Новые методы обработки. Технология обработки материалов

Металл в разных его проявлениях, включая многочисленные сплавы, является одним из самых востребованных и широко используемых материалов. Именно из него изготовляется масса деталей, а также огромное количество других ходовых вещей. Но, чтобы получить какое-либо изделие или деталь, необходимо приложить немало усилий, изучить процессы обработки и свойства материала. Основные виды обработки металлов осуществляются по различному принципу воздействия на поверхность заготовки: термический, химический, художественные воздействия, с применением резки или давления.

Термическое воздействие на материал - это влияние тепла с целью изменения необходимых параметров относительно свойств и структуры твердого вещества. Наиболее часто процесс применяется при производстве разнообразных машинных деталей, причем, на разных стадиях изготовления. Основные виды термической обработки металлов: отжиг, закалка и отпуск. Каждый процесс по-своему влияет на изделие и проводится при разных значениях температурного режима. Дополнительными типами влияния тепла на материал выступают такие операции, как обработка холодом и старение.

Технологические процессы получения деталей или заготовок посредством силового влияния на обрабатываемую поверхность включают в себя разные виды обработки металлов давлением. Среди этих операций имеется несколько наиболее популярных в использовании. Так, прокатка происходит путем обжатия заготовки между парой вращающихся валков. Валки могут быть разной формы, в зависимости от требований, предъявляемых к детали. При прессовании материал заключается в замкнутую форму, откуда после выдавливается в форму меньших размеров. Волочение - процесс протягивания заготовки через постепенно сужающееся отверстие. Под воздействием давления также производят ковку, объемную и листовую штамповку.

Особенности художественной обработки металлов

Творческий подход и мастерство отражают различные виды художественной обработки металлов. Среди них можно отметить пару самых древних, изученных и применяемых еще нашими предками - это литье и . Хотя ненамного отстал от них по времени появления еще один способ воздействия, а именно, чеканка.

Чеканка представляет собой процесс создания картин на металлической поверхности. Сама технология включает применение давления на предварительно нанесенный рельеф. Примечательно, что чеканку можно делать как на холодной, так и на разогретой рабочей поверхности. Эти условия зависят, прежде всего, от свойств того или иного материала, а также от возможностей применяемых в работе инструментов.

Способы механической обработки металлов

Отдельного внимания заслуживают виды механической обработки металлов. По-другому механическое воздействие можно назвать методом резания. Такой метод считается традиционным и самым распространенным. Стоит заметить, что основными подвидами данного метода являются различные манипуляции с рабочим материалом: раскрой, резка, штамповка, сверление. Благодаря именно этому способу предоставляется возможность получения из прямого листа или чурки нужной детали с необходимыми размерами и формой. Еще с помощью механического воздействия можно добиться необходимых качеств материала. Часто подобный способ применяют, когда нужно сделать заготовку, пригодную для дальнейших технологических операций.

Виды обработки металлов резанием представлены точением, сверлением, фрезерованием, строганием, долблением и шлифованием. Каждый процесс отличается друг от друга, но в целом резание - это снятие верхнего слоя рабочей поверхности в виде стружки. Наиболее часто применяются методы сверления, точения и фрезерования. При сверлении деталь закрепляется в неподвижном положении, воздействие на нее происходит сверлом заданного диаметра. При точении обрабатываемая деталь вращается, а режущие инструменты перемещаются в заданных направлениях. При используется вращательное движение режущего инструмента относительно неподвижно закрепленной детали.

Химическая обработка металлов для повышения защитных свойств материала

Химическая обработка - практически самый простой тип воздействия на материал. Здесь не требуется больших трудозатрат или специализированного оборудования. Используются все виды химической обработки металлов, чтобы придать поверхности определенный внешний вид. Также под влиянием химического воздействия стремятся повысить защитные свойства материала - устойчивость к коррозии, механическим повреждениям.

Среди данных способов химического влияния наиболее популярны пассивация и оксидирование, хотя нередко применяется кадмирование, хромирование, меднение, никелирование, цинкование и прочие. Все методы и процессы проводятся с целью повышения различных показателей: прочности, износостойкости, твердости, сопротивляемости. Кроме того, такой тип обработки используют для придания поверхности декоративного вида.

Химические и электрические способы обработки материалов

При обработке металлов резанием получение деталей необходимых размеров достигается снятием стружки с поверхности обрабатываемой заготовки. Стружка, таким образом, является одним из наиболее распространенных отходов в металлообработке, объем которого составляет примерно 8 млн. т. в год. При этом, по меньшей мере 2 млн. т. - это отходы переработки высоколегированных и других особо ценных сталей. При обработке на современных металлорежущих станках в стружку зачастую идет до 30 - 40 % металла от общей массы заготовки.

К новым методам обработки металлов относятся химические, электрические, плазменные, лазерные, ультразвуковые, а также гидропластическая обработка металлов.

При химической обработке используется химическая энергия. Снятие определенного слоя металла осуществляется в химически активной среде (химическое фрезерование). Оно заключается в регулируемом по времени и месту растворении металла в ваннах. Поверхности, не подлежащие обработке, защищают химически стойкими покрытиями (лаки, краски, светочувствительные эмульсии и др.). Постоянство скорости травления поддерживается за счет неизменной концентрации раствора. Химическими методами обработки получают местные утончения и щели; «вафельные» поверхности; обрабатывают труднодоступные поверхности.

При электрическом методе электрическая энергия преобразуется в тепловую, химическую и другие виды энергии, участвующие непосредственно в процессе удаления заданного слоя. В соответствии с этим электрические методы обработки разделяют на электрохимические, электроэрозионные, электротермические и электромеханические.

Электрохимическая обработка основана на законах анодного растворения металла при электролизе. При прохождении постоянного электрического тока через электролит на поверхности заготовки, включенной в электрическую цепь и являющейся анодом, происходят химические реакции и образуются соединения, которые переходят в раствор или легко удаляются механическим способом. Электрохимическую обработку применяют при полировании, размерной обработке, хонинговании, шлифовании, очистке металлов от оксидов, ржавчины и т.д.

Анодно-механическая обработка сочетает электротермические и электромеханические процессы и занимает промежуточное место между электрохимическим и электроэрозионным методами. Обрабатываемую заготовку подключают к аноду, а инструмент - к катоду. В качестве инструмента используют металлические диски, цилиндры, ленты, проволоку. Обработку ведут в среде электролита. Заготовке и инструменту задают такие же движения, как при обычных методах механической обработки. Электролит подают в зону обработки через сопло.

При пропускании через раствор электролита постоянного электрического тока происходит процесс анодного растворения металла, как при электрохимической обработке. При соприкосновении инструмента-катода с микронеровностями обрабатываемой поверхности заготовки-анода происходит процесс электроэрозии, присущий электроискровой обработке.

Продукты электроэрозии и анодного растворения удаляются из зоны обработки при движении инструмента и заготовки.

Электроэрозионная обработка основана на законах эрозии (разрушения) электродов из токопроводящих материалов при пропускании между ними импульсного электрического тока. Она применяется для прошивания полостей и отверстий любой формы, разрезания, шлифования, гравирования, затачивания и упрочнения инструмента. В зависимости от параметров и вида импульсов, применяемых для их получения генераторов, электроэрозионная обработка разделяется на электроискровую, электроимпульсную и электроконтактную.

При определенном значении разности потенциалов на электродах, одним из которых является обрабатываемая заготовка (анод), а другим - инструмент (катод), между электродами образуется канал проводимости, по которому проходит импульсный искровой (электроискровая обработка) или дуговой (электроимпульсная обработка) разряд. В результате температура на поверхности обрабатываемой заготовки возрастает. При этой температуре мгновенно оплавляется и испаряется элементарный объем металла и на обрабатываемой поверхности заготовки образуется лунка. Удаленный металл застывает в виде мелких гранул. Следующий импульс тока пробивает межэлектродный промежуток там, где расстояние между электродами наименьшее. При непрерывном подведении к электродам импульсного тока процесс их эрозии продолжается до тех пор, пока не будет удален весь металл, находящийся между электродами на расстоянии, на котором возможен электрический пробой (0,01 - 0,05 мм) при заданном напряжении. Для продолжения процесса необходимо сблизить электроды до указанного расстояния. Электроды сближаются автоматически с помощью следящего устройства того или иного типа.

Электроискровую обработку применяют для изготовления штампов, пресс-форм, фильер, режущего инструмента, деталей двигателей внутреннего сгорания, сеток и для упрочнения поверхностного слоя деталей.

Электроконтактная обработка основана на локальном нагреве заготовки в месте контакта с электродом-инструментом и удалении размягченного или расплавленного металла из зоны обработки механическим способом (при относительном перемещении заготовки и инструмента).

Электромеханическая обработка связана преимущественно с механическим действием электрического тока. На этом основана, например, электрогидравлическая обработка, использующая действие ударных волн, возникающих в результате импульсного пробоя жидкой среды.

Ультразвуковая обработка металлов - разновидность механической обработки - основана на разрушении обрабатываемого материала абразивными зернами под ударами инструмента, колеблющегося с ультразвуковой частотой. Источником энергии служат электрозвуковые генераторы тока с частотой 16 - 30 кГц. Рабочий инструмент - пуансон - закрепляют на волноводе генератора тока. Под пуансоном устанавливают заготовку, и в зону обработки поступает суспензия, состоящая из воды и абразивного материала. Процесс обработки заключается в том, что инструмент, колеблющийся с ультразвуковой частотой, ударяет по зернам абразива, лежащим на обрабатываемой поверхности, которые скалывают частицы материала заготовки.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

государственное образовательное учреждение
высшего профессионального образования

«АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

«УТВЕРЖДАЮ»

профессор Г.В. Лаврентьев

«____» ___________________ 2010 г.

П Р О Г Р А М М А

повышения квалификации педагогических работников

государственных образовательных учреждений

начального профессионального и среднего профессионального образования

по приоритетному направлению «Современные промышленные технологии»

СОГЛАСОВАНО:

Проректор по качеству

образовательной деятельности Г.А. Спицкая

Директор ЦППКП О.П. Морозова

Барнаул 2010

^ I. ВВЕДЕНИЕ

Для динамичного развития основных отраслей техники, создания новых механизмов и машин, выпуска широкого ассортимента товаров повседневного спроса в России ежегодно создаются десятки новых индивидуальных материалов и разрабатываются рецептуры сотен композитов. Для переработки этих материалов в готовые изделия, используемые в различных отраслях техники и машиностроения, применяются стандартные технологические операции и типовое оборудование профильных предприятий. Однако нередко свойства новых материалов, целенаправленно заложенные в них материаловедами еще при создании, позволяют значительно улучшить экономические, трудозатратные, энергетические и другие показатели технологических процессов их обработки, а, зачастую, и вовсе исключить многие типовые операции либо значительно сократить их время. Поэтому вместе с процессом создания новых материалов постоянно идут работы по корректировке, улучшению и разработке новых процессов и технологий их обработки.

За последние 10-15 лет число таких новых технологических процессов значительно увеличилось, изменилось и их оформление – порой от стадии разработки конструкторских чертежей до создания готовой детали в серийном производстве проходит несколько часов. Изменился и сам стиль, и содержание работы инженера-конструктора машиностроителя, технолога, станочника. Если раньше значительную долю в производительном времени первых двух составляли рутинные конструкторские операции, работа со справочной литературой, прочностные и технологические расчеты, разработка чертежей и технологических карт, то теперь с этой работой успешно справляются многочисленные CAD и САМ-системы. До недавнего времени станочник вручную по разработанной технологической карте выполнял изготовление детали, порой переставляя заготовку из одного станка в другой и используя несколько типов инструмента, постоянно контролируя параметры процессов и размеры готовой детали, то на современном производстве многие технологические операции изготовления и контроля выполняют автоматические системы универсальных станков и обрабатывающих центров с числовым программным управлением (ЧПУ).

Естественно, что успешное использование новых материалов, оборудования и технологий обработки конструкционных материалов в широком производстве не возможно без овладения ими персоналом, занимающимся подготовкой квалифицированных специалистов основных производственных специальностей – токаря, фрезеровщика, станочника-универсала и др. Вместе с тем современное состояние оснащения учебных центров, профессиональных лицеев и колледжей специализированным и современным оборудованием, в силу объективных причин, не позволяет овладевать этими знаниями и практическими умениями и навыками ни самим преподавателям и мастерам производственного обучения, ни студентам.

В настоящее время вопрос подготовки специалистов для машиностроительного производства, оснащенного станками с ЧПУ, объединенными в единую систему с используемыми на конкретном предприятии CAD/CAM-системами, решается, как правило, собственником, путем платной переподготовки работников в специализированных учебных центрах, количество которых ограничено. В этих условиях выпускники профессиональной школы оказываются неконкурентноспособными, прежде всего из-за того, что обучающий их персонал сам не имеет необходимой квалификации. Конечно, вопрос оснащения образовательных учреждений НПО и СПО современными станками и системами автоматизированного конструирования деталей и проектирования технологических процессов их обработки не может быть решен сразу, однако это не исключает самой возможности подготовки квалифицированного обучающего персонала для этих учреждений. Более того, в условиях современной кризисной ситуации совершенно очевидно, что такого рода подготовка должна носить опережающий характер. С этой целью в различных регионах Российской Федерации на конкурсной основе в конце 2008 - начале 2009 г. были созданы ресурсные центры, оснащенные современным машиностроительным оборудованием, станками с ЧПУ, системами CAD/CAM-проектирования, в которых прошли переподготовку и повышение квалификации специалисты профессиональной школы.

Настоящая программа создана учеными Алтайского государственного университета с участием преподавателей Центра по металлообработке БТИ Алтайского государственного технического университета и ресурсного Центра профессионально-технического училища № 8 г. Барнаула.

Программа адресована преподавателям учреждений начального профессионального и среднего профессионального образования и мастерам производственного обучения, осуществляющим подготовку квалифицированных кадров в системе СПО по специальностям:

0308 - Профессиональное обучение (по отраслям); 0309 – Технология; 1104 - Металловедение и термическая обработка металлов; 1105 - Обработка металлов давлением; 1106 - Порошковая металлургия, композиционные материалы, покрытия; 1201 - Технология машиностроения; 2101 - Автоматизация технологических процессов и производств (по отраслям);

А также рабочих в системе НПО по специальностям:

011500 – Станочник (металлообработка); 011501 – Станочник широкого профиля; 011600 – Токарь универсал; 011700 – Фрезеровщик универсал; 010700 – Наладчик станков и оборудования в механообработке; 010703 – Наладчик станков и манипуляторов с программным управлением.

Изучение курса опирается на имеющиеся у слушателей знания теории и практики таких дисциплин как технология машиностроения, процессы металлообработки, станки и оборудование машиностроительных предприятий, математики, физики и химии, информатики и программирования, материаловедения.

Цель программы – создание условий для успешного овладения слушателями современными промышленными технологиями обработки материалов и конструкционных материалов как предметом обучения студентов, методикой его организации и средством оптимизации профессиональной подготовки будущих специалистов в области современного машиностроения.

Задачи программы:

Формирование у слушателей представлений о современном состоянии технологии машиностроения и перспективами ее развития;

Ознакомление с технологическими возможностями, оборудованием и перспективными методами механической обработки конструкционных материалов;

Формирование целостных представлений об основных закономерностях формообразования, физических и химических особенностях процессов электрофизической и электрохимической обработки;

Ознакомление с основными методами и способами автоматизированного проектирования деталей и операций механической обработки при использовании станков с ЧПУ на основе CAD/CAM-систем;

Формирование практических навыков по работе на станках с устройствами цифровой индикации и с ЧПУ, написанию программ для них и изготовления простейших типов деталей;

Формирование у слушателей целостного материаловедческого подхода к процессу выбора материала изделия, с учетом его потребительских характеристик, структуры и свойств конструкционных материалов, технологий их обработки;

Ознакомление с прогрессивными и малоотходными технологиями получения материалов и готовых изделий на основе методов порошковой металлургии и СВС-технологий;

Осуществление анализа конструкторских, технологических и эксплуатационных требований к новым материалам на основе углеродных, органических и неорганических (стеклянных, кварцевых, базальтовых и др.) волокон;

Формирование знаний эксплуатационных свойств в изделиях современных волокнистых композиционных материалов различного назначения и разработанных технологий производства изделий из них;

Ознакомление с возможностями и эффективностью применения материалов в различных областях техники и технологии;

Формирование умений применять физические методы исследования материалов;

Формирование компетентностного подхода к изученному материалу, его рефлективной переработке и проектированию приобретенных знаний, умений и навыков на индивидуальную профессиональную деятельность.

Программу предваряет инвариантный блок, раскрывающий и призванный сформировать у слушателей представление о ведущих тенденциях развития отечественного профессионального образования, обеспечить понимание новых приоритетов государственной политики в этой области, знание нормативно-правовой базы современной профессиональной школы.

В блоке «Тенденции развития современного машиностроения: новые процессы, оборудование и материалы» рассматриваются основные направления и приоритеты развития машиностроения в России, нормативные акты, законодательно регулирующие процессы технического и технологического перевооружения машиностроительной отрасли, закон о техническом регулировании и качестве продукции, организация и принципы функционирования систем качества в машиностроении. Слушатели познакомятся с принципами, заложенными в основу большинства современных промышленных технологий. Будут рассмотрены фундаментальные основы, конструкторские и технологические особенности новых и прогрессивных процессов обработки металлов резанием, пластической деформацией, температурой, сваркой и воздействием высоких энергий. Материаловедение новых конструкционных материалов составит научную основу этого блока, на основании знаний о свойствах новых конструкционных материалов и их изменениях в различных технологических процессах участники программы овладеют умением выбирать оптимальную технологию их обработки для получения деталей с заданными характеристиками с минимальными экономическими и энергетическими затратами, с минимальным количеством отходов и высоким уровнем автоматизации процесса, познакомятся со свойствами большинства современных сталей и сплавов, режимами их обработки и технологией создания. В этом блоке будут представлены основные типы и марки нового технологического оборудования, станков и обрабатывающих центров с ЧПУ, особенности их конструктивного исполнения и работы. Слушатели приобретут практические навыки конструирования деталей и проектирования технологических процессов их изготовления в адаптированных CAD/CAM-системах, получат представление об основах современного процесса высокотехнологического конструирования деталей, организации и особенностях работы интерактивных конструкторских и технологических систем, научатся программировать основные типовые операции обработки деталей резанием на станках с ЧПУ. При этом участники программы будут обеспечены дидактическим материалом и программными продуктами-симуляторами для самостоятельной организации обучения студентов в среде CAD и CAM-проектирования.

В блоке «» представлены одни из самих прогрессивных технологий получения готовых изделий и материалов с минимальным количеством стадий механической и другой обработки – самораспространяющийся высокотемпературный синтез и получение изделий прессованием из порошков металлов и сплавов. Слушатели ознакомятся с теоретическими основами СВС-процессов и их практической реализацией, основными типами реакций, используемых в промышленных СВС-технологиях, организацией производства порошков сверхтвердых соединений, используемых в качестве наполнителей конструкционных металлокомпозитов, СВС-технологиями поверхностной обработки, сварки и пайки. В ходе освоения блока слушателями будут получены практические навыки расчета состава шихты для проведения СВС-процесса, порошковой смеси для получения заготовки стали или сплава определенной марки или металлокомпозиционного материала с нужными свойствами, организации технологической оснастки для прессования порошкового материала с получением готового изделия и заготовки, ознакомятся с особенностями организации СВС или порошкового процесса в конкретной технологии.

В блоке «Полимерные композиционные материалы в современном машиностроении» на основе фундаментальных знаний о составе, строении и свойствах полимерных композиционных материалов слушатели ознакомятся с принципами производства и применения стекло- и углепластиков в машиностроении. Здесь будет представлена информация об областях применения и марках конкретных полимерных композиционных материалов, возможности и перспективы замены отдельных деталей и узлов из металлов и сплавов на полимерные композиты, технологии создания этих материалов и технологии переработки композитов в готовые изделия. Слушатели получат практические навыки по проектированию композита с заданными свойствами и выбору оптимальной технологии его производства, навыки по проведению испытаний стеклопластиков и стержневых конструкций из них и корректировке технологии переработки материала.

Логическим завершением программы является блок «» в котором слушатели смогут ознакомиться с вопросами практической и методической реализации изучения отдельных вопросов программы и их применения в своей профессиональной деятельности, познакомятся с функционирующей в России сетью ресурсных центров и центров коллективного пользования, существующих как при государственных, так и при частных предприятиях, характеристиками и особенностями располагающегося в них оборудования, условиями оказания образовательных услуг этими центрами, а также вопросами стажировки и прохождения практики в этих учебно-научных подразделениях малыми группами специалистов. Будут рассмотрены методические вопросы применения информационных технологий для их использования в профессиональной деятельности слушателей курсов, проведено ознакомление с существующими свободно распространяемыми и демонстрационными версиями систем твердотельного проектирования, CAD/CAM-систем, а также различных визуализаторов и имитаторов операций механической обработки и обработки деталей на станках с ЧПУ.

На заключительном этапе курсов будет проведен круглый стол, на котором слушатели проведут презентацию и защиту своих аттестационных работ и смогут обменяться мнениями по актуальным проблемам методики преподаваемых ими профессиональных дисциплин и включения в них вопросов, рассмотренных в ходе изучения настоящей программы, планируется также и публикация его материалов.

В программе на основе синтеза теоретической и практической составляющей, с использованием современного технологического оборудования машиностроительного предприятия, компьютерных проектирующих систем и мультимедийных средств осуществляется интерактивное индивидуальное и групповое обучение слушателей современным технологиям металлообработки на станках и обрабатывающих центрах с ЧПУ, а также формирование у них компетентностного подхода в области автоматического проектирования деталей и технологических процессов в CAD/CAM-системах. В процессе обучения решаются основные технологические задачи современного машиностроения, заключающиеся в обоснованном выборе материала для изготовления конкретной детали или устройства на основе фундаментальных знаний о составе и свойствах различных материалов и возможности управления ими, выборе технологии создания такого материала, разработке оптимальной технологии его обработки с применением современных высокоавтоматизированных станков и оборудования, и проведении процесса изготовления и окончательной обработки детали с минимальным участием человека.

В ходе реализации программы слушателям будут представлены достижения ученых и преподавателей Алтайского госуниверситета и Алтайского государственного технического университета в научной и образовательной сферах в области современных технологий машиностроения и материаловедения новых материалов, станки, учебное оборудование и методические разработки Алтайского регионального ресурсного центра по металлообработке, компьютерные системы автоматизированного проектирования деталей и технологических процессов их изготовления Adem, интерактивные симуляторы Keller для высокоточных станков с ЧПУ HAAS, станки и оборудование с цифровой индикацией КГУ НПО ПУ № 8 и др., которые станут предметом их творческого осмысления и обсуждения.

Программа носит практико-ориентированный характер. В числе организационных форм обучения преобладают практические и лабораторные занятия, на которых слушатели приобретают практические навыки работы на современном станочном оборудовании, проектирования в среде CAD/CAM-систем, программирования станков с ЧПУ. В ходе реализации программы будут проведены учебные экскурсии на промышленные предприятия г. Барнаула и г. Бийска (ООО «Бийский завод стеклопластиков», ЦРТ «Алтай», ОАО НПО «Анитим»), использующие в своей деятельности современные технологии металлообработки и технологии получения и обработки полимерных композитов, а также на базе лабораторий центра материаловедения и центра нанонаук, нанотехнологий и наноматериалов Алтайского государственного университета.

Обучение слушателей по программе «Материаловедение и современные технологии обработки конструкционных материалов» должно обеспечить:

– ориентацию слушателей в приоритетных направлениях развития современного профессионального образования и овладение навыками применения личностно-ориентированных технологий в своей профессиональной деятельности;

– ознакомление с современными технологиями и оборудованием машиностроительных предприятий;

– получение знаний и практических навыков для работы на станках с УЦИ и ЧПУ, проектированию деталей и технологических процессов обработки в среде CAD/CAM-систем и применения их в практической деятельности;

– овладение основами материаловедения новых конструкционных материалов, методологией их выбора для изготовления конкретных деталей машин и механизмов в рамках оптимальной технологии.

А.В. Ишков, д-р техн. наук, проф. (руководитель); В.А. Плотников, д-р физ.-мат. наук, проф.; О.В. Старцев, д-р техн. наук, проф.; В.Н. Беляев, канд. техн. наук, доц.

Сроки реализации программы «МАТЕРИАЛОВЕДЕНИЕ И СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ОБРАБОТКИ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ»: 15 марта – 26 марта 2010 г.

«УТВЕРЖДАЮ»

Первый проректор по учебной работе

профессор Г.В. Лаврентьев

«______»_____________ 2010 г.

^ УЧЕБНЫЙ ПЛАН

Материаловедение и современные технологии обработки конструкционных материалов

Цель: повышение квалификации

^ Срок обучения: 10-12 дней

Форма обучения: очная


п/п

Всего
часов

В том числе:

Формы
контроля

семинары, практические

лабораторные

Процессы модернизации в профессиональном образовании современной России

Тенденции развития современного машиностроения: новые процессы, оборудование и материалы в деятельности будущего специалиста

Промышленные СВС-технологии и порошковая металлургия

защита проектных заданий

Современные технологии машиностроения: проблемы изучения в образовательном процессе профессиональной школы

круглый стол

Директор ЦППКП О.П. Морозова

^ ГОУ ВПО «АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

«УТВЕРЖДАЮ»

Первый проректор по учебной работе

профессор Г.В.Лаврентьев

«______»_____________ 2010 г.

^ УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

Материаловедение и современные технологии обработки конструкционных материалов

Цель: повышение квалификации

^ Срок обучения: 10-12 дней

Форма обучения: очная

Режим занятий: от 6 до 8 часов в день

Наименование разделов, дисциплин, тем

Всего
часов

В том числе:

контроля

семинары,
практические

лабораторные

Процессы модернизации в профессиональном образовании современной России

Приоритеты государственной образовательной политики в современных условиях

Правовые акты об образовании: федеральные и региональные проблемы реализации

^ Тенденции развития современного машиностроения: новые процессы, оборудование и материалы в деятельности будущего специалиста

Современное состояние и перспективы развития технологии машиностроения

Оборудование и технологии для механической, электро- и физико-химической обработки плоских и объемных деталей

Общие принципы повышения эффективности и автоматизации металлообработки

Обеспечение качества и сертификация продукции, процессов и технологий машиностроения

Плазменная и лазерная резка листовых конструкционных материалов

Современные методы непрерывной обработки металлов пластической деформацией

Универсальные станки с цифровой индикацией

Обрабатывающие центры HAAS

Разработка технологических процессов обработки металлов с использованием CAD/CAM-систем

Создание управляющих программ обработки деталей на станках с ЧПУ

Изготовление детали на станке с ЧПУ

Промышленные СВС-технологии и порошковая металлургия

Порошковые материалы и изделия из них

Взаимодействия в системах порошковых и порошок-газовых смесей

Синтезы в порошковых смесях, разбавленных инертной компонентой

Синтезы интерметаллических и металлокерамических конструкционных материалов

Полимерные композиционные материалы (ПКМ) в современном машиностроении

защита проектных заданий

Роль ПКМ в современном машиностроении

Структура и свойства ПКМ

Технология, оборудование и автоматизация процессов производства ПКМ

Механическая обработка деталей из ПКМ

Методы и приборы для определения комплекса деформационно-прочностных свойств ПКМ

Работоспособность ПКМ в реальных условиях эксплуатации

Современные технологии машиностроения: проблемы изучения в образовательном процессе профессиональной школы

круглый стол

Использование оборудования ресурсных центров и центров коллективного пользования

Методические аспекты использования IT-технологий в учебном процессе подготовки специалистов НПО и СПО

Директор ЦППКП О.П. Морозова

^ II. СПИСОК ЛИТЕРАТУРЫ

Бушуев Ю.Г, Персин М.И., Соколов В.А. Углерод-углеродные композиционные материалы: Справочник. - М.: Изд-во Металлургия, 1994.

Качество машин: Справочник в 2 т. / Под ред. А.Г. Суслова. - М.: Изд-во Машиностроение, 1995.

Композиционные материалы: Справочник. / Под общей ред. В.В.Васильева и Ю.М. Тарнопольского. –М.: Изд-во Машиностроение, 1990.

Компьютерно-интегрированные производства и CALS-технологии в машиностроении / Т.А. Альперович, В.В.Барабанов, А.Н.Давыдов и др. - М.: Изд-во ГУП ВИМИ, 1999.

Котлер Ф. Основы маркетинга. / Пер. с англ. - М.: Изд-во Бизнес-книга, 1995.

Краткий справочник металлиста. / Под ред. А. Е Древаль, Е.А. Скороходова. – М.: Изд-во Машиностроение, 2005.

Лахтин Ю.М., Леонтьева В.П. Материаловедение.–М.: Изд-во Машиностроение, 1990.

Либенсон Г.А. Производство порошковых изделий. Учебник для техникумов. - М.: Изд-во Металлургия, 1990.

Ловыгин А. Современный станок с ЧПУ и CAD/CAM система. - М.: Изд-во ДМК, 2008.

Машиностроение: Энциклопедия. Технология изготовления деталей машин. / Под ред. А.Г. Суслова. - М.: Изд-во Машиностроение, 1999.

Мержанов А.Г. Самораспространяющийся высокотемпературный синтез. Физическая химия: Современные проблемы. –М.: Изд-во Химия, 1983.

Панов В.С. Технология и свойства спеченных твердых сплавов и изделий из них. Учебное пособие для вузов. - М.: Изд-во МИСИC, 2001.

Перепечко И.И. Введение в физику полимеров. -М.: Изд-во Химия, 1978.

Раковский B.C., Саклинский В.В. Порошковая металлургия в машиностроении. –М.: Изд-во Машиностроение, 1973.

Смазочно-охлаждающие технологические средства и их применение при обработке резанием: Справочник/ Под общ. ред. Л.В. Худобина. - М.: Изд-во Машиностроение, 2006.

Справочник по композиционным материалам. В 2 т. / Под ред. Дж. Любина. Пер. с англ. -М.: Изд-во Машиностроение, 1988.

Схиртладзе А.Г. Работа оператора на станках с программным управлением: Учебное пособие для проф. учеб. заведений. - М.: Изд-во Академия, 1998.

Теория резания. Учебник. / П.И. Ящерицын и др. - М.: Изд-во Новое знание, 2006.

Технология машиностроения: В 2 т. Учебник для вузов / В.М. Бурцев, А.С. Васильев, А.М. Дальский и др. – М.: Изд-во МГТУ им. Н.Э. Баумана, 1997.

Токарный станок – руководство оператора (русск.). Январь 2007: Методическое руководство. – Окснард – Калифорния: Haas Automation Inc., 2007.

Фельдштейн Е.Э. Обработка деталей на станках с ЧПУ. Учебное пособие. - М.: Изд-во Новое знание, 2008.

Фотеев Н.К. Технология электроэрозионной обработки. - М.: Изд-во Машиностроение, 1980.

Фрезерный станок – руководство оператора (русск.). Январь 2007: Методическое руководство. – Окснард – Калифорния: Haas Automation Inc., 2007.

Химия синтеза сжиганием. / Ред. М. Коидзуми. Пер. с япоск. –М.: Изд-во Мир, 1998.

Шишмарев В.Ю. Автоматизация технологических процессов. М.: Изд-во Academia, 2009.

^ III. ТЕМАТИКА ИТОГОВЫХ АТТЕСТАЦИОННЫХ РАБОТ

Современное состояние машиностроения в России и странах СНГ

Новые и малоотходные технологии в машиностроении

Американские станкостроительные компании

«Умные» материалы

Есть ли еще резервы у традиционных материалов?

Машиностроение в современных рыночных условиях: «за» и «против» САПР

Японские станкостроительные компании

Рынок металлообрабатывающих станков в России и за рубежом

Современные технологии металлообработки

Китайские станкостроительные компании

Машиностроительные технологии будущего

Два альтернативных пути металлообработки: съем и наращивание металла

Определение оптимальных параметров резания

Быстрорежущие стали и инструмент

Наноперемещения: их реализация и использование в современных станках

Устройство цифровой индикации или система ЧПУ?

Многокоординатные центры с ЧПУ

Обработка типовых деталей на станках с ЧПУ

Болгарские станкостроительные компании

Станкостроение в современной России

Электроэрозионная обработка

Плазменная и лазерная резка

Гидроабразивная обработка: материалы, особенности и области применения

Новые стали и сплавы для машиностроения

Малоотходные технологии обработки металлов

Технологии пластической деформации и обработка металлов

Керамика и металлокерамика в современном машиностроении

Системы качества на японских машиностроительных предприятиях

Сертификация систем менеджмента качества специализированными кампаниями: шаг

Детали машин, станков и приборов изготовляют различными методами: отливкой, обработкой давлением (прокаткой, волочением, прессованием, ковкой и штамповкой), сваркой и механической обработкой на металлообрабатывающих станках.

Литейное производство. Сущность литейного производства заключается в том, что изделия или заготовки деталей машин получают заливкой расплавленного металла в формы. Полученная литая деталь называется отливкой.

а - раздельная модель отливки, б - разъемный стержневой ящик, в - отливка втулки с литниковой системой, г - стержень.

Технологический процесс литейного производства состоит из подготовки формовочных и стержневых смесей, изготовления форм и стержней, плавки металла , сборки и заливки формы, удаления отливок из формы и в отдельных случаях термической обработки отливок .

Литье применяют для изготовления самых различных деталей: станин металлорежущих станков, блоков цилиндров автомобилей, тракторов, поршней, поршневых колец, радиаторов отопления и т. п.

Отливки изготовляют из чугуна, стали, медных, алюминиевых, магниевых и цинковых сплавов, обладающих необходимыми технологическими и техническими свойствами. Наиболее распространенным материалом является чугун - самый дешевый материал, обладающий высокими литейными свойствами и низкой температурой плавления.

Фасонные отливки с повышенной прочностью и высокой ударной.вязкостью изготовляют из углеродистых сталей марок 15Л, 35Л, 45Л и т. д. Буква Л означает литую сталь, а цифры - среднее содержание углерода в сотых долях процента.

Литейную форму, полость которой представляет собой отпечаток будущей отливки, получают из формовочной смеси при помощи деревянной или металлической модели.

В качестве материала для формовочных; смесей применяют бывшую в употреблении формовочную землю (горелую), свежие составляющие - кварцевый песок, формовочную глину, модифицирующие добавки, связующие вещества (смолы, жидкое стекло и пр.), пластификаторы, разрыхлители и прочие. Выбор их зависит от геометрии отливки, ее веса и толщины стенок, химического состава заливаемого металла.

Стержни, предназначенные для получения в отливках полостей и отверстий, изготовляют из стержневой смеси в специальных ящиках.

Стержневая смесь обычно состоит из малоглинистого песка и связующих веществ.

В индивидуальном и мелкосерийном производстве литейные формы выполняют ручным способом (формуют), используя деревянные модели, в поточно-массовом производстве - на специальных машинах (формовочных), по модельным плитам (металлическая плита с прочно закрепленными на ней частями модели) и в двух опоках.

Чугун плавят в вагранках (шахтных печах), сталь - в конверторах, дуговых и индукционных электрических печах, а цветное литье - в плавильных тигельных горнах. Металл, выплавленный в вагранках, сначала разливается в ковши, а затем через литниковую систему (систему каналов в форме) - в форму.

После заливки и охлаждения отливку вынимают (выбивка) из формы, удаляют прибыли (питатели), очищают от заусенцев, остатков литниковой системы и пригоревшей земли.

Специальные способы литья. Кроме литья в земляные формы, на заводах в настоящее время применяют следующие прогрессивные способы литья: литье в металлические формы (кокили) центробежное литье, литье под давлением, точное литье по выплавляемым моделям, литье в оболочковые формы. Эти способы позволяют получать детали более точной формы и с небольшими припусками на механическую обработку.

Литье в металлические формы. Этот способ состоит в том, что расплавленный металл заливают не в разовую земляную форму, а в постоянную металлическую, изготовленную из чугуна, стали или других сплавов. Металлическая форма выдерживает от нескольких сот до десятков тысяч заливок.

Центробежное литье. При этом способе расплавленный металл заливается в быстровращающуюся металлическую форму и под действием центробежных сил прижимается к ее стенкам. Металл обычно заливают на машинах с вертикальной, горизонтальной и наклонной осью вращения.

Центробежное литье применяют для изготовления втулок, колец, труб и т. п.

Литье под давлением - это способ получения фасонных отливок в металлических формах, при котором металл в форму заливают под принудительным давлением. Таким способом получают мелкие фасонные тонкостенные детали автомобилей, тракторов, счетных машин и т. д. Материалом для отливок служат медные, алюминиевые и цинковые сплавы.

Литье под давлением производится на специальных машинах.

Точное литье по выплавляемым моделям. Этот способ основан на применении модели из смеси легковыплавляемых материалов - воска, парафина и стеарина. Литье осуществляется следующим образом. По металлической прессформе с большой точностью изготовляют восковую модель, которую склеивают в блоки (елочки) с общей литниковой системой и облицовывают огнеупорным формовочным материалом. В качестве облицовочного материала применяют смесь, состоящую из кварцевого песка, графита, жидкого стекла и других компонентов. При высыхании и обжиге формы облицовочный слой образует прочную корку, которая дает точный отпечаток восковой модели. После этого восковая модель выплавляется, а форма прокаливается. Расплавленный металл заливают в форму обычным способом. Точным литьем изготовляют мелкие фасонные и сложные детали автомобилей, велосипедов, швейных машин и т. п.

Литье в оболочковые формы является разновидностью литья в разовые земляные формы. Подогретая до 220-250°С металлическая модель будущей отливки обсыпается из бункера формовочной смесью, состоящей из мелкого кварцевого песка (90-95%) и термореактивной бакелитовой смолы (10-5%). Под действием тепла смола в слое смеси, соприкасающаяся с плитой, сначала плавится, затем затвердевает, образуя на модели прочную песчано-смоляную оболочку. После просушки оболочковую полуформу соединяют с соответствующей ей другой полуформой, в результате чего получается прочная форма. Корковое литье применяют для отливки стальных и чугунных деталей станков, машин, мотоциклов и т. д.

Основными дефектами отливок в литейном производстве являются: коробление - изменение размеров и контуров отливки под влиянием усадочных напряжений; газовые раковины - пустоты, расположенные на поверхности и внутри отливок, которые возникают от неправильного режима плавки; усадочные раковины - закрытые или открытые пустоты в отливках, получаемые в результате усадки металла при охлаждении.

Незначительные дефекты в отливках устраняют заваркой жидким металлом, пропиткой термореактивными смолами и термической обработкой.

Обработка металла давлением. При обработке металла давлением широко используют пластические свойства металлов, т. е. их способность в определенных условиях под действием приложенных внешних сил изменять, не разрушаясь, размеры и форму и сохранять полученную форму после прекращения действия сил. При обработке давлением изменяются также структура и механические свойства металла.

Чтобы повысить пластичность металла и уменьшить величину работы, затрачиваемой на деформацию, перед обработкой давлением металл необходимо нагреть. Металл обычно нагревают при определенной температуре, зависящей от его химического состава. Для нагрева применяют горны, нагревательные пламенные печи и электронагревательные установки. Большую часть обрабатываемого металла нагревают в камерных и методических (непрерывных) печах с газовым обогревом. Для подогрева под прокатку крупных стальных слитков, поступающих неостывшими из сталеплавильных цехов, используют нагревательные колодцы. Цветные металлы и сплавы нагревают в электрических печах. Нагрев черных металлов производится двумя способами: индукционным и контактным. При индукционном способе заготовки нагреваются в индукторе (соленоиде), по которому пропускают ток высокой частоты, за счет тепла, возникаемого под действием индукционного тока. При контактном электронагреве ток большой величины пропускают через нагреваемую заготовку. Тепло выделяется в результате омического сопротивления нагреваемой заготовки.

К видам обработки металлов давлением относятся прокатка, волочение, прессование, свободная ковка и штамповка.

Прокатка - самый массовый способ обработки металлов давлением, осуществляемый путем пропуска металла в зазор между вращающимися в разных направлениях валками, вследствие чего уменьшается площадь поперечного сечения исходной заготовки, а в ряде случаев изменяется ее профиль. Схема прокатки изображена на рис. 31.

Прокаткой получают не только готовые изделия (рельсы, балки), но и сортовой прокат круглого, квадратного, шестигранного профилей, трубы и т. п. Прокатка производится на блюмингах, слябингах, сортовых, листовых, трубопрокатных и других станах, на гладких и калиброванных валках с ручьями (калибрами) определенной формы. На блюмингах из крупных и тяжелых слитков прокатывают заготовки квадратного сечения, называемые блюмсами, на слябингах - заготовки прямоугольного сечения (стальные диски), называемые слябами .

Сортовые станы используют для прокатки из блюмсов сортовых и фасонных профилей, листовые станы - для листовой прокатки из слябов в горячем и холодном состоянии, а трубопрокатные станы - для прокатки бесшовных (цельнотянутых) труб. Бандажи, дисковые колеса, шарики для подшипников, зубчатых колес и т. п. прокатывают на станах специального назначения

Волочение. Этот способ состоит в протягивании металла в холодном состоянии через отверстие (фильер) в матрице, поперечное сечение которого меньше, чем у обрабатываемой заготовки. При волочении площадь поперечного сечения уменьшается, благодаря чему длина заготовки увеличивается. Волочению подвергают черные и цветные металлы и сплавы в прутках, проволоке и трубах. Волочение позволяет получать материалы точных размеров и с высоким качеством поверхности.

Волочением получают сегментные шпонки, стальную проволоку диаметром 0,1мм, иглы для медицинских шприцев и т. д.

Волочение производят на волочильных станах. В качестве инструмента применяют волочильные доски и матрицы, изготовляемые из инструментальной стали и твердых сплавов.

Прессование. Оно осуществляется продавливанием металла через отверстие матрицы. Профиль прессованного металла соответствует конфигурации отверстия матрицы, оставаясь постоянным по всей длине. Прессованием изготовляют прутки, трубы и различные сложные профили из таких цветных металлов, как олово, свинец, алюминий, медь и т. д. Прессуют обычно на гидравлических прессах усилием до 15тыс. т.

Ковка. Операция, при которой металлу ударами инструментов придают требуемую внешнюю форму, называется ков кой . Ковку, осуществляемую под плоскими бойками, называют свободной, так как изменение формы металла при этом виде обработки не ограничивается стенками особых форм (штампов) и металл «течет» свободно. Свободной ковкой можно изготовлять самые тяжелые поковки - вплоть до 250 т. Свободная ковка разделяется на ручную и машинную. Ручную ковку в основном применяют при изготовлении мелких изделий или при ремонтных работах. Машинная ковка - это основной вид свободной ковки. Она выполняется на ковочных пневматических или паровоздушных молотах, реже - на ковочных гидравлических прессах. При ручной ковке инструментом являются наковальня, кувалда, зубило, пробойники, клещи и т. д. При машинной ковке рабочим инструментом служат бойки ковочных молотов и прессов, вспомогательным - раскатки, прошивки и клеши. Кроме вспомогательного инструмента, применяют машины, называемые манипуляторами, предназначенные для удержания, перемещения и кантовки тяжелых заготовок в процессе ковки.

Основными операциями технологического процесса свободной ковки являются: осадка (уменьшение высоты заготовки), вытяжка (удлинение заготовки), прошивка (получение отверстий), рубка, сварка и т. п.

Штамповка. Способ изготовления изделий давлением при помощи штампов, т. е. металлических форм, очертания и форма которых соответствует очертанию и форме изделий, называют штамповкой. Различают объемную и листовую штамповку. При объемной штамповке поковки штампуют на штамповочных и ковочных прессах. Штампы состоят из двух частей, каждая из которых имеет полости (ручьи). Очертания ручьев соответствуют форме изготовляемой поковки. Поковки можно штамповать и на паровоздушных молотах одинарного и двойного действия падающей частью (бабой) весом до 20-30 т и кривошипных прессах с усилием до 10 тыс. т. При штамповке нагретая заготовка под действием удара молота деформируется и заполняет полость штампа, излишек металла (облой) поступает в специальную канавку и затем обрезается на прессе. Мелкие поковки штампуют из прутка длиной до 1200мм, а крупные - из штучных заготовок.

Листовой штамповкой изготовляют тонкостенные детали из листов и лент различных металлов и сплавов (шайбы, сепараторы подшипников, кабины, кузовы, крылья и другие детали автомобилей и приборов). Листовой металл толщиной до 10мм штампуют без нагрева, более 10мм - с нагревом до ковочных температур.

Листовую штамповку обычно производят на кривошипных и листоштамповочных прессах простого и двойного действия.

В условиях массового производства подшипников, болтов, гаек и других деталей широкое применение находят специализированные кузнечные машины. Наибольшее распространение получила горизонтально-ковочная машина.

Основные дефекты проката и поковок . При прокатке заготовок могут возникать следующие дефекты: трещины, волосовины, плены, закаты.

Трещины образуются из-за недостаточного прогрева металла или при большом обжатии в валках.

Волосовины появляются на поверхности проката в виде вытянутого волоса в тех местах металла, где были газовые пузыри, раковины.

Плены возникают при прокатке некачественных слитков.

Закаты - это дефекты наподобие складок, получающиеся при неправильном прокате.

В кузнечно-штамповочном производстве могут быть следующие виды брака: забоины, недоштамповка, перекос и т. д.

Забоины, или вмятины, - это простые повреждения поковки, образующиеся при неточной укладке заготовки в ручей штампа перед ударом молота.

Недоштамповка, или «недобой», - это увеличение поковки по высоте, возникающее из-за недостаточного количества сильных ударов молота или из-за остывания заготовки, в результате чего металл теряет пластичность.

Перекос, или смещение, - это вид брака, при котором верхняя половина поковки смещается или перекашивается относительно нижней.

Устранение дефектов и брака достигается правильным выполнением технологических процессов прокатки, ковки и штам повки.

Сварка металлов. Сварка - один из важнейших технологических процессов, применяемых во всех областях промышленности. Сущность процессов сварки состоит в получении неразъемного соединения стальных деталей путем местного нагрева до плавления или до пластического состояния. При сварке плавлением металл расплавляется по кромкам соединяемых частей, перемешивается в жидкой ванне и затвердевает, образуя после охлаждения шов. При сварке в пластическом состоянии соединяемые части металла нагревают до размягченного состояния и под давлением соединяют в одно целое. В зависимости от видов энергии, применяемой для нагрева металла, различают химическую и электрическую сварку.

Химическая сварка. При этом виде сварки источником нагрева служит тепло, получаемое при химических реакциях. Она подразделяется на термитную и газовую сварку.

Термитная сварка основана на использовании в качестве горючего материала термита, представляющего собой механическую смесь алюминиевого порошка и железной окалины, развивающего при горении температуру до 3000°С. Этот вид сварки применяют для сварки трамвайных рельсов, концов электрических проводов, стальных валов и других деталей.

Газовую сварку осуществляют нагревом металла пламенем горючего газа, сжигаемого в струе кислорода. В качестве горючих газов при газовой сварке и резке металлов используют ацетилен, водород, природный газ и т. п., но наиболее распространенным является ацетилен. Максимальная температура газового пламени 3100° С.

Аппаратурой для газовой сварки служат стальные баллоны и сварочные горелки со сменными наконечниками, а материалом - конструкционные малоуглеродистые стали. В качестве присадочного материала для сварки сталей используют специальную сварочную проволоку.

Газовой сваркой можно производить сварку чугунов, цветных металлов, наплавку твердых сплавов, а также кислородную резку металлов.

Электрическая сварка. Она подразделяется на дуговую и контактную сварку. При дуговой сварке энергия, необходимая для нагрева и расплавления металла, выделяется электрической дугой, а при контактной электросварке-при прохождении тока по свариваемой детали.

Дуговую электросварку осуществляют на постоянном и переменном токе. Источником тепла для такого вида сварки является электрическая дуга.

Сварочная дуга питается постоянным током от сварочных машин-генераторов, переменным током - от сварочных трансформаторов.

Для дуговой сварки применяют металлические электроды, покрываемые специальной обмазкой для защиты расплавленного металла от кислорода и азота воздуха, и угольные.

Дуговая сварка может быть ручной и автоматической. Автоматическая сварка осуществляется на сварочных автоматах. Она обеспечивает получение качественного сварного шва и резко увеличивает производительность труда.

Флюсовая защита в этом процессе позволяет без потерь металла повысить силу тока и тем самым увеличить производительность в пять и более раз по сравнению с ручной дуговой сваркой.

Контактная сварка основана на использовании тепла, выделяемого при прохождении электрического тока через свариваемый участок детали. Свариваемые детали в месте контакта нагревают до сварочного состояния, после чего под давлением получают неразъемные соединения.

Контактная сварка делится на стыковую, точечную и роликовую.

Стыковая сварка - это разновидность контактной сварки. Она используется для сварки рельсов, стержней, инструмента, тонкостенных труб и т. д.

Точечная сварка производится в виде точек в отдельных местах деталей. Она широко применяется для сварки из листового материала кузовов легковых автомобилей, обшивки самолетов, железнодорожных вагонов и т. п.

Роликовая, или шовная, сварка осуществляется при помощи роликовых электродов, подключаемых к сварочному трансформатору. Она позволяет получать на листовом материале сплошной и герметически плотный сварной шов. Роликовую сварку используют для изготовления масляных, бензиновых и водяных баков, труб из листовой стали.

Дефекты сварки. Дефектами, возникающими при сварке, могут быть непровары, шлаковые включения, трещины в сварочном шве и основном металле, коробление и т. д.

Обработка металла резанием. Основное назначение такой обработки - получение необходимых геометрических форм, точности размеров и чистоты поверхности, заданных чертежом.

Лишние слои металла (припуски) с заготовок снимаются режущим инструментом на металлорежущих станках. В качестве заготовок применяют отливки, поковки и заготовки из сортового проката черных и цветных металлов.

Резание металлов является одним из наиболее распространенных способов механической обработки деталей машин и приборов. Обработка деталей на металлорежущих станках осуществляется в результате рабочего движения обрабатываемой заготовки и режущего инструмента, при котором инструмент снимает стружку с поверхности заготовки.

Металлорежущие станки подразделяются на группы в зависимости от способов обработки, типов и типоразмеров.

Токарные станки предназначаются для выполнения разнообразных токарных работ: точения цилиндрических, конических и фасонных поверхностей, растачивания отверстий, нарезания резьбы резцом, а также обработки отверстий зенкерами и развертками.

Для работы на токарных станках применяют различные виды режущего инструмента, но основными из них являются токарные резцы.

Сверлильные станки используют для получения в заготовках отверстий, а также для зенкерования, развертывания и нарезания резьбы метчиками.

Для работы на сверлильных станках применяют такой режущий инструмент, как сверла, зенкеры, развертки и метчики.

Сверло - это основной режущий инструмент.

Зенкер служит для увеличения диаметра предварительно просверленных отверстий.

Развертки предназначаются для выполнения точных и чистовых отверстий, предварительно обработанных сверлом или зенкером.

Метчики используют при изготовлении внутренних резьб.

Фрезерные станки предназначаются для выполнения самых разнообразных работ - от обработки плоских поверхностей до обработки различных фигур. Инструментом для фрезерования служат фрезы.

Строгальные станки применяют для обработки плоских и фасонных поверхностей, а также для прорезания прямых канавок у деталей. При работе на строгальных станках металл снимают только во время рабочего хода, так как обратный ход - холостой. Скорость обратного хода в 1,5-3 раза больше скорости рабочего хода. Строгание металла осуществляется резцами.

Шлифовальные станки используют для отделочных операций, обеспечивающих высокую точность размеров и качество обрабатываемых поверхностей. В зависимости от видов шлифования станки подразделяют на круглошлифовальные - для наружного шлифования, внутришлифовальные - для внутреннего шлифования и плоскошлифовальные - для шлифования плоскостей. Детали шлифуют шлифовальными кругами.

Под слесарными работами понимают ручную обработку металла резанием. Они подразделяются на основные, сборочные и ремонтные.

Основные слесарные работы производятся с целью придания обрабатываемой детали форм, размеров, необходимой чистоты и точности, заданных чертежом.

Сборочные слесарные работы выполняются при сборке узлов из отдельных деталей и сборке машин и приборов из отдельных узлов.

Ремонтные слесарные работы осуществляются с тем, чтобы продлить срок службы металлорежущих станков, машин, кузнечных молотов и другого оборудования. Сущность таких работ заключается в исправлении или замене изношенных и поврежденных деталей.

Электрические методы обработки металлов. К ним относятся электроискровой и ультразвуковой методы. Электроискровой метод обработки металлов применяют для изготовления (прошивки) отверстий различной формы, извлечения из отверстий деталей сломанных метчиков, сверл, шпилек и т. п., а также для заточки твердосплавных инструментов. Обработке подвергаются твердые сплавы, закаленные стали и другие твердые материалы, которые не могут быть обработаны обычными способами.

Этот метод основан на явлении электрической эрозии, т. е. на разрушении металла под действием электроискровых разрядов.

Сущность электроискрового метода обработки металлов состоит в том, что к инструменту и изделию, служащим электродами, подводится электрический ток определенной силы и напряжения. При сближении электродов на определенном расстоянии между ними под действием электрического тока происходит пробой этого промежутка (зазора). В вместе пробоя возникает высокая температура, расплавляющая металл и выбрасывающая его в виде жидких частиц. Если к заготовке подвести положительное напряжение (анод), а к инструменту - отрицательное (катод), то при искровом разряде происходит, вырыв металла из заготовки. Чтобы раскаленные частицы, вырванные разрядом из электрода-изделия, не перескакивали на электрод-инструмент и не искажали его, искровой промежуток заполняют керосином или маслом.

Инструмент-электрод выполняют из латуни, меднографитовой массы и других материалов. При изготовлении отверстий электроискровым методом можно получать любой контур в зависимости от формы инструмента-катода.

Кроме электроискрового метода обработки металлов, в промышленности применяют ультразвуковой метод, основанный на использовании упругих колебаний среды со сверхзвуковой частотой (частота колебаний более 20 тыс. гц). При помощи ультразвуковых установок можно обрабатывать твердые сплавы, драгоценные камни, закаленную сталь и т. д

Уже много десятилетий большой популярностью для изготовления различных изделий пользуется обработка цветных металлов. Технологии и современные методы производства позволяют ускорить сам процесс, а также повысить качество конечного продукта.

Обладают характерным оттенком и высокой пластичностью. Их добыча осуществляется из земной породы, где они находятся в очень небольшом количестве. Обработка цветных металлов затратное по силам и финансам производство, но оно приносит огромную прибыль. Изделия из них обладают уникальными характеристиками, недоступными при их изготовлении из чёрных материалов.

Все цветные металлы делятся на несколько групп по своим свойствам:

  • тяжёлые (олово, цинк, свинец);
  • лёгкие (титан, литий, натрий, магний);
  • малые (сурьма, мышьяк, ртуть, кадмий);
  • рассеянные (германий, селен, теллур);
  • драгоценные (платина, золото, серебро);
  • радиоактивные (плутоний, радий, уран);
  • тугоплавкие (ванадий, вольфрам, хром, марганец).

Выбор группы используемых в производстве цветных металлов зависит от желаемых свойств конечного изделия.

Основные свойства

– пластичный металл с хорошей теплопроводностью, но низким уровнем сопротивления электричеству. Обладает золотистым цветом с розовым отливом. Её редко используют самостоятельно, чаще добавляют в сплавы. Применяют металл для изготовления приборов, машин, электрической техники.

– самый популярный сплав с медью, производится добавлением олова и химических веществ. Полученное сырьё обладает прочностью, гибкостью, пластичностью, его легко ковать и оно с трудом поддаётся износу.

– хорошо проводит электричество, относится к пластичным металлам. Обладает серебристым оттенком и малым весом. Непрочный, но стойкий к коррозии. Используется в военном деле, пищевой промышленности и на смежных производствах.

– довольно хрупкий цветной металл, но стойкий к коррозии и пластичный, если его нагреть до температуры 100–150 ºC. При его помощи создаётся устойчивое к коррозии покрытие на изделиях, а также различные стальные сплавы.

При выборе цветного металла для будущей детали необходимо учитывать его свойства, знать все преимущества и недостатки, а также рассмотреть варианты сплавов. Это позволит создать максимально качественное изделие с заданными характеристиками.

Использование защитного покрытия

Чтобы сохранить первоначальный вид и функциональность изделия, а также защитить его от атмосферной коррозии, применяются специальные покрытия. Обработка изделия краской или грунтовкой – наиболее простой и эффективный метод защиты.

Для достижения большего эффекта на очищенный металл наносят грунтовку в 1–2 слоя. Это защищает от разрушения и помогает краске лучше держаться на изделии. Выбор средств зависит от вида цветного металла.

Обработка алюминия производится грунтовками на основе цинка или уретановыми красками. Латунь, медь и бронза не требуют дополнительной обработки. При возникновении повреждений проводится полировка и нанесение эпоксидного или полиуретанового лака.

Способы нанесения защитного слоя

Выбор методики нанесения покрытия зависит от вида цветного металла, финансирования предприятия и желаемых характеристик изделия.

Самым популярным способом обработки цветных металлов для защиты от повреждений считается гальваника. На поверхность изделия наносится защитный слой из специального состава. Его толщина регулируется в зависимости от температурного режима, при котором будет эксплуатироваться деталь. Чем более резкий климат, тем больше слой.

Особенно популярен гальванический метод обработки деталей в строительстве домов и машин. Существует несколько разновидностей покрытия.

– проводится с использованием хрома и сплавов на его основе. Деталь становится блестящей, металл после обработки устойчив к действию высоких температур, коррозии и износу. Особенно популярен метод в промышленном производстве.

– проводится с использованием тока, действие которого вызывает образование плёнки при обработке алюминия, магния и подобных им сплавов. Конечное изделие устойчиво к действию электричества, коррозии и воды.

– проводится с использованием смеси никеля и фосфора (до 12%). После покрытия детали подвергают термообработке, что увеличивает стойкость к коррозии и износу.

Метод гальванической обработки деталей довольно дорогостоящий, поэтому его применение для малых производств затруднено.

Дополнительные методы

Металлизация напылением относится к бюджетным вариантам. На поверхность изделия наносится расплавленная смесь при помощи воздушной струи.

Существует также горячий метод нанесения защитного слоя. Детали погружаются в ванну, внутри которой находится расплавленный металл.

При диффузионном методе защитный слой создаётся в условиях повышенной температуры. Таким образом, состав проникает в изделие, чем повышает его устойчивость к внешним воздействиям.

Нанесение на цветной металл, из которого выполнена деталь, другого, более стойкого, называют плакированием. Процесс подразумевает литьё, совместную прокатку, пресс и дальнейшую ковку изделия.

Современные технологии обработки

Существует несколько основных методов обработки цветных металлов. Они делятся на несколько групп в зависимости от технологии и температурного режима: горячие и холодные, механические и термические.

Самые популярные из них:

  • сварка ( , химическая, газовая, дуговая, электрическая, контактная);


Случайные статьи

Вверх