Общая теория относительности описывает. Теория относительности - что это такое? Постулаты теории относительности. Время и пространство в теории относительности

Теория относительности Эйнштейна — всегда представлялась чем то абстрактным и непонятным для меня. Попробуем описать теорию относительности Эйнштейна простыми словами. Представьте, как вы находитесь на улице в сильный дождь и ветер дует вам на спину. Если вы начнете быстро бежать, капли дождя не будут попадать на спину. Капли будут медленнее или вовсе не достигать вашей спины, это научно доказанный факт, да и сами вы сможете проверить это в ливень. А теперь представим, если бы вы обернулись и побежали против ветра с дождем, капли будут сильнее попадать на одежду и лицо, чем если бы вы просто стояли.

Ранее ученые думали, что свет действует как дождь в ветреную погоду. Они думали, что если Земля двигается вокруг Солнца, а Солнце двигается вокруг галактики, то возможно измерить скорость их движения в пространстве. По их мнению, все что им остается сделать это измерить скорость света и то как она изменяется относительно двух тел.

Ученые это сделали и обнаружили что-то очень странное . Скорость света была такой же, несмотря ни на что, как бы тела не двигались и не важно в каком направлении проводить измерения.

Это было очень странно. Если брать ситуацию с ливнем, то при обычных обстоятельствах капли дождя будут воздействовать на вас сильнее или слабее в зависимости от ваших передвижений. Согласитесь, было бы очень странно, если бы ливень с одинаковой силой дул вам в спину, как при беге, так и при остановке.

Ученые обнаружили, что свет не имеет такие же свойства, как капли дождя или что-то другое во вселенной. Независимо от того, как быстро вы двигаетесь, и независимо от того, в каком направлении вы направляетесь, скорость света всегда будет одинаковой . Это очень запутанно и только Альберт Эйнштейн смог пролить свет на эту несправедливость.

Эйнштейн и еще один ученый, Хендрик Лоренц выяснили, что есть только один способ объяснить, как все это может быть. Это возможно только в том случае, если время замедляется.

Представьте, что произойдет, если время замедлится для вас, а вы при этом не знаете, что двигаетесь медленнее.Вам будет казаться, что все остальное происходит быстрее , всё вокруг вас будут двигаться, как в фильме в быстрой перемотке.

Итак, теперь давайте представим, что вы снова при ливне с ветром. Как такое возможно, что дождь будет воздействует на вас одинаково, даже если вы бежите? Выходит если бы вы пытались убежать от дождя, то ваше время бы замедлилось, а дождь — ускорился . Капли дождя попадали бы вам на спину с такой же скоростью. Ученые называют это расширение времени. Независимо от того, насколько быстро вы двигаетесь, ваше время замедляется, по крайней мере для скорости света это выражение справедливо.

Двоякость измерений

Другое, что Эйнштейн и Лоренц выяснили, это то, что два человека при разных обстоятельствах могут получить разные расчетные значения и самое странное, что они оба будут правы. Это еще один побочный эффект того, что свет всегда движется с одинаковой скоростью.

Проведем мысленный эксперимент

Представьте, что вы стоите в центре своей комнаты, и вы установили лампу прямо посередине комнаты. Теперь представьте, что скорость света очень медленна, и вы можете видеть, как он распространяется, представьте, что вы включили лампу.

Как только вы включите лампу, свет начнет расходится и освещать. Поскольку обе стены находятся на одном и том же расстоянии, свет достигнет обе стены одновременно.

Теперь представьте, что в вашей комнате есть большое окно, и ваш знакомый проезжает мимо. Он увидит уже другое. Для него это будет выглядеть так, как будто ваша комната движется вправо и когда вы включите лампу, он увидит, что левая стена движется к свету. а правая стена отодвигается от света. Он увидит, что свет сначала попал в левую стену, а потом на правую. Ему покажется, что свет не осветил обе стены одновременно.

Согласно теории относительности Эйнштейна, обе точки зрения будут правы . С вашей точки зрения, свет попадает в обе стены одновременно. С точки зрения вашего знакомого это не так. В этом нет ничего плохого.

Вот почему ученые говорят, что «одновременность относительна». Если вы измеряете две вещи, которые должны произойти одновременно, то тот, кто движется с другой скоростью или в другом направлении, не сможет их измерить одинаково с вами.

Нам это кажется очень странным, потому что скорость света для нас мгновенная, и мы двигаемся очень медленно по сравнению с ней. Поскольку скорость света настолько велика, мы не замечаем скорость распространения света, до тех пор пока не будем проводить специальные эксперименты.

Чем быстрее движется предмет, тем он короче и меньше

Еще один очень странный побочный эффект того, что скорость света не изменяется. При скорости света движущиеся вещи становятся короче.

Опять же, давайте представим, что скорость света очень медленная. Представьте, что вы едете в поезде, и вы установили лампу посередине вагона. Теперь представьте, что вы включили лампу, как в комнате.

Свет будет распространяться и одновременно достигнет стен спереди и сзади вагона. Таким образом вы можете даже измерить длину вагона, измерив, сколько времени потребовалось свету достигнуть обеих сторон.

Проведем расчеты:

Представим себе, что для прохождения 10 метров требуется 1 секунда и чтобы свет распространился от лампы до стены вагона потребуется 1 секунда. Это значит, что лампа находится на расстоянии 10 метров от обеих сторон вагона. Так как 10 + 10 = 20, то значит длина вагона 20 метров.

Теперь давайте представим, что ваш знакомый находится на улице, наблюдая, как поезд проходит мимо. Помните, что он видит вещи по другому. Задняя стена вагона движется к лампе, а передняя отодвигается от нее. Таким образом для него свет не будет касаться передней и задней части стены вагона одновременно. Сначала свет дойдет до задней части, а потом до передней.

Таким образом если вы и ваш знакомый измерите скорость распространения света от лампы до стен, вы получите разные значения, при этом с точки зрения науки оба расчета будут верны. Только для вас, согласно измерениям, длина вагона будет одного размера, а для знакомого длина вагона будет меньше .

Помните, все дело в том, каким образом и при каких условиях вы производите измерения. Если бы вы оказались внутри летящей ракеты, которая движется со скоростью света, вы бы не почувствовали ничего необычного, в отличие от измеряющих ваше движение людей на земле. Вы не смогли бы понять, что время для вас идет медленнее или что передняя и задняя часть корабля вдруг стали ближе друг к другу.

При этом, если бы вы летели на ракете, то вам казалось бы так, как будто все планеты и звезды пролетают мимо вас со скоростью света. В таком случае если вы попробуете измерить их время и размер, то по логике для них время должно замедлится, а размеры уменьшаться, правильно?

Все это было очень странно и непонятно, но Эйнштейн предложил решение и объединил все эти явления в одну теорию относительности .

Долгое время ни один ученый в мире не мог сравниться с Исааком Ньютоном по тому влиянию, которое тот оказал на представления человечества о природе. Такой человек появился на свет в 1879 г. в немецком городе Ульм, и звали его Альберт Эйнштейн.

Эйнштейн родился в семье торговца электротехническими товарами, учился в обычной гимназии в Мюнхене, не отличался особым прилежанием, затем не смог сдать вступительные экзамены в цюрихский Политехникум и заканчивал кантональную школу в городе Аарау. Только со второй попытки он поступил в Политехникум. Молодому человеку с трудом давались языки и история, зато он рано проявил большие способности к математике, физике и музыке, став неплохим скрипачом.

Летом 1900 г. Эйнштейн получил диплом преподавателя физики. Только через два года по рекомендации друзей он устроился на постоянную работу экспертом федерального патентного бюро в Берне. Эйнштейн проработал там с 1902 по 1909 г. Служебные обязанности оставляли ему достаточно времени для размышлений над научными проблемами. Наиболее удачным оказался для Эйнштейна 1905 г. – 26‑летний физик опубликовал пять статей, которые впоследствии были признаны шедеврами научной мысли. Работа «Об одной эвристической точке зрения на возникновение и превращение света» содержала гипотезу о световых квантах – элементарных частицах электромагнитного излучения. Гипотеза Эйнштейна позволила объяснить фотоэлектрический эффект: появление тока при освещении вещества коротковолновым излучением. Эффект был открыт в 1886 г. Герцем и не укладывался в рамки волновой теории света. За эту работу позднее Эйнштейн был удостоен Нобелевской премии. Открытие Эйнштейна создало идейную основу для модели атома Резерфорда – Бора, согласно которой свет излучается и поглощается порциями (квантами), и концепции «волн материи» Луи де Бройля. Незадолго до того Макс Планк установил, что тепло также излучается квантами. Был осуществлен синтез двух, казалось, несовместимых точек зрения на природу света, высказанных в свое время Гюйгенсом и Ньютоном.

Опубликованную в том же 1905 г. статью Эйнштейна «К электродинамике движущихся тел» можно рассматривать как введение в специальную теорию относительности, которая произвела переворот в представлениях о пространстве и времени.

Естественнонаучные представления о пространстве и времени прошли длинный путь развития. Долгое время основными были обыденные представления о пространстве и времени, как о каких‑то внешних условиях бытия, в которые помещена материя и которые сохранились бы, если бы даже материя исчезла. Такой взгляд позволил сформулировать концепцию абсолютного пространства и времени, получившую свою наиболее отчетливую формулировку в работе Ньютона «Математические начала натуральной философии».

Специальная теория относительности, созданная в 1905 г. Эйнштейном, стала результатом обобщения и синтеза классической механики Галилея – Ньютона и электродинамики Максвелла – Лоренца. Она описывает законы всех физических процессов при скоростях движения, близких к скорости света, но без учета поля тяготения. При уменьшении скоростей движения она сводится к классической механике, которая оказывается ее частным случаем. Исходным пунктом этой теории стал принцип относительности, из которого следует, что между покоем и движением – если оно равномерно и прямолинейно – нет никакой принципиальной разницы. Понятия покоя и движения приобретают смысл лишь тогда, когда указана точка отсчета. В соответствии со специальной теорией относительности, которая объединяет пространство и время в единый четырехмерный пространственно‑временной континуум, пространственно‑временные свойства тел зависят от скорости их движения. Пространственные размеры сокращаются в направлении движения при приближении скорости тел к скорости света в вакууме (300 тысяч км/с), временные процессы замедляются в быстродвижущихся системах, масса тела увеличивается.

Находясь в сопутствующей системе отсчета, т. е. двигаясь параллельно и на одинаковом расстоянии от измеряемой системы, нельзя заметить эти эффекты, которые называются релятивистскими, так как все используемые при измерениях пространственные масштабы и части будут меняться точно таким же образом. Согласно принципу относительности, все процессы в инерциальных системах отсчета протекают одинаково. Но если система является неинерциальной, то релятивистские эффекты можно заметить и изменить. Так, если воображаемый релятивистский корабль отправится к далеким звездам, то после возвращения его на Землю времени в системе корабля пройдет меньше, чем на Земле, и это различие будет тем больше, чем дальше совершается полет, а скорость корабля будет ближе к скорости света. Теория Эйнштейна использовала в качестве базового положение, что во Вселенной ничто не может двигаться быстрее света в вакууме и скорость света остается постоянной для всех наблюдателей, независимо от скорости их собственного перемещения в пространстве.

Статья «Зависит ли инерция тела от содержания в нем энергии?» завершала создание релятивистской (от лат. relativus – «относительный») теории. Здесь впервые была доказана связь между массой и энергией, в современных обозначениях – E = mc2. Эйнштейн писал: «…если тело отдает энергию E в виде излучения, то его масса уменьшается на E/c2… Масса тела есть мера содержащейся в нем энергии». Это открытие вышло за пределы физики, техники и философии и до сегодняшнего дня косвенно определяет судьбу человечества. Так, атомная энергия – это, собственно говоря, превратившаяся в энергию масса.

Появление столь эпохальных работ не принесло Эйнштейну немедленного признания, он все еще вынужден был продолжать работать в патентном бюро. Только весной 1909 г. Эйнштейна избрали профессором теоретической физики в цюрихском Политехникуме и он смог уйти из бюро. В 1913 г. ученый был избран членом Прусской академии наук. В Берлине Эйнштейн получил благоприятные условия для продолжения своей научной работы. В 1916 г. он опубликовал «Основы общей теории относительности». Идеи Эйнштейна имели в глазах ученых‑теоретиков, а еще больше в его собственных глазах, не столько узкопрактический, сколько философский смысл. Он создал гармоничную картину Вселенной.

В 1921 г. Эйнштейн получил Нобелевскую премию за «заслуги в области теоретической физики и в особенности за открытие закона фотоэлектрического эффекта». Присуждение этой премии еврею привело к резкому росту антисемитских настроений в Германии. Нападки на Эйнштейна усилились, однако он продолжал активную научную работу, читал много публичных лекций.

В 1932 г. физик отправился в очередную поездку в США и домой уже не вернулся – там к власти пришел Гитлер, и ничего хорошего всемирно признанный гений от него не ожидал. С этих пор Эйнштейн работал в Америке. В 1939 г. он направил письмо президенту Рузвельту с призывом как можно быстрее создать атомную бомбу, чтобы исключить монополию со стороны Германии. Последняя так и не получила это страшное оружие, зато проект, поддержанный правительством США, как известно, завершился «успешно», и в этом есть немалая заслуга и Эйнштейна. Впрочем, он решительно осудил бомбардировку Хиросимы и Нагасаки. Скончался ученый в Принстоне в 1955 г. Он запомнился современникам не только теорией относительности, которую, по правде говоря, хотя бы приблизительно понимает ничтожный процент населения Земли, но и чудаковатостью и неподражаемым юмором.

Сто лет назад, в 1915 году, молодой швейцарский учёный, который на тот момент уже сделал революционные открытия в физике, предложил принципиально новое понимание гравитации.

В 1915 году Эйнштейн опубликовал общую теорию относительности , которая характеризует гравитацию как основное свойство пространства-времени. Он представил серию уравнений, описывающих влияние кривизны пространства-времени на энергию и движение присутствующей в нём материи и излучения.

Сто лет спустя общая теория относительности (ОТО) стала основой для построения современной науки, она выдержала все тесты, с которыми на неё набросились учёные.

Но до недавнего времени было невозможно проводить эксперименты в экстремальных условиях, чтобы проверить устойчивость теории.

Удивительно, насколько сильной показала себя теория относительности за 100 лет. Мы всё ещё пользуемся тем, что написал Эйнштейн!

Клиффорд Уилл, физик-теоретик, Флоридский университет

Теперь у учёных есть технология, с помощью которой можно искать физику за пределами ОТО.

Новый взгляд на гравитацию

Общая теория относительности описывает гравитацию не как силу (так она предстаёт в ньютоновской физике), а как искривление пространства-времени за счёт массы объектов. Земля вращается вокруг Солнца не потому, что звезда её притягивает, а потому, что Солнце деформирует пространство-время. Если на растянутое одеяло положить тяжёлый шар для боулинга, оделяло изменит форму - гравитация влияет на пространство примерно так же.

Теория Эйнштейна предсказала несколько безумных открытий. Например, возможность существования чёрных дыр, которые искривляют пространство-время до такой степени, что ничего не может вырваться изнутри, даже свет. На основе теории были найдены доказательства общепринятому сегодня мнению, что Вселенная расширяется и ускоряется.

Общая теория относительности была подтверждена многочисленными наблюдениями . Сам Эйнштейн использовал ОТО, чтобы рассчитать орбиту Меркурия, чьё движение не может быть описано законами Ньютона. Эйнштейн предсказал существование объектов настолько массивных, что они искривляют свет. Это явление гравитационного линзирования, с которым часто сталкиваются астрономы. Например, поиск экзопланет основан на эффекте едва заметных изменений в излучении, искривлённом гравитационным полем звезды, вокруг которой вращается планета.

Проверка теории Эйнштейна

Общая теория относительности хорошо работает для гравитации обычной силы, как показывают опыты, проведённые на Земле, и наблюдения за планетами Солнечной системы. Но её никогда не проверяли в условиях экстремально сильного воздействия полей в пространствах, лежащих на границах физики.

Наиболее перспективный способ тестирования теории в таких условиях - наблюдение за изменениями в пространстве-времени, которые называются гравитационными волнами . Они появляются как итог крупных событий, при слиянии двух массивных тел, таких как чёрные дыры, или особенно плотных объектов - нейтронных звёзд.

Космический фейерверк такого масштаба отразится на пространстве-времени только мельчайшей рябью. Например, если бы две чёрные дыры столкнулись и слились где-то в нашей Галактике, гравитационные волны могли бы растянуть и сжать расстояние между объектами, находящимися на Земле в метре друг от друга, на одну тысячную диаметра атомного ядра.

Появились эксперименты, которые могут зафиксировать изменения пространства-времени вследствие таких событий.

Есть неплохой шанс зафиксировать гравитационные волны в ближайшие два года.

Клиффорд Уилл

Лазерно-интерферометрическая обсерватория гравитационных волн (LIGO) с обсерваториями в окрестностях Ричленда (Вашингтон) и Ливингстона (Луизиана) использует лазер для определения мельчайших искажений в двойных Г-образных детекторах. Когда рябь пространства-времени проходит через детекторы, она растягивает и сжимает пространство, вследствие чего детектор изменяет размеры. А LIGO может их измерить.

LIGO начала серию запусков в 2002 году, но не достигла результата. В 2010-м была проведена работа по улучшению, и преемник организации, обсерватория Advanced LIGO, снова должна заработать в этом году. Многие из запланированных экспериментов нацелены на поиск гравитационных волн.

Ещё один способ протестировать теорию относительности - посмотреть на свойства гравитационных волн. Например, они могут быть поляризованы, как свет, прошедший через поляризационные очки. Теория относительности предсказывает особенности такого эффекта, и любые отклонения от расчётов могут стать поводом усомниться в теории.

Единая теория

Клиффорд Уилл считает, что открытие гравитационных волн только укрепит теорию Эйнштейна:

Думаю, мы должны продолжать поиск доказательств общей теории относительности, чтобы быть уверенными в её правоте.

А зачем вообще нужны эти эксперименты?

Одна из важнейших и труднодостижимых задач современной физики - поиск теории, которая свяжет воедино исследования Эйнштейна, то есть науку о макромире, и квантовую механику , реальность мельчайших объектов.

Успехи этого направления, квантовой гравитации , могут потребовать внести изменения в общую теорию относительности. Возможно, что эксперименты в области квантовой гравитации потребуют столько энергии, что их будет невозможно провести. «Но кто знает, - говорит Уилл, - может, в квантовой вселенной существует эффект, незначительный, но доступный для поиска».

На выступлении 27 апреля 1900 года в королевском институте Великобритании лорд Кельвин сказал: «Теоретическая физика представляет собой стройное и законченное здание. На ясном небе физики имеются всего лишь два небольших облачка – это постоянство скорости света и кривая интенсивности излучения в зависимости от длины волны. Я думаю, что эти два частных вопроса будут скоро разрешены и физикам XX века уже нечего будет делать.» Лорд Кельвин оказался абсолютно прав с указанием ключевых направлений исследований в физике, но не верно оценил их важность: родившиеся из них теория относительности и квантовая теория оказались бескрайними просторами для исследований, занимающих учёные умы вот уже на протяжении более сотни лет.

Так как не описывала гравитационное взаимодействие, Эйнштейн вскоре после её завершения приступил к разработке общей версии этой теории, за созданием которой он провёл 1907-1915 годы. Теория была прекрасной в своей простоте и согласованности с природными явлениями за исключением единственного момента: во времена составления теории Эйнштейном ещё не было известно об расширении Вселенной и даже о существовании других галактик, поэтому учёными того времени считалось что Вселенная существовала бесконечно долго и была стационарна. При этом из закона всемирного тяготения Ньютона следовало, что неподвижные звёзды должны были в какой-то момент просто быть стянуты в одну точку.

Не найдя для этого явления лучшего объяснения, Эйнштейн ввёл в свои уравнения , которая численно компенсировала и позволяла таким образом стационарной Вселенной существовать без нарушения законов физики. В последствии Эйнштейн стал считать введение космологической постоянной в свои уравнения своей самой большой ошибкой, так как она не была необходима для теории и ничем кроме выглядящей на тот момент стационарной Вселенной не подтверждалось. А в 1965 году было обнаружено реликтовое излучение, что означало что Вселенная имела начало и постоянная в уравнениях Эйнштейна оказалось и вовсе не нужна. Тем не менее космологическая постоянная всё-таки была найдена в 1998 году: по полученным телескопом «Хаббл» данным, далёкие галактики не тормозили свой разлёт в следствии притяжения гравитацией, а даже ускоряли свой разлёт.

Основы теории

Кроме основных постулатов специальной теории относительности, здесь добавилось и новое: механика Ньютона давала численную оценку гравитационного взаимодействия материальных тел, но не объясняла физику этого процесса. Эйнштейну же удалось описать это посредством искривления массивным телом 4-мерного пространства-времени: тело создаёт вокруг себя возмущение, в результате которого окружающие тела начинают двигаться по геодезическим линиям (примерами таких линий являются линии земной широты и долготы, которые для внутреннего наблюдателя кажутся прямыми линиями, но в реальности немного искривлены). Таким же образом откланяются и лучи света, что искажает видимую картину за массивным объектом. При удачном совпадении положений и масс объектов это приводит к (когда искривление пространства-времени выступает в роли огромной линзы, делающей источник далёкого света намного ярче). Если же параметры совпадают не идеально – это может приводить к образованию «креста Эйнштейна» или «круга Эйнштейна» на астрономических снимках далёких объектов.

Среди предсказаний теории также было гравитационное замедление времени, (которое при приближении к массивному объекту действовало на тело точно также, как и замедление времени в следствии ускорения), гравитационное (когда луч света, испущенный массивным телом, уходит в красную часть спектра в следствии потери им энергии на работу выхода из «гравитационного колодца»), а также гравитационные волны (возмущение пространства-времени, которое производит любое тело имеющее массу в процессе своего движения).

Статус теории

Первое подтверждение общей теории относительности было получено самим Эйнштейном в том же 1915 году, когда она и была опубликована: теория с абсолютной точностью описывала смещение перигелия Меркурия, которое до этого никак не могли объяснить при помощи ньютоновской механики. С того момента было открыто множество других явлений, которые предсказывались теорией, но на момент её публикации были слишком слабы чтобы их можно было засечь. Последним таким открытием на данный момент стало открытие гравитационных волн 14 сентября 2015 года.

В статье описана теория относительности Эйнштейна без всяких формул и заумных слов

Многие из нас слышали про теорию относительности Альберта Эйнштейна, но некоторые не могут понять смысл этой теории. К слову, это первая теория за всю историю, которая уводит нас от привычного мировоззрения. Давайте поговорим о ней простыми словами. Все мы привыкли к трёхмерному восприятию: вертикальная плоскость, горизонтальная и глубина. Если же сюда добавить время и считать его четвёртой величиной, то мы получим четырёхмерное пространство. Это связано с тем, что время тоже относительная величина. Итак, всё в нашем мире относительно. Что это значит? Например, возьмём двух братьев близнецов, одного из них отправим в космос со скоростью света лет на 20, а второго оставим на Земле. Когда первый близнец вернётся из космоса, он будет моложе того, кто остался на Земле, на 20 лет. Это связано с тем, что даже время относительно в нашем мире, как и всё остальное. Когда объект приближается к скорости света, время замедляется. При достижении скорости, равной скорости света, время останавливается совсем. Отсюда можно сделать вывод - если превысить скорость света, то время пойдёт назад, то есть в прошлое.

Это всё в теории, а что же на практике? Нельзя приблизится к скорости света, а уж тем более превысить её. Относительно скорости света - она всегда остаётся постоянной. Например, один человек стоит на платформе вокзала, а второй едет на поезде в его сторону. Если тот, который стоит на платформе, будет светить фонариком, то свет от него будет идти со скоростью 300000 километров в секунду. Если же тот человек, который едет в поезде, тоже будет светить фонариком, то скорость его света не увеличится из-за скорости поезда, она всегда равна 300000 километров в секунду.

Почему же всё-таки нельзя превысить скорость света? Дело в том, что при приближении к скорости, равной скорости света, масса объекта увеличивается, соответственно увеличивается и энергия, необходимая для движения объекта. Если достигнуть скорости света, то масса объекта будет бесконечной, как, в принципе, и энергия, а это невозможно. Со скоростью света могут двигаться только объекты, не имеющие своей массы, а этим объектом как раз и является свет.

Помимо этого, в это дело включается гравитация, она может изменять время. Согласно теории, чем выше гравитация - тем медленнее течёт время. Но это всё в теории, а как же на практике? Современные системы навигации, соединённые со спутниками, являются такими точными именно из-за этого. Если бы они не учитывали теорию относительности, то разница в измерениях могла быть порядка нескольких километров.

«Что такое теория относительности?» — короткометражный научно-популярный фильм, снятый режиссёром Семёном Райтбуртом на Втором творческом объединении киностудии «Моснаучфильм» в 1964 году.



Случайные статьи

Вверх