. Подобно секреции адренокортикотропного гормона (АКТГ), существует суточная перио­дичность и секреции ренина, свидетельствующая о наличии влияний каких-то пока не идентифицированных факторов цент­ральной нервной системы.

ПРОСТАГЛАНДИНЫ

Простагландины также модулируют секрецию ренина. Арахидоновая кислота, ПГЕ 2 , 13,14-дигидро-ПГЕ 2 (метаболит ПГЕ 2) и простациклин стимулируют продукцию ренина сре­зами коркового вещества почек in vitro, а также фильтрую­щей и нефильтрующей почками in vivo. Зависимость простагландиновой стимуляции секреции ренина от образования цАМФ остается неясной. Индометацин и другие ингибиторы синтетазы простагландинов ослабляют базальную секрецию ренина и ее реакции на низкое содержание натрия в диете, диуретики, гидралазин, ортостатическое положение, кровопу­скание и сужение аорты. Данные об угнетении индометацином реакции ренина на инфузию катехоламинов противоре­чивы. Торможение синтеза простагландинов сокращает при­рост АРП, наблюдаемый у собак и при снижении уровня калия в организме, а также у больных с синдромом Бартера. Уменьшение секреции ренина под влиянием ингибиторов синтеза простагландинов не зависит от задержки натрия и наблюдается даже в почке, лишенной фильтрационной функ­ции. Подавление реакций ренина в условиях торможения синтеза простагландинов на все эти разнообразные стимулы согласуется с предположением, согласно которому стимуляция секреции ренина через почечный барорецептор, плотное пятно и, возможно, симпатическую нервную систему опосредуется простагландинами. Что касается взаимодействия простаглан­динов с механизмом регуляции секреции ренина через плотное пятно, то, как недавно было показано, ПГЕ 2 угнетает активный транспорт хлорида через толстую часть восходящего колена петли Генле в мозговом веществе почки. Не исключено, что стимулирующее действие ПГЕ 2 на секрецию ренина связа­но с этим эффектом.

КАЛЬЦИЙ

Хотя имеется и ряд отрицательных данных, но в экспери­ментах большинства исследователей повышенная внеклеточ­ная концентрация кальция угнетала секрецию ренина как in vitro, так и in vivo и ослабляла стимулирующее действие на нее катехоламинов. Это резко отличает клетки ЮГА от других секреторных клеток, в которых кальций стимулирует продукцию гормонов. Однако, хотя высокие внеклеточные кон­центрации кальция и тормозят высвобождение ренина, мини­мальные уровни этого иона могут быть необходимыми для его секреции. Длительный дефицит кальция предотвращает усиление секреции ренина под действием катехоламинов и сни­женного перфузионного давления.

In vivo кальциевое торможение секреции ренина не зависит от тока жидкости в канальцах. Кальций способен непо­средственно влиять на юкстагломерулярные клетки, и измене­ния его внутриклеточной концентрации могут опосредовать действие разнообразных стимулов секреции ренина. Предпола­гается, что деполяризация мембраны юкстагломерулярной клет­ки создает возможность проникновения в нее кальция с после­дующим торможением секреции ренина, тогда как гиперполя­ризация мембраны снижает внутриклеточный уровень кальция и стимулирует секрецию ренина. Калий, например, де­поляризует юкстагломерулярные клетки и тормозит выделение ренина. Такое торможение проявляется только в содержащей кальций среде. Кальциевые ионофоры также ослабляют секре­цию ренина, что обусловлено, вероятно, увеличением внут­риклеточной концентрации иона. Под влиянием β-адренергической стимуляции происходит гиперполяризация юкстагломерулярных клеток, приводящая к оттоку кальция и повышению секреции ренина. Хотя гипотеза, связывающая изменения секреции ренина с транспортом кальция в юкстагломеруляр­ные клетки, и привлекательна, ее трудно проверить ввиду методических сложностей определения уровня внутриклеточного кальция и оценки его транспорта в соответствующие клетки.

Верапамил и D-600 (метоксиверапамил) блокируют зависи­мые от электрического заряда кальциевые каналы (медленные каналы), и острое введение этих веществ препятствует тормо­зящему действию калиевой деполяризации на секрецию рени­на. Эти вещества, однако, не препятствуют снижению секреции ренина, вызываемому антидиуретическим гормоном или ангиотензином II, хотя и тот и другой проявляют свое действие только в среде, содержащей кальций. Такие данные указывают на существование как зависимых, так и независимых от заряда путей проникновения кальция в юк­стагломерулярные клетки, причем кальций, поступивший лю­бым из этих путей, обусловливает торможение секреции ре­нина.

Хотя непосредственное действие кальция на юкстагломеру­лярные клетки заключается в ослаблении секреции ренина, ряд системных реакций, возникающих при введении кальция, тео­ретически мог бы сопровождаться стимуляцией этого процес­са. К таким реакциям относятся: 1) сужение почечных сосу­дов; 2) торможение поглощения хлорида в петле Генле; 3) по­вышенное выделение катехоламинов из мозгового слоя надпочечников и окончаний почечных нервов. Следовательно, реак­ции ренина in vivo на кальций или фармакологические веще­ства, влияющие на его транспорт, могут зависеть от выражен­ности системны эффектов этого иона, которые должны были бы маскировать его непосредственное тормозящее действие на юкстагломерулярные клетки. Отмечалось, кроме того, что влияние кальция на секрецию ренина может зависеть от анио­нов, поступающих вместе с этим катионом. Хлорид кальция тормозит секрецию ренина в большей степени, чем глюконат кальция. Не исключено, что в дополнение к прямому ин­гибиторному влиянию на юкстагломерулярный аппарат экспе­риментальные воздействия, увеличивающие поступление хло­рида к плотному пятну, еще больше подавляют секрецию ре­нина.

Секреция ренина зависит и от многих других веществ. Ан­гиотензин II угнетает этот процесс за счет непосредственного влияния на юкстагломерулярный аппарат. Аналогичное действие оказывает и внутривенная инфузия соматостатина, а также инфузия АДГ в почечную артерию.

РЕАКЦИЯ МЕЖДУ РЕНИНОМ И ЕГО СУБСТРАТОМ

Молекулярная масса содержащегося в крови активного ре­нина - 42000 дальтон. Метаболизм ренина происходит в основ­ном в печени, и период полужизни активного ренина в крови у человека составляет примерно 10-20 мин, хотя некоторые авторы считают, что он достигает 165 мин. При ряде состоя­ний (например, нефротический синдром или алкогольное пора­жение печени) повышение АРП может определяться измене­нием печеночного метаболизма ренина, но при реноваскулярной гипертензии это не играет существенной роли.

В плазме крови, почке, головном мозге и подчелюстных железах идентифицированы различные формы ренина. Его ферментативная активность возрастает как при подкислении плазмы, так и при длительном ее хранении при -4°С. Активируемый кислотой ренин присутствует и в плазме людей, лишенных почек. Кислотную активацию считают следствием превращения ренина, обладающего более высокой мол. массой, в меньший по размерам, но более активный фер­мент, хотя подкисление может повышать активность ре­нина и без уменьшения его мол. массы. Трипсин, пепсин, калликреин мочи, гландулярный калликреин, фактор Хагемана, плазмин, катепсин D, фактор роста нервов (аргининовая эфиропептидаза) и яд гремучей змеи (фермент, активирующий сериновые протеиназы) также увеличивают ак­тивность ренина плазмы. Некоторые фармакологиче­ски нейтральные ингибиторы протеаз блокируют стимулирующее действие замораживания и (частично) кислоты на активность ренина. В самой плазме также присутствуют инги­биторы протеиназ, ограничивающие влияние протеолитических ферментов на ренин. Отсюда следует, что крио- и кис­лотная активация могут сводиться к уменьшению концентра­ции ингибиторов нейтральной сериновой протеазы, обычно при­сутствующей в плазме, а после восстановления ее щелочного pH может высвободиться протеаза (например, фак­тор Хагемана, калликреин), превращающая неактивный ре­нин в активный. Фактор Хагемана в отсутствие ингиби­тора (после действия кислоты) способен активировать проре­нин опосредованно через стимуляцию превращения прекалликреина в калликреин, который в свою очередь превращает про­ренин в активный ренин. Подкисление может активировать и кислую протеазу, превращающую неактивный ренин в актив­ный.

Ферментативная активность высокоочищенного ренина свиньи и человека не возрастает после добавления кислоты. Ингибиторы ренина обнаружены также в плазме и по­чечных экстрактах, и некоторые авторы считают, что актива­ция ренина при подкислении или воздействии холода обуслов­ливается (по крайней мере частично) денатурацией этих ин­гибиторов. Считается также, что высокомолекулярный неактивный ренин обратимо связан с другим белком, причем в кислой среде эта связь распадается.

Несмотря на тщательное изучение неактивного ренина in vitro, его физиологическое значение in vivo остается неизвест­ным. Имеется немного данных о возможной активации ренина in vivo и ее интенсивности. Концентрация проренина в плазме варьирует, у здоровых лиц на его долю может приходиться более 90-95% общего содержания ренина в плазме. Как правило, как у лиц с нормальным артериальным давлением, так и при гипертензии или изменении натриевого баланса меж­ду концентрациями проренина и активного ренина наблюдает­ся корреляция. У больных диабетом эта связь может на­рушаться. В плазме и почках у больных диабетом и у животных с экспериментальным диабетом отмечаются относительно высокие концентрации неактивного ренина (или проренина) и низкие концентрации активного ренина. В плазме боль­ных с недостаточностью факторов свертывания крови (XII, VII, V и особенно X) также присутствуют небольшие количе­ства активного ренина, что позволяет предполагать нарушения превращения неактивного ренина в активный.

Находясь в крови, активный ренин расщепляет лейцин-лейциновую связь в молекуле своего субстрата α 2 -глобулина, синтезируемого в печени, и превращает его в декапептид ангио­тензин I. Км этой реакции составляет примерно 1200 нг/мл, и при концентрации субстрата около 800-1800 нг/мл (у здо­ровых людей) скорость продукции ангиотензина зависит как от уровня субстрата, так и от концентрации фермента. На осно­вании определений ферментативной активности ренина некото­рые исследователи считают, что в плазме присутствуют инги­биторы ренина, причем отдельные ингибирующие ренин соединения идентифицированы (например, фосфолипиды, нейтральные липиды и ненасыщенные жирные кислоты, синтетические полиненасыщенные аналоги липофосфатидилэтаноламина и синтетические аналоги природного субстрата ренина). В плазме больных с гипертензией или почечной недостаточностью обнаружена повышенная ферментативная активность ренина; предполагают, что это связано с де­фицитом ингибиторов ренина, в норме присутствующих в крови. Сообщалось и о присутствии активирующего ренин фактора в плазме больных с гипертензией. Появление фармаколо­гических средств, угнетающих активность ренин-ангиотензиновой системы, повысило интерес к синтезу ингибиторов ренина.

Молекулярная масса субстрата ренина у человека состав­ляет 66 000-110 000 дальтон. Его концентрация в плазме воз­растает при введении глюкокортикоидов, эстрогенов, ангиотен­зина II, при двусторонней нефрэктомии и гипоксии. У больных с заболеваниями печени и надпочечниковой недо­статочностью концентрации субстрата в плазме снижены. В плазме могут присутствовать различные субстраты ренина, обладающие разным сродством к ферменту. Введение эстрогенов, например, может стимулировать продукцию высо­комолекулярного субстрата с повышенным сродством к рени­ну. Однако относительно физиологического значения сдвигов в концентрации субстрата ренина известно мало. Хотя эстро­гены и стимулируют синтез субстрата, все же нет убедитель­ных доказательств роли этого процесса в генезе вызываемой эстрогенами гипертензии.

МЕТАБОЛИЗМ АНГИОТЕНЗИНА

Ангиотензйнпревращающий фермент отщепляет гистидиллейцин от СООН-концевого участка молекулы ангиотензина I, превращая его в октапептид ангиотензин II. Активность превращающего фермента зависит от присутствия хлорида и двухвалентных катионов. Примерно 20-40% этого фермента поступает из легких за один пассаж крови через них. Превра­щающий фермент найден также в плазме и эндотелии сосудов другой локализации, включая почки. Очищенный фермент из легких человека имеет мол. массу приблизительно 200 000 дальтон. При дефиците натрия, гипоксии, а также у больных с хро­ническими обструктивными поражениями легких активность превращающего фермента может падать. У больных с саркоидозом уровень этого фермента возрастает. Одна­ко он широко распространен в крови и тканях и обладает очень высокой способностью превращать ангиотензин I в ан­гиотензин II. Кроме того, считается, что стадия превращения не ограничивает скорость продукции ангиотензина II. Поэто­му изменение активности превращающего фермента не должно иметь физиологического значения. Ангиотензинпревращающий фермент одновременно инактивирует сосудорасширяющее ве­щество брадикинин. Таким образом, один и тот же фермент способствует образованию прессорного вещества ангиотензи­на II и инактивирует депрессорные кинины.

Ангиотензин II элиминируется из крови путем фермента­тивного гидролиза. Ангиотензиназы (пептидазы, или протеолитические ферменты) присутствуют как в плазме, так и в тка­нях. Первым продуктом действия аминопептидазы на ангиотензин II является ангиотензин III (дез-асп-ангиотензин II) - СООН-концевой гектапептид ангиотензина И, обла­дающий значительной биологической активностью. Аминопеп­тидазы превращают также ангиотензин I в нонапептид дез-асп-ангиотензин I; однако прессорная и стероидогенная актив­ности этого вещества зависят от его превращения в ангиотен­зин III. Подобно превращающему ферменту, ангиотензи­назы столь широко распространены в организме, что измене­ние их активности не должно сказываться видимым образом на общей активности системы ренин - ангиотензин - альдостерон.

ФИЗИОЛОГИЧЕСКИЕ ЭФФЕКТЫ АНГИОТЕНЗИНА

Физиологические эффекты самого ренина неизвестны. Все они связаны с образованием ангиотензина. Физиологические реакции на ангиотензин могут определяться как чувствитель­ностью его органов-мишеней, так и его концентрацией в плаз­ме, причем вариабельность реакций относят на счет измене­ний числа и (или) сродства ангиотензиновых рецепторов. Над­почечниковые и сосудистые рецепторы ангиотензина неодина­ковы. Рецепторы ангиотензина найдены также в изолиро­ванных почечных клубочках, причем реактивность клубочковых рецепторов отличается от таковой рецепторов почечных сосудов.

Как ангиотензин II, так и ангиотензин III стимулируют био­синтез альдостерона в клубочковой зоне коркового слоя над­почечников, причем по своему стероидогенному эффекту ангио­тензин III, по крайней мере, не уступает ангиотензину II. С другой стороны, прессорная активность ангиотензина III составляет лишь 30-50% таковой ангиотензина II. Последний является сильным вазоконстриктором, и его инфузия приводит к повышению артериального давления как за счет непосред­ственного влияния на гладкие мышцы сосудов, так и вслед­ствие опосредованного влияния через ЦНС и периферическую симпатическую нервную систему. Ангиотензин II в тех дозах, которые при системной инфузии не изменяют артериального давления, при инфузии в позвоночную артерию приводит к его повышению. Чувствительными к ангиотензину являются area postrema и, вероятно, область, располагающаяся в стволе моз­га несколько выше. Ангиотензин II стимулирует и высвобождение катехоламинов из мозгового слоя надпочечников и окон­чаний симпатических нервов. У экспериментальных животных хроническая системная внутриартериальная инфузия субпрессорных количеств ангиотензина II приводит к повышению ар­териального давления и задержке натрия независимо от изме­нений секреции альдостерона. Отсюда следует, что в механиз­ме гипертензивного эффекта ангиотензина может играть роль и его прямое влияние на почки, сопровождающееся задерж­кой натрия. При инфузии в больших дозах ангиотензин оказывает натрийурическое действие.

Активность ренин-ангиотензиновой системы может быть на­рушена во многих звеньях, и исследования с применением фармакологических ингибиторов позволили получить данные, указывающие на роль этой системы в регуляции кровообраще­ния в норме и при ряде заболеваний, сопровождающихся ги­пертензией. Антагонисты β-адренорецепторов тормозят секре­цию ренина. Из яда змеи Bothrops jararca и других змей экстрагированы пептиды, ингибирующие превращение ангио­тензина I в ангиотензин II. Некоторые пептиды, присутствую­щие в змеином яде, были синтезированы. К ним относится, в частности, SQ20881 (тепротид). Получено также актив­ное при пероральном применении вещество SQ14225 (каптоприл), являющееся ингибитором превращающего фермента. Синтезированы и аналоги ангиотензина II, конкурирую­щие с ним за связывание периферическими рецепторами. Наиболее широко применяемым антагонистом ангиотензина II такого рода является capкозин-1,валин-5,аланин-8-ангиотензин (саралазин).

Трудность интерпретации результатов, получаемых при ис­пользовании этих фармакологических средств, связана с тем, что гемодинамические реакции, возникающие после их введе­ния, могут и не быть специфическим следствием угнетения ренин-агиотензиновой системы. Гипотензивная реакция на β-адренергические антагонисты связана не только с торможением секреции ренина, но и с их влиянием на центральную нервную систему, а также с уменьшением минутного объема сердца, Кининаза II - фермент, который разрушает обладающий сосу­дорасширяющим действием брадикинин, идентична ангиотен­зин I-превращающему ферменту, поэтому антигипертензивный эффект ингибиторов последнего может обусловливаться и на­коплением брадикинина с усилением его влияния. В усло­виях повышения концентрации ангиотензина II в крови сарализин действует как его антагонист, однако сам по себе саралазин является слабым агонистом ангиотензина. Вследствие это­го реакция артериального давления на инфузию саралазина может и не давать полного представления о значении ренин-ангиотензиновой системы в поддержании гипертензии.

Тем не менее применение такого рода средств позволило вы­яснить роль ангиотензина в регуляции артериального давле­ния и функции почек в норме. У людей без гипертензии или у экспериментальных животных, потребляющих с пищей нор­мальное количество натрия, эти вещества практически не влияют на артериальное давление (независимо от положения тела). На фоне же дефицита натрия они снижают давле­ние в умеренной степени, причем вертикальная поза потенциирует гипотензивную реакцию. Это свидетельствует о роли ан­гиотензина в поддержании артериального давления в ортостазе при дефиците натрия.

Подобно давлению в отсутствие гипертензии, у человека и животных, получающих диету с высоким содержанием натрия, сосуды почек также относительно рефрактерны к фармаколо­гической блокаде.отдельных звеньев ренин-ангиотензиновой системы. Больше того, в отсутствие гиперренинемии са- ралазин может даже повышать сосудистое сопротивление в почках, что обусловлено, по-видимому, его агонистическим эф­фектом или активацией симпатической нервной системы. Однако в условиях ограничения натрия как саралазин, так и ингибиторы превращающего фермента вызывают зависимое от дозы увеличение почечного кровотока. Прирост последнего в ответ на Угнетение превращающего фермента с помощью SQ20881 при гипертензии может быть более выраженным, чем при нормальном артериальном давлении.

В механизме обратной связи между клубочковыми и ка­нальцевыми процессами в почке важная роль принадлежит транспорту хлорида на уровне плотного пятна. Это было уста­новлено в исследованиях с перфузией одиночного нефрона, в которых повышенное поступление растворов (в частности, хлорида) в область плотного пятна вызывало снижение СКФ в нефроне, уменьшая объем фильтруемой фракции и ее по­ступление в соответствующую область канальца и тем самым замыкая петлю обратной связи. Относительно роли рени­на в этом процессе существуют противоречия. Данные о торможении хлоридом секреции ренина, а также результаты опы­тов с микропункцией, показавшие, что хлорид играет основную роль в механизме клубочково-канальцевой обратной связи, свидетельствуют о возможной связи этих явлений.

Thurau и соавт. придерживаются гипотезы, согласно которой ренин действует как внутрипочечный гормон-регулятор СКФ. Авторы считают, что повышенный уровень хлорида натрия в области плотного пятна «активирует» ренин, присут­ствующий в юкстагломерудярном аппарате, приводя к внутрипочечному образованию ангиотензина II с последующей констрикцией афферентных артериол. Однако, как показано другими исследователями, эффект хлорида натрия в области плот­ного пятна заключается в торможении, а не в стимуляции сек­реции ренина. Если это так и если ренин-ангиотензиновая система действительно участвует в регуляции СКФ, замыкая, петлю обратной связи, то основное влияние ангиотензина II должно быть направленным на эфферентные, а не афферент­ные артериолы. Недавние исследования подтверждают такую возможность. Таким образом, предполагаемая последова­тельность событий может иметь следующий вид: повышение; содержания хлорида натрия в области плотного пятна обуслов­ливает снижение продукции ренина и соответственно уровня, внутрипочечного ангиотензина II, в результате чего расши­ряются эфферентные артериолы почек и уменьшается СКФ.

Ряд наблюдений свидетельствует о том, что ауторегуляция, вообще осуществляется независимо от тока жидкости в обла­сти плотного пятна и ренин-ангиотензиновой системы.

ОПРЕДЕЛЕНИЕ РЕНИНА

Активность ренина плазмы определяют по скорости обра­зования ангиотензина при инкубации in vitro. Опти­мум pH для ренина человека 5,5. Инкубацию плазмы можно проводить в кислой среде для повышения чувствительности определений или при pH 7,4, что более физиологично. В боль­шинстве лабораторий образуемый ангиотензин II в настоящее- время определяют радиоиммунологическим, а не биологиче­ским методом. Для подавления активности ангиотензиназ и превращающего фермента в инкубационную среду in vitro добавляют соответствующие ингибиторы. Поскольку скорость. образования ангиотензина зависит не только от концентрации фермента, но и от уровня субстрата ренина, к плазме до ин­кубации можно добавить избыток экзогенного субстрата, что­бы создать условия кинетики нулевого порядка в отношении его концентрации. При таких определениях часто говорят о «концентрации» ренина. Раньше определения нередко начинали с подкисления для денатурации эндогенного субстрата, а за­тем добавляли экзогенный субстрат. Однако, как теперь из­вестно, кислая среда активирует неактивный ренин,- и в настоящее время добавление кислоты используют для получе­ния данных о содержании в плазме общего ренина (активный плюс неактивный), а не о «концентрации» ренина. Содержа­ние неактивного ренина рассчитывают по разности общего и активного ренина. Чтобы избежать влияния различий в кон­центрации эндогенного субстрата, скорость образования ангио­тензина в плазме можно определять также в отсутствие и при­сутствии ряда известных концентраций стандарта ренина. Недавно проведенное кооперативное исследование показало, что, несмотря на неодинаковость применяемых методов, полу­чаемые в разных лабораториях показатели высокого, нормаль­ного и низкого уровней ренина согласуются между собой.

Хотя в некоторых лабораториях получены высокоочищенные препараты почечного ренина и антитела к нему, попытки непосредственного радиоиммунологического определения уровня ренина в крови остаются пока не слишком успешными. В нор­ме концентрация ренина в крови крайне низка и не достигает пределов чувствительности таких методов. Кроме того, с по­мощью радиоиммунологических методов, возможно, не удастся отделить активный ренин от неактивного. Тем не менее со­здание метода непосредственного определения ренина в крови (а не косвенного его определения по скорости образования ан­гиотензина) могло бы во многом способствовать изучению сек­реции ренина и реакции между этим ферментом и его субст­ратом.

Разработаны методы непосредственных радиоиммунологиче­ских определений концентраций ангиотензина I и ангиотензи­на II в плазме. Хотя недавно был предложен аналогичный ме­тод и для субстрата ренина, в большинстве лабораторий его продолжают определять в ангиотензиновых эквивалентах, т. е. концентрациях ангиотензина, образующегося после истощаю­щей инкубации плазмы с экзогенным ренином. Активность превращающего фермента ранее определяли по фрагментам ан­гиотензина I. В настоящее же время большинство методов основано на регистрации способности превращающего фермен­та расщеплять меньшие по размеру синтетические субстраты; можно определять как количество дипептида, отделяющегося от трипептидного субстрата, так и защищенную N-концевую аминокислоту, образующуюся при гидролизе молекулы суб­страта.

На ренин плазмы влияют потребление соли, положение тела, физическая нагрузка, менструальный цикл и практиче­ски все антигипертензивные средства. Следовательно, чтобы соответствующие определения дали полезную клиническую информацию, их нужно проводить в стандартных контролируе­мых условиях. Часто используемым подходом является сопо­ставление результатов определения АРП с суточной экскрецией натрия с мочой, особенно в условиях ограниченного потребле­ния натрия. При таких обследованиях установлено, что примерно 20-25% больных с повышенным артериальным дав­лением имеют низкую АРП по отношению к экскреции натрия, а у 10-15% таких больных АРП повышена по сравнению с таковой у лиц с нормальным АД. У больных с гипертензией определяли и реакцию ренина на острые стимулы, такие как введение фуросемида; в целом отмечено хорошее совпадение результатов при различных способах классификации гипертен­зии по состоянию ренин-ангиотензиновой системы. Со вре­менем больные могут переходить из одной группы в другую. Поскольку имеется тенденция к снижению АРП с воз­растом и поскольку содержание ренина в плазме у предста­вителей негроидной расы ниже, чем у белых, классификация больных с гипертензией по уровню ренина должна учитывать соответствующие показатели у здоровых лиц в зависимости от возраста, пола и расы.

РЕНИН И ГИПЕРТЕНЗИЯ

Классификация больных с гипертензией по уровню ренина представляет большой интерес. В принципе на основании этого показателя можно судить о механизмах гипертензии, уточнить диагноз и выбрать рациональные подходы к терапии. Перво­начальное мнение о меньшей частоте сердечно-сосудистых осложнений при низкорениновой гипертонической болезни не­достаточно подтверждено.

Механизмы высокорениновой и низкорениновой гипертензии

Больные с высокорениновой гипертонией более чувствитель­ны к гипотензивным эффектам фармакологической блокады ренин-ангиотензиновой системы, чем больные с норморенино- вой гипертонией, что свидетельствует о роли этой системы в поддержании повышенного артериального давления у больных первой группы. И наоборот, больные с низкорениновой гипертонией относительно резистентны к фармакологической блокаде ренин-ангиотензиновой системы, но обладают повы­шенной чувствительностью к гипотензивным эффектам диуре­тиков, включая как антагонисты минералокортикоидов, так и препараты тиазидов. Иными словами, больные с низким уровнем ренина реагируют так, как если бы у них был увели­чен объем жидкости в организме, хотя определения объемов плазмы и внеклеточной жидкости не всегда обнаруживают их повышение. Активными сторонниками объемно-вазоконстрикторной гипотезы повышения АД у больных с гипертони­ческой болезнью являются Laragh и соавт. Согласно этой привлекательной гипотезе, как нормальное артериальное дав­ление, так и большинство видов гипертензии поддерживаются преимущественно зависимым от ангиотензина II вазоконстрикторным механизмом, зависимым от натрия или объема меха­низмом и взаимодействием эффектов объема и ангиотензина. Та форма гипертензии, при которой терапевтическим действием обладают средства, блокирующие продукцию ренина или ан­гиотензина, обозначается как вазоконстрикторная, тогда как форму, чувствительную к диуретикам, называют объемной. Повышение артериального давления может обусловливаться промежуточными состояниями, т. е. той или иной степенью вазоконстрикции и увеличения объема.

Высокорениновая гипертензия может быть связана с пора­жением крупных или мелких почечных сосудов. Имеются убе­дительные доказательства роли усиления секреции ренина ишемической почкой в механизме реноваскулярной гипертен­зии. Хотя наиболее четкое повышение уровня ренина от­мечается в острых стадиях гипертензии, однако, исходя из ре­зультатов исследования с фармакологической блокадой ренин- ангиотензиновой системы, можно считать, что ее активация играет не меньшую роль и в поддержании хронически повы­шенного артериального давления при клинической и экспери­ментальной реноваскулярной гипертензии. У крыс ремиссию гипертензии, вызываемую удалением ишемической почки, мож­но предотвратить инфузией ренина с такой скоростью, которая создает АРП, близкую к имевшейся до нефрэктомии. У крыс с гипертензией типа 1С2П возрастает и чувствитель­ность к прессорным влияниям ренина и ангиотензина. При экспериментальной гипертензии типа 1С1П (удаление контралатеральной почки) повышение артериального давления на фоне низкой АРП связано, по-видимому, с потреблением натрия. В этом случае блокада ренин-ангиотензиновой систе­мы в условиях высокого потребления натрия практически не влияет на артериальное давление, хотя при ограничении нат­рия она может снижать АД. У больных с высокорениновой гипертензией без явных признаков поражения почечных сосудов (судя по результатам артериографии) Hollenberg и соавт. с помощью ксеноновой методики обнаружили ишемию коркового слоя почек. Считается также, что у боль­ных с высокорениновой гипертензией одновременно имеет мес­то повышение активности симпатической нервной системы и что высокий уровень ренина служит маркером нейрогенного генеза возрастания артериального давления. С этой точкой зрения согласуется повышенная чувствительность боль­ных с высокорениновой гипертензией к гипотензивному дей­ствию β-адренергической блокады.

Для объяснения сниженной АРП при низкорениновой ги­пертензии предложены различные схемы, и это заболевание, вероятно, не является отдельной нозологической формой. У небольшого процента больных с низким уровнем ренина по­двышена секреция альдостерона и наблюдается первичный альдостеронизм. У большинства же больных этой группы скорость продукции альдостерона нормальна или снижена; за некото­рыми исключениями, отсутствуют убедительные данные, кото­рые свидетельствовали бы о том, что повышение артериаль­ного давления в этих случаях обусловлено альдостероном или каким-то другим надпочечниковым минералокортикоидом. Од­нако описано Несколько случаев гипертензии у детей с гипокалиемией и низким уровнем ренина, при которых секреция какого-то пока не идентифицированного минералокортикоида действительно увеличена. Помимо возрастания объема жидкости, предполагаются и другие механизмы снижения АРП у больных с низкорениновой гипертензией. К ним относятся ав­тономная нейропатия, увеличение концентрации ингибитора ренина в крови и нарушение продукции ренина вследствие нефросклероза. В нескольких популяционных исследованиях была выявлена обратная корреляция между артериальным давле­нием и АРП; как недавно показано, у молодых лиц с относи­тельно повышенным артериальным давлением, сохраняющим­ся более 6 лет, физическая нагрузка слабее повышает АРП, чем у лиц контрольной группы с меньшим АД. Такие данные позволяют предполагать, что снижение уровня ренина является адекватной физиологической реакцией на повышение артериального давления и что у больных с «норморениновой» гипертонией эта реакция оказывается недостаточной, т. е. уро­вень ренина остается несоответственно высоким.

У многих больных с гипертонической болезнью изменены реакции ренина и альдостерона, хотя корреляция таких изме­нений с повышением артериального давления не установлена. Больные с низкомолекулярной гипертонической болезнью реа­гируют на ангиотензин II большим приростом давления и секреции альдостерона, чем лица контрольной группы. Повы­шенные надпочечниковая и прессорная реакции наблюдались также у больных с норморениновой гипертонической болезнью, получавших диету с нормальным содержанием натрия, что указывает на увеличение сродства сосудистых и надпочеч­никовых (в клубочковой зоне) рецепторов к ангиотензину II. Подавление секреции ренйна и альдостерона под влиянием нагрузки хлоридом натрия у больных с гипертонической бо­лезнью выражено слабее. У них ослаблено также дей­ствие ингибиторов превращающего фермента на секрецию ре­нина.

У больных с первичным альдостеронизмом секреция альдо­стерона не зависит от ренин-ангиотензиновой системы, а натрийзадерживающий эффект минералокортикоидов обусловли­вает уменьшение секреции ренина. У таких больных низкий уровень ренина оказывается относительно нечувствительным к стимуляции, а высокий уровень альдостерона не снижается под влиянием солевой нагрузки. При вторичном альдостеронизме усиленная секреция альдостерона обусловлена увеличенной продукцией ренина и, следовательно, ангиотензина. Таким образом, в отличие от больных с первичным альдостеронизмом при вторичном альдостеронизме АРП повышена. Вторичный альдостеронизм не всегда сопровождается повышением арте­риального давления, например при застойной сердечной недо­статочности, асците или синдроме Бартера.

Для диагностики гипертензии обычно не требуется опреде­лять АРП. Поскольку у 20-25% больных с гипертонической болезнью АРП снижена, такие определения дают слишком неспецифические результаты, чтобы служить полезным диагности­ческим тестом при рутинном скрининге на первичный альдо­стеронизм. Более надежным показателем при минералокортикоидной гипертензии может быть уровень калия в сыворотке; обнаружение у лиц с повышенным артериальным давлением неспровоцированной гипокалиемии (не связанной с приемом диуретиков) позволяет с большой вероятностью заподозрить первичный альдостеронизм. У больных с реноваскулярной ги­пертензией часто наблюдается также повышение АРП, но можно воспользоваться и другими, более чувствительными и специфическими диагностическими тестами (например, бы­строй серией внутривенных пиелограмм, почечной артериографией), если их проведение оправдывается клинической ситуа­цией.

У больных с гипертензией при рентгенологически установ­ленном стенозе почечной артерии определение АРП в крови почечной вены может оказаться полезным для решения вопро­са о функциональной значимости окклюзивных изменений в сосуде. Чувствительность этого показателя возрастает, если определения АРП в крови почечной вены производить в ортостазе, на фоне вазодилатации или ограничения натрия. Если АРП в венозном оттоке от ишемической почки более чем в 1,5 раза превышает таковую в венозной крови контралате­ральной почки, то это служит достаточно надежной гарантией того, что хирургическое восстановление васкуляризации органа у лиц с нормальной почечной функцией приведет к снижению артериального давления. Вероятность успешного хирургиче­ского лечения гипертензии возрастает, если отношение АРП в венозном оттоке от неишемической (контрлатеральной) поч­ки и в крови нижней полой вены под устьем почечных вен со­ставляет 1,0. Это свидетельствует о том, что продукция ренина контралатеральндй почкой тормозится ангиотензином, образующимся под влиянием повышенной секреции ренина ишемической почкой. У больных с односторонним поражением почечной паренхимы в отсутствие реноваскулярных нарушений отношение между содержанием ренина в крови обеих почеч­ных вен также может служить прогностическим признаком гипотензивного эффекта односторонней нефрэктомии. Однако опыт в этом отношении не столь велик, как в отноше­нии больных с реноваскулярной гипертензией, а доказатель­ства прогностического значения результатов определения ре­нина в почечных венах в таких случаях менее убедительны.

Еще одним примером высокорениновой гипертензии являет­ся злокачественная гипертония. Этот синдром встречает­ся обычно при выраженном вторичном альдостеронизме, при­чем ряд исследователей считают повышенную секрецию рени­на причиной злокачественной гипертонии. У крыс с гипертен­зией типа 1С2П начало злокачественной гипертонии совпадает с увеличением натрийуреза и секреции ренина; в ответ на прием соленой воды или инфузию антисыворотки к ангиотен­зину II артериальное давление снижается и признаки злокачественной гипертонии ослабляются. На основании таких наблюдений Mohring; пришел к заключению, что при критическом возрастании артериального давления потеря натрия активирует ренин-ангиотензиновую систему и это в свою очередь способствует переходу гипертонии в злокачествен­ную фазу. Однако на другой экспериментальной модели зло­качественной гипертонии, вызываемой у крыс перевязкой аор­ты над местом отхождения левой почечной артерии, Rojo-Ortega и соавт. недавно показали, что введение хлорида нат­рия с частичным подавлением секреции ренина не только не оказывает благоприятного действия, но, напротив, ухудшает течение гипертензии и состояние артерий. С другой стороны, возможно, что выраженная гипертензия в сочетании с некротизирующим васкулитом приводит к ишемии почки и вторично стимулирует секрецию ренина. Каким бы ни был начальный процесс при злокачественной гипертонии, в конце концов со­здается порочный круг: резкая гипертензия - ишемия по­чек - стимуляция секреции ренина - образование ангиотен­зина II - резкая гипертензия. Согласно этой схеме, короткая петля обратной связи, за счет которой ангиотензин II непосредственно тормозит секрецию ренина, в данном случае не функционирует или ее эффект не проявляется вследствие большей силы стимула секреции ренина. Для разрыва этого порочного круга возможен двоякий терапевтический подход: 1) подавле­ние активности ренин-ангиотензиновой системы или 2) приме­нение мощных антигипертензивных средств, первично действую­щих вне этой системы.

Повышение уровня ренина может служить причиной ги­пертензии у относительно небольшого процента больных, на­ходящихся в терминальной стадии почечной недостаточности. У подавляющего большинства таких больных величина арте­риального давления определяется главным образом состоянием натриевого баланса, однако примерно у 10% из них не удается добиться достаточного снижения АД с помощью диа­лиза и изменения содержания натрия в диете. Гипертензия обйчно достигает тяжелой степени, а АРП заметно повышена. Интенсивный диализ может привести к дальнейшему повышению давления или к транзиторной гипотензии, но вско­ре тяжелая гипертензия восстанавливается. Повышенное ар­териальное давление у этих больных снижается в условиях блокады действия ангиотензина саралазином, причем возросший уровень ренина в плазме и гипотензивная реакция на саралазин являются, по-видимому, признаками, указываю­щими на необходимость двусторонней нефрэктомии. В других случаях снижения артериального давления удается добиться с помощью каптоприла или высоких доз пропранолола. Поэтому вопрос о необходимости двусторонней нефрэк­томии для лечения высокорениновой гипертензии следует ста­вить только в отношении больных с терминальной стадией не­обратимого почечного заболевания. У больных с менее выра­женной почечной недостаточностью гипертензия поддается ле­чению ингибиторами превращающего фермента даже в отсут­ствие повышения АРП; это свидетельствует о том, что и нор­мальный уровень ренина может оказаться несоответствующим степени задержки натрия. С таким предположением со­гласуются данные о чрезмерно высоких концентрациях ренина и ангиотензина II по отношению к уровню обменивающегося натрия в организме больных с уремией.

В 1967 г. Robertson описал больного, у которого ги­пертензия исчезла после удаления доброкачественной геман- гиоперицитрмы коркового вещества почки, содержащей боль­шое количество ренина. Впоследствии сообщалось еще о не­скольких больных с ренинпродуцирующими опухолями; у всех них наблюдались выраженный вторичный альдостеронизм, гипокалиемия и повышенное содержание ренина в крови, отте­кающей от пораженной почки, по сравнению с контралатераль­ной на фоне отсутствия изменений почечных сосудов. Почечная опухоль Вильмса также может продуцировать ренин; после удаления опухоли артериальное давление обычно нор­мализуется.

На основании данных о снижении артериального давления при фармакологическом подавлении активности ренин-ангио­тензиновой системы роль ренина в возникновении гипертензии усматривают и в случаях обструктивной уропатии, коарктации аорты и болезни Кушинга. При болезни Ку­шинга повыщение АРП связывают с возрастанием уровня суб­страта ренина под влиянием глюкокортикоидов. Реактивная гиперренинемия в ответ на ограничение натрия и (или) прием диуретиков может ослаблять антигипертензивное действие этих терапевтических мероприятий у больных с гипертензией.

РЕНИН И ОСТРАЯ ПОЧЕЧНАЯ НЕДОСТАТОЧНОСТЬ

Уровни ренина и ангиотензина в плазме при острой почеч­ной недостаточности у человека часто повышаются, а вскоре после ликвидации такой недостаточности нормализуются. Целый ряд данных свидетельствует о возможном участии ренин-ангиотензиновой системы в патогенезе острой почечной недостаточности, вызываемой в эксперименте глицерином и хлоридом ртути. Мероприятия, приводящие к снижению как АРП, так и содержания ренина в самих почках (хронические нагрузки хлоридом натрия или калия), предотвращают разви­тие почечной недостаточности под действием этих веществ. Было показано, что снижение (иммунизация ренином) или острое подавление (острая нагрузка хлоридом натрия) только АРП без одновременного уменьшения содержания ре­нина в самих почках не оказывает защитного действия. Таким образом, если функциональные изменения, характерные для почечной недостаточности, вызываемой глицерином или хлористой ртутью, и связаны с ренин-ангиотензиновой системой, то, по-видимому, только с внутрипочечным (а не содержа­щимся в крови) ренином.

При вызываемой глицерином острой почечной недостаточ­ности, сопровождающейся миоглобинурией, саралазин и SQ20881 повышают почечный кровоток, но не скорость клу­бочковой фильтрации. Подобно этому, несмотря на уве­личение почечного кровотока при инфузии солевого раствора через 48 ч после введения хлористой ртути, скорость клубоч­ковой фильтрации не восстанавливается. Следовательно, начальное нарушение процесса фильтрации оказывается необ­ратимым.

Хроническая нагрузка бикарбонатом натрия не снижает ни АРП, ни внутрипочечного содержания ренина; в отличие от хлорида натрия бикарбонат натрия обладает сравнительно слабым защитным действием при острой почечной недостаточ­ности, вызываемой хлористой ртутью, несмотря на то что на­грузка обеими натриевыми солями обусловливает у животных сходные реакции: положительный баланс натрия, увеличение объема плазмы и экскрецию растворенных веществ. На­грузка хлоридом (но не бикарбонатом) натрия снижает внутрипочечное содержание ренина и изменяет течение указанных нефротоксических форм экспериментальной почечной недоста­точности, что подчеркивает значение подавления продукции ренина, а не натриевой нагрузки как таковой в защитном эф­фекте. В очевидном противоречии с этими результатами Thiel и соавт. нашли, что у крыс, у которых после введения хлористой ртути сохраняется высокая скорость тока мочи, так­же не развивается почечная недостаточность независимо от из­менений уровня ренина в корковом веществе почек или плазме.

Считается, что роль внутрипочечного ренина в патогенезе острой почечной недостаточности заключается в изменении ка­нальцево-клубочкового баланса. При различных видах экспе­риментальной острой почечной недостаточности уровень рени­на в одиночном нефроне возрастает, вероятно, вслед­ствие нарушения транспорта хлорида натрия на уровне плот­ного пятна. С этим предположением согласуется снижение СКФ под влиянием активации ренина в одиночном нефроне.

В отличие от своего эффекта при нефротоксических формах острой почечной недостаточности хроническая нагрузка солью не защищает животных от острой почечной недостаточности, вызываемой норадреналином. Если пусковым моментом в патогенезе нарушения фильтрации является сужение аффе­рентной артериолы, то можно понять сходство эффектов норадреналина и ангиотензина, а также тот факт, что каждое из этих вазоактивных веществ способно инициировать каскад реакций, приводящих к почечной недостаточности.

СИНДРОМ БАРТЕРА

Люди с синдромом Бартера

Синдром Бартера является еще одним примером вторично­го альдостеронизма без гипертензии. Этот синдром характе­ризуется гипокалиемическим алкалозом, потерей калия через почки, гиперплазией юкстагломерулярного аппарата, нечув­ствительностью сосудов к вводимому ангиотензину, а также повышением АРП и секреции альдостерона в отсутствие ги­пертензий, отеков или асцита. Вначале считали, что вы­раженный вторичный альдостеронизм связан либо с потерей натрия через почки, либо с нечувствительностью сосудов к ангиотензину II. Однако некоторые больные с этим синдромом сохраняют способность к адекватной задержке натрия в орга­низме, а нечувствительность к ангиотензину у них может быть вторичной по отношению к повышенной его концентрации в крови. У больных с синдромом Бартера увеличена экскреция ПГЕ с мочой, а фармакологическая блокада биосинтеза простагландинов уменьшает потерю калия через почки и тяжесть вторичного альдостеронизма. У собак с пониженным со­держанием калия в организме Galves и соавт. выявили многие необходимые биохимические нарушения, характерные для синдрома Бартера, в том числе повышение АРП, увеличе­ние экскреции ПГЕ и нечувствительность сосудов к ангиотен­зину. Индометацин снижал как АРП, так и экскрецию ПГЕ с мочой и восстанавливал чувствительность к ангиотензину. У больных с синдромом Бартера наблюдается нарушение кли­ренса свободной воды, что указывает на измененный транспорт хлорида в восходящем колене петли Генле. Восста­новление уровня калия в организме не приводит к ликвидации этого дефекта. В мышцах и эритроцитах больных с синдромом Бартера также отмечалось нарушение процессов транспорта, катализируемых Na, К-АТФазой. Это позволяет предпо­лагать наличие у таких больных более генерализованного де­фекта транспортной системы. Недавно полученные экспери­ментальные данные свидетельствуют о том, что транспорт хлорида в восходящем колене петли Генле тормозится простагландинами мозгового вещества почек; повышенная почечная продукция простагландинов могла бы принимать уча­стие в механизме нарушения транспорта хлорида и у больных с синдромом Бартера. Однако после введения индометацина или ибупрофена, несмотря на торможение синтеза про­стагландинов в почках, сниженный клиренс свободной воды сохраняется.

Специфический дефект транспорта хлорида в восходящем колене петли Генле обусловливает стимуляцию секреции ренина и, следовательно, продукции альдостерона. Этот единственный дефект мог бы «запускать» целый каскад реакций, приводящих к развитию синдрома Бартера. Наруше­ние активного транспорта в восходящем колене могло не только стимулировать секрецию ренина, но и увеличивать по­ступление натрия и калия в дистальный каналец. Повышенное поступление натрия в дистальные отделы нефрона может, по­мимо альдостеронизма, служить непосредственной причиной потери калия с мочой. Дефицит калия через стимуляцию про­дукции ПГЕ мог бы усугублять нарушение транспорта хлорида в петле Генле. Поэтому угнетение синтеза ПГЕ должно при­водить лишь к частичному ослаблению признаков синдрома. Если предполагаемый дефект реабсорбции натрия в прокси­мальном канальце действительно существует, то он мог бы также опосредовать ускорение обмена натрия на калий в более дистальных отделах нефрона.

ГИПОРЕНИНЕМИЧЕСКИЙ ГИПОАЛЬДОСТЕРОНИЗМ

Как известно, у больных с интерстициальным нефритом и у больных диабетом при наличии нефропатии наблюдается из­бирательный гипоальдостеронизм. У них на фоне гиперкалиемии, гиперхлоремии и метаболического ацидоза от­мечаются ослабленные реакции ренина и альдостерона на провокационные стимулы и нормальная реакция кортизола на АКТГ. Гиперкалиемия резко отличает таких больных от боль­ных с низкорениновой гипертензией, у которых содержание калия в крови остается нормальным. Гиперкалиемия поддает­ся минералокортикоидной терапии.

Низкий уровень ренина у больных диабетом относят на счет автономной нейропатии, нефросклероза и нарушенного превращения неактивного ренина в активный. При диабете с гипоренинемическим гипоальдостеронизмом на­ходят и признаки ферментативного дефекта в надпочечниках, приводящего к нарушению биосинтеза альдостерона. Не­давно был описан также больной диабетом с высоким уровнем ренина, но слабой секрецией альдостерона вследствие нечув­ствительности надпочечников к ангиотензину II.

ЗАКЛЮЧЕНИЕ

Секреция ренина регулируется, по-видимому, рядом раз­личных механизмов, и их взаимодействие остается неясным. Последовательность реакций, приводящих к продукции агиотензина II и альдостерона, оказалась более сложной, чем пред­полагалось ранее. В плазме присутствует неактивный ренин, или проренин, и, возможно, ингибиторы реакции между ре­нином и его субстратом. Потенциально все эти соединения мо­гут сильно влиять на общую активность ренина. Предложен­ные фармакологические пробы с подавлением активности ренин-ангиотензиновой системы позволили получить убедитель­ные доказательства значения ангиотензина II в патогенезе ги­пертензии, сопровождающей различные заболевания. Участие ренин-альдостероновой системы в механизмах повышения и снижения артериального давления остается областью интенсив­ных исследований, направленных на выяснение патогенеза ги­пертензии. Данные о роли ренина в регуляции СКФ противоре­чивы. Существование синдромов, характеризующихся избытком и недостаточностью ренина в отсутствие гипертензии, свиде­тельствует о важной роли ренин-альдостероновой системы в регуляции электролитного обмена.

Запись на прием к эндокринологу

Уважаемые пациенты, Мы предоставляем возможность записаться напрямую на прием к доктору, к которому вы хотите попасть на консультацию. Позвоните по номеру,указанному вверху сайта, вы получите ответы на все вопросы. Предварительно, рекомендуем Вам изучить раздел .

Как записаться на консультацию врача?

1) Позвонить по номеру 8-863-322-03-16 .

1.1) Или воспользуйтесь звонком с сайта:

Заказать звонок

Позвонить врачу

1.2) Или воспользуйтесь контактной формой.

Альдостерон у человека является основным представителем минералокортикоидных гормонов, производных холестерола.

Синтез

Осуществляется в клубочковой зоне коры надпочечников. Образованный из холестерола прогестерон на пути к альдостерону подвергается последовательному окислению 21-гидроксилазой, 11-гидроксилазой и 18-гидроксилазой . В конечном итоге образуется альдостерон.

Схема синтеза стероидных гормонов (полная схема)

Регуляция синтеза и секреции

Активируют :

  • ангиотензин II , выделяемый при активации ренин-ангиотензиновой системы,
  • повышение концентрации ионов калия в крови (связано с деполяризацией мембран, открытием кальциевых каналов и активацией аденилатциклазы).

Активация ренин-ангиотензиновой системы

  1. Для активации этой системы существует два пусковых момента:
  • снижение давления в приносящих артериолах почек, которое определяется барорецепторами клеток юкстагломерулярного аппарата. Причиной этого может быть любое нарушение почечного кровотока – атеросклероз почечных артерий, повышенная вязкость крови, обезвоживание, кровопотери и т.п.
  • снижение концентрации ионов Na + в первичной моче в дистальных канальцах почек, которое определяется осморецепторами клеток юкстагломерулярного аппарата. Возникает в результате бессолевой диеты, при длительном использовании диуретиков.

Постоянная и независимая от почечного кровотока секреция ренина (базовая) поддерживается симпатической нервной системой.

  1. При выполнении одного или обоих пунктов клетки юкстагломерулярного аппарата активируются и из них в плазму крови секретируется фермент ренин .
  2. Для ренина в плазме имеется субстрат – белок α2-глобулиновой фракции ангиотензиноген . В результате протеолиза от белка отщепляется декапептид под названием ангиотензин I . Далее ангиотензин I при участии ангиотензин-превращающего фермента (АПФ) превращается в ангиотензин II .
  3. Главными мишенями ангиотензина II служат гладкие миоциты кровеносных сосудов и клубочковая зона коры надпочечников:
  • стимуляция кровеносных сосудов вызывает их спазм и восстановление артериального давления .
  • из надпочечников после стимуляции секретируется альдостерон , действующий на дистальные канальцы почек.

При воздействии альдостерона на канальцы почек увеличивается реабсорбция ионов Na + , вслед за натрием движется вода . В результате давление в кровеносной системе восстанавливается и концентрация ионов натрия увеличивается в плазме крови и, значит, в первичной моче, что снижает активность РААС.

Активация ренин-ангиотензин-альдостероновой системы

Механизм действия

Цитозольный.

Мишени и эффекты

Воздействует на слюнные железы, на дистальные канальцы и собирательные трубочки почек. В почках усиливает реабсорбцию ионов натрия и потерю ионов калия посредством следующих эффектов:

  • увеличивает количество Na + ,K + -АТФазы на базальной мембране эпителиальных клеток,
  • стимулирует синтез митохондриальных белков и увеличение количества нарабатываемой в клетке энергии для работы Na + ,K + -АТФазы,
  • стимулирует образование Na-каналов на апикальной мембране клеток почечного эпителия.

Патология

Гиперфункция

Синдром Конна (первичный альдостеронизм) – возникает при аденомах клубочковой зоны. Характеризуется триадой признаков: гипертензия, гипернатриемия, алкалоз.

Вторичный гиперальдостеронизм – гиперплазия и гиперфункция юкстагломерулярных клеток и избыточная секреция ренина и ангиотензина II. Отмечается повышение артериального давления и появление отеков.



Случайные статьи

Вверх