Органоиды клетки. Строение и функции. Эукариотические клетки Первые эукариотические клетки

Клетки, образующие ткани животных и растений, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости.

Клетки всех типов содержат два основных компонента, тесно связанных между собой, - цитоплазму и ядро. Ядро отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко. Полужидкая цитоплазма заполняет всю клетку и пронизана многочисленными канальцами. Снаружи она покрыта цитоплазматической мембраной. В ней имеются специализированные структуры-органоиды, присутствующие в клетке постоянно, и временные образования - включения. Мембранные органоиды : наружная цитоплазматическая мембрана (HЦM), эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, митохондрии и пластиды. В основе строения всех мембранных органоидов лежит биологическая мембрана. Все мембраны имеют принципиально единый план строения и состоят из двойного слоя фосфолипидов, в который с различных сторон ива разную глубину погружены белковые молекулы. Мембраны органоидов отличаются друг от друга лишь наборами входящих в них белков.

Схема строения эукариотической клетки. А - клетка животного происхождения; Б - растительная клетка:1 - ядро с хроматином и ядрышком, 2 - цитоплазматическая мембрана, 3- клеточная стенка, 4 - поры в клеточной стенке, через которые сообщается цитоплазма соседних клеток, 5 - шероховатая эндоплазматическая сеть, б - гладкая эндоплазматическая сеть, 7 - пиноцитозная вакуоль, 8 - аппарат (комплекс) Гольджи, 9 - лизосома, 10 - жировые включения в каналах гладкой эндоплазматической сети, 11 - клеточный центр, 12 - митохондрия, 13 -свободные рибосомы и полирибосомы, 14 - вакуоль, 15 - хлоропласт

Цитоплазматическая мембрана. У всех клеток растений, многоклеточных животных, у простейших и бактерий клеточная мембрана трехслойна: наружный и внутренний слои состоят из молекул белков, средний - из молекул липидов. Она ограничивает цитоплазму от внешней среды, окружает все органоиды клетки и представляет собой универсальную биологическую структуру. В некоторых клетках наружная оболочка образована несколькими мембранами, плотно прилегающими друг к другу. В таких случаях клеточная оболочка становится плотной и упругой и позволяет сохранить форму клетки, как, например, у эвглены и инфузории туфельки. У большинства растительных клеток, помимо мембраны, снаружи имеется еще толстая целлюлозная оболочка - клеточная стенка . Она хорошо различима в обычном световом микроскопе и выполняет опорную функцию за счет жесткого наружного слоя, придающего клеткам четкую форму.

На поверхности клеток мембрана образует удлиненные выросты - микроворсинки, складки, впячивания и выпячивания, что во много раз увеличивает всасывающую или выделительную поверхность. С помощью мембранных выростов клетки соединяются друг с другом в тканях и органах многоклеточных организмов, на складках мембран располагаются разнообразные ферменты, участвующие в обмене веществ. Отграничивая клетку от окружающей среды, мембрана регулирует направление диффузии веществ и одновременно осуществляет активный перенос их внутрь клетки (накопление) или наружу (выделение). За счет этих свойств мембраны концентрация ионов калия, кальция, магния, фосфора в цитоплазме выше, а концентрация натрия и хлора ниже, чем в окружающей среде. Через поры наружной мембраны из внешней среды внутрь клетки проникают ионы, вода и мелкие молекулы других веществ. Проникновение в клетку относительно крупных твердых частиц осуществляется путем фагоцитоза (от греч. "фаго" - пожираю, "питое" - клетка). При этом наружная мембрана в месте контакта с частицей прогибается внутрь клетки, увлекая частицу в глубь цитоплазмы, где она подвергается ферментативному расщеплению. Аналогичным путем в клетку попадают и капли жидких веществ; их поглощение называетсяпиноцитозом (от греч. "пино" - пью, "цитос" - клетка). Наружная клеточная мембрана выполняет и другие важные биологические функции.

Цитоплазма на 85 % состоит из воды, на 10 % - из белков, остальной объем приходится на долю липидов, углеводов, нуклеиновых кислот и минеральных соединений; все эти вещества образуют коллоидный раствор, близкий по консистенции глицерину. Коллоидное вещество клетки в зависимости от ее физиологического состояния и характера воздействия внешней среды имеет свойства и жидкости, и упругого, более плотного тела. Цитоплазма пронизана каналами различной формы и величины, которые получили название эндоплазматической сети. Их стенки представляют собой мембраны, тесно контактирующие со всеми органоидами клетки и составляющие вместе с ними единую функционально-структурную систему для осуществления обмена веществ и энергии и перемещения веществ внутри клетки.

В стенках канальцев располагаются мельчайшие зернышки-гранулы, называемые рибосомами. Такая сеть канальцев называется гранулярной. Рибосомы могут располагаться на поверхности канальцев разрозненно или образуют комплексы из пяти-семи и более рибосом, называемые полисомами. Другие канальцы гранул не содержат, они составляют гладкую эндоплазматическую сеть. На стенках располагаются ферменты, участвующие в синтезе жиров и углеводов.

Внутренняя полость канальцев заполнена продуктами жизнедеятельности клетки. Внутриклеточные канальцы, образуя сложную ветвящуюся систему, регулируют перемещение и концентрацию веществ, разделяют различные молекулы органических веществ и этапы их, синтеза. На внутренней и внешней поверхности мембран, богатых ферментами, осуществляется синтез белков, жиров и углеводов, которые либо используются в обмене веществ, либо накапливаются в цитоплазме в качестве включений, либо выводятся наружу.

Рибосомы встречаются во всех типах клеток - от бактерий до клеток многоклеточных организмов. Это округлые тельца, состоящие из рибонуклеиновой кислоты (РНК) и белков почти в равном соотношении. В их состав непременно входит магний, присутствие которого поддерживает структуру рибосом. Рибосомы могут быть связаны с мембранами эндоплазматической сети, с наружной клеточной мембраной или свободно лежать в цитоплазме. В них осуществляется синтез белков. Рибосомы кроме цитоплазмы встречаются в ядре клетки. Они образуются в ядрышке и затем поступают в цитоплазму.

Комплекс Гольджи в растительных клетках имеет вид отдельных телец, окруженных мембранами. В животных клетках этот органоид представлен цистернами, канальцами и пузырьками. В мембранные трубки комплекса Гольджи из канальцев эндоплазматической сети поступают продукты секреции клетки, где они химически перестраиваются, уплотняются, а затем переходят в цитоплазму и либо используются самой клеткой, либо выводятся из нее. В цистернах комплекса Гольджи происходит синтез полисахаридов и их объединение с белками, в результате чего образуются гликопротеиды.

Митохондрии - небольшие тельца палочковидной формы, ограниченные двумя мембранами. От внутренней мембраны митохондрии отходят многочисленные складки - кристы, на их стенках располагаются разнообразные ферменты, с помощью которых осуществляется синтез высокоэнергетического вещества - аденозинтрифосфорной кислоты (АТФ). В зависимости от активности клетки и внешних воздействий митохондрии могут перемещаться, изменять свои размеры, форму. В митохондриях найдены рибосомы, фосфолипиды, РНК и ДНК. С присутствием ДНК в митохондриях связывают способность этих органоидов к размножению путем образования перетяжки или почкованием в период деления клетки, а также синтез части митохондриальных белков.

Лизосомы - мелкие овальные образования, ограниченные мембраной и рассеянные по всей цитоплазме. Встречаются во всех клетках животных и растений. Они возникают в расширениях эндоплазматической сети и в комплексе Гольджи, здесь заполняются гидролитическими ферментами, а затем обособляются и поступают в цитоплазму. В обычных" условиях лизосомы переваривают частицы, попадающие в клетку путем фагоцитоза, и органоиды отмирающих клеток. Продукты лизиса выводятся через мембрану лизосомы в цитоплазму, где они включаются в состав новых молекул. При разрыве лизоеомной мембраны ферменты поступают в цитоплазму и переваривают ее содержимое, вызывая гибель клетки.

Пластиды есть только в растительных клетках и встречаются, у большинства зеленых растений. В пластидах синтезируются и накапливаются органические вещества. Различают пластиды трех видов: хлоропласты, хромопласты и лейкопласты.

Хлоропласты - зеленые пластиды, содержащие зеленый пигмент хлорофилл. Они находятся в листьях, молодых стеблях, незрелых плодах. Хлоропласты окружены двойной мембраной. У высших растений внутренняя часть хлоропластов заполнена полужидким веществом, в котором параллельно друг другу уложены пластинки. Парные мембраны пластинок, сливаясь, образуют стопки, содержащие хлорофилл (рис. 6). В каждой стопке хлоропластов высших растений чередуются слои молекул белка и молекул липидов, а между ними располагаются молекулы хлорофилла. Такая слоистая структура обеспечивает максимум свободных поверхностей и облегчает захват и перенос энергии в процессе фотосинтеза.

Хромопласты - пластиды, в которых содержатся растительные пигменты (красный или бурый, желтый, оранжевый). Они сосредоточены в цитоплазме клеток цветков, стеблей, плодов, листьев растений и придают им соответствующую окраску. Хромопласты образуются из лейкопластов или хлоропластов в результате накопления пигментов каротиноидов.

Лейкопласты-бесцветные пластиды, располагающиеся в неокрашенных частях растений: в стеблях, корнях, луковицах и др. В лейкопластах одних клеток накапливаются зерна крахмала, в лейкопластах других клеток - масла, белки.

Все пластиды возникают из своих предшественников - пропластид. В них выявлена ДНК, которая контролирует размножение этих органоидов.

Клеточный центр, или центросома, играет важную роль при делении, клетки и состоит из двух центриолей. Он встречается у всех клеток животных и растений, кроме цветковых, низших грибов и некоторых, простейших. Центриоли в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В делящейся клетке первым делится клеточный центр, одновременно образуется ахроматиновое веретено, ориентирующее хромосомы при расхождении их к полюсам. В дочерние клетки отходит по одной центриоле.

У многих растительных и животных клеток имеются органоиды специального назначения : реснички, выполняющие функцию движения (инфузории, клетки дыхательных путей), жгутики (простейшие одноклеточные, мужские половые клетки у животных и растений и др.). Включения - временные элемеаты, возникающие в клетке на определенной стадии ее жизнедеятельности в результате синтетической функции. Они либо используются, либо выводятся из клетки. Включениями являются также запасные питательные вещества: в растительных клетках-крахмал, капельки жира, блки, эфирные масла, многие органические кислоты, соли органических и неорганических кислот; в животных клетках - гликоген (в клетках печени и мышцах), капли жира (в подкожной клетчатке); Некоторые включения накапливаются в клетках как отбросы - в виде кристаллов, пигментов и др.

Вакуоли - это полости, ограниченные мембраной; хорошо выражены в клетках растений и имеются у простейших. Возникают в разных участках расширений эндоплазматической сети. И постепенно отделяются от нее. Вакуоли поддерживают тургорное давление, в них сосредоточен клеточный или вакуолярный сок, молекулы которого определяют его осмотическую концентрацию. Считается, что первоначальные продукты синтеза - растворимые углеводы, белки, пектины и др. - накапливаются в цистернах эндоплазматической сети. Эти скопления и представляют собой зачатки будущих вакуолей.

Цитоскелет . Одной из отличительных особенностей эукариотической клетки является развитие в ее цитоплазме скелетных образований в виде микротрубочек и пучков белковых волокон. Элементы цитоскелета тесно связаны с наружной цитоплазматической мембраной и ядерной оболочкой, образуют сложные переплетения в цитоплазме. Опорные элемеиты цитоплазмы определяют форму клетки, обеспечивают движение внутриклеточных структур и перемещение всей клетки.

Ядро клетки играет основную роль в ее жизнедеятельности, с его удалением клетка прекращает свои функции и гибнет. В большинстве животных клеток одно ядро, но встречаются и многоядерные клетки (печень и мышцы человека, грибы, инфузории, зеленые водоросли). Эритроциты млекопитающих развиваются из клеток-предшественников, содержащих ядро, но зрелые эритроциты утрачивают его и живут недолго.

Ядро окружено двойной мембраной, пронизанной порами, посредством которых оно тесно связано с каналами эндоплазматической сети и цитоплазмой. Внутри ядра находится хроматин - спирализованные участки хромосом. В период деления клетки они превращаются в палочковидные структуры, хорошо различимые в световой микроскоп. Хромосомы - это сложный комплекс белков с ДНК, называемый нуклеопротеидом.

Функции ядра состоят в регуляции всех жизненных отправлений клетки, которую оно осуществляет при помощи ДНК и РНК-материальных носителей наследственной информации. В ходе подготовки к делению клетки ДНК удваивается, в процессе митоза хромосомы расходятся и передаются дочерним клеткам, обеспечивая преемственность наследственной информации у каждого вида организмов.

Кариоплазма - жидкая фаза ядра, в которой в растворенном виде находятся продукты жизнедеятельности ядерных структур

Ядрышко - обособленная, наиболее плотная часть ядра. В состав ядрышка входят сложные белки и РНК, свободные или связанные фосфаты калия, магния, кальция, железа, цинка, а также рибосомы. Ядрышко исчезает перед началом деления клетки и вновь формируется в последней фазе деления.

Таким образом, клетка обладает тонкой и весьма сложной организацией. Обширная сеть цитоплазматических мембран и мембранный принцип строения органоидов позволяют разграничить множество одновременно протекающих в клетке химических реакций. Каждое из внутриклеточных образований имеет свою структуру и специфическую функцию, но только при их взаимодействии возможна гармоничная жизнедеятельность клетки.На основе такого взаимодействия вещества из окружающей среды поступают в клетку, а отработанные продукты выводятся из нее во внешнюю среду - так совершается обмен веществ. Совершенство структурной организации клетки могло возникнуть только в результате длительной биологической эволюции, в процессе которой выполняемые ею функции постепенно усложнялись.

Простейшие одноклеточные формы представляют собой и клетку, и организм со всеми его жизненными проявлениями. В многоклеточных организмах клетки образуют однородные группы - ткани. В свою очередь ткани формируют органы, системы, и их функции определяются общей жизнедеятельностью целостного организма.

Эукариоты или ядерные клетки устроены намного сложнее, чем прокариоты. Строение эукариотической клетки направлено на осуществление внутриклеточного метаболизма.

Плазмалемма

Снаружи любая клетка окружена тонкой эластичной плазматической мембраной, которая называется плазмалеммой. В состав плазмалеммы входят органические вещества, описанные в таблице.

Вещества

Особенности

Роль

Фосфолипиды

Соединения фосфора и жиров. Состоят из двух частей - гидрофильной и гидрофобной

Образуют два слоя. Гидрофобные части примыкают друг к другу, гидрофильные смотрят наружу и внутрь клетки

Гликолипиды

Соединения липидов и углеводов. Встроены между фосфолипидами

Принимают и передают сигналы

Холестерин

Жирный спирт. Встроен в гидрофобные части фосфолипидов

Придаёт жёсткость

Два вида - поверхностные (примыкают к липидам) и интегральные (встроены в мембрану)

Различаются структурой и выполняемыми функциями

Рис. 1. Строение плазмалеммы.

Над плазмалеммой клетки растений находится клеточная стенка, в состав которой входит целлюлоза. Она поддерживает форму и ограничивает подвижность клетки. Животная клетка покрыта гликокаликсом, состоящим из различных органических соединений. Главная функция дополнительных покрытий - защита.

Через плазмалемму осуществляется транспорт веществ и передача сигналов посредством встроенных белков.

Ядро

Эукариоты отличаются от прокариотов наличием ядра - мембранной структуры, состоящей из трёх компонентов:

  • двух мембран, имеющих поры;
  • нуклеоплазмы - жидкости, состоящей из хроматина (содержит РНК и ДНК), белка, нуклеиновых кислот, воды;
  • ядрышка - уплотнённого участка нуклеоплазмы.

Рис. 2. Строение ядра.

Ядро контролирует все процессы клетки, а также осуществляет:

ТОП-4 статьи которые читают вместе с этой

  • хранение и передачу наследственной информации;
  • образование рибосом;
  • синтез нуклеиновых кислот.

Цитоплазма

В цитоплазме эукариот находятся различные органеллы, осуществляющие метаболизм за счёт постоянного движения цитоплазмы (циклоза). Их описание представлено в таблице строения эукариотической клетки.

Органоиды

Строение

Функции

Эндоплазматическая сеть или эндоплазматический ретикулум (ЭПС или ЭПР)

Состоит из внешней ядерной мембраны. Бывает двух типов - гладкая и шероховатая (с рибосомами)

Синтезирует липиды, гормоны, накапливает углеводы, обезвреживает яды

Рибосома

Немембранная структура, образованная большой и малой субъединицами. Содержит белок и РНК. Находится на ЭПС и в цитоплазме

Синтезирует белок

Комплекс (аппарат) Гольджи

Состоит из мембранных цистерн, заполненных ферментами. Взаимосвязан с ЭПС

Производит секреты, ферменты, лизосомы

Лизосомы

Пузырьки, состоящие из тонкой мембраны и ферментов

Переваривает вещества, попавшие в цитоплазму

Митохондрия

Состоит из двух мембран. Внутренняя образует кристы - складки. Заполнена матриксом, содержащим белки и собственную ДНК

Синтезирует АТФ

Для растительной клетки характерны две особые органеллы, отсутствующие у животных:

  • вакуоль - накапливает органические вещества, воду, поддерживает тургор;
  • пластиды - в зависимости от вида выполняют фотосинтез (хлоропласты), накапливают вещества (лейкопласты), окрашивают цветки и плоды (хромопласты).

В клетках животных (отсутствуют у растений) находится центросома (клеточный центр), собирающая микротрубочки, из которых впоследствии образуются веретено деления, цитоскелет, жгутики и реснички.

Рис. 3. Растительная и животная клетки.

Эукариоты размножаются делением - митозом или мейозом. Митоз (непрямое деление) характерен для всех соматических (неполовых) клеток и одноклеточных ядерных организмов. Мейоз - процесс образования гамет.

Что мы узнали?

Из урока 9 класса биологии узнали кратко о строении и функциях эукариотической клетки. Эукариоты - сложноорганизованные структуры, состоящие из клеточной оболочки, цитоплазмы и ядра. В цитоплазме эукариотической клетки находятся различные органеллы (комплекс Гольджи, ЭПС, лизосомы и т.д.), осуществляющие внутриклеточный метаболизм. Помимо этого для клеток растений характерны вакуоль и пластиды, а для животных - клеточный центр.

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 300.

Строение клетки

Строение клеток

Прокариотическая клетка

Прокариоты (от лат. pro

Строение хромосом

Схема строения хромосомы в поздней профазе - метафазе митоза. 1-хроматида; 2-центромера; 3-короткое плечо; 4-длинное плечо.

Хромосо́мы (др.-греч. χρῶμα - цвет и σῶμα - тело) - нуклеопротеидные структуры в ядре эукариотической клетки (клетки, содержащей ядро), которые становятся легко заметными в определённых фазах клеточного цикла (во время митоза или мейоза). Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия всё чаще говорят о бактериальных хромосомах. В хромосомах сосредоточена большая часть наследственной информации.

Морфология хромосом лучше всего видна в клетке на стадии метафазы. Хромосома состоит из двух палочкообразных телец - хроматид. Обе хроматиды каждой хромосомы идентичны друг другу по генному составу.

Хромосомы дифференцированы по длине. Хромосомы имеют центромеру или первичную перетяжку, две теломеры и два плеча. На некоторых хромосомах выделяют вторичные перетяжки и спутники. Движение хромосомы определяет Центромера, которая имеет сложное строение.

ДНК центромеры отличается характерной последовательностью нуклеотидов и специфическими белками. В зависимости от расположения центромеры различают акроцентрические, субметацентрические и метацентрические хромосомы.

Как говорилось выше, некоторые хромосомы имеют вторичные перетяжки. Они, в отличие от первичной перетяжки (центромеры), не служат местом прикрепления нитей веретена и не играют никакой роли в движении хромосом. Некоторые вторичные перетяжки связаны с образованием ядрышек, в этом случае их называют ядрышковыми организаторами. В ядрышковых организаторах расположены гены, ответственные за синтез РНК. Функция других вторичных перетяжек еще не ясна.

У некоторых акроцентрических хромосом есть спутники - участки, соединенные с остальной частью хромосомы тонкой нитью хроматина. Форма и размеры спутника постоянны для данной хромосомы. У человека спутники имеются у пяти пар хромосом.

Концевые участки хромосом, богатые структурным гетерохроматином, называются теломерами. Теломеры препятствуют слипанию концов хромосом после редупликации и тем самым способствуют сохранению их целостности. Следовательно, теломеры ответственны за существование хромосом как индивидуальных образований.

Хромосомы, имеющие одинаковый порядок генов, называют гомологичными. Они имеют одинаковое строение (длина, расположение центромеры и т. д.). Негомологичные хромосомы имеют разный генный набор и разное строение.

Исследование тонкой структуры хромосом показало, что они состоят из ДНК, белка и небольшого количества РНК. Молекула ДНК несет отрицательные заряды, распределенные по всей длине, а присоединенные к ней белки - гистоны заряжены положительно. Этот комплекс ДНК с белком называют хроматином. Хроматин может иметь разную степень конденсации. Конденсированный хроматин называют гетерохроматином, деконденсированный хроматин - эухроматином. Степень деконденсации хроматина отражает его функциональное состояние. Гетерохроматиновые участки функционально менее активны, чем эухроматиновые, в которых локализована большая часть генов. Различают структурный гетерохроматин, количество, которого различается в разных хромосомах, но располагается он постоянно в околоцентромерных районах. Кроме структурного гетерохроматина существует факультативный гетерохроматин, который появляется в хромосоме при сверхспирализации эухроматических районов. Подтверждением существования этого явления в хромосомах человека служит факт генетической инактивации одной Х-хромосомы в соматических клетках женщины. Его суть заключается в том, что существует эволюционно сформировавшийся механизм инактивации второй дозы генов, локализованных в Х-хромосоме, вследствие чего, несмотря на разное число Х-хромосом в мужском и женском организмах, число функционирующих в них генов уравнено. Максимально конденсирован хроматин во время митотического деления клеток, тогда его можно обнаружить в виде плотных хромосом

Размеры молекул ДНК хромосом огромны. Каждая хромосома представлена одной молекулой ДНК. Они могут достигать сотен микрометров и даже сантиметров. Из хромосом человека самая большая - первая; ее ДНК имеет общую длину до 7 см. Суммарная длина молекул ДНК всех хромосом одной клетки человека составляет 170 см.

Несмотря на гигантские размеры молекул ДНК, она достаточно плотно упакована в хромосомах. Такую специфическую укладку хромосомной ДНК обеспечивают белки гистоны. Гистоны располагаются по длине молекулы ДНК в виде блоков. В один блок входит 8 молекул гистонов, образуя нуклеосому (образование, состоящее из нити ДНК, намотанной вокруг октамера гистонов). Размер нуклеосомы около 10 нм. Нуклеосомы имеют вид нанизанных на нитку бусинок. Нуклеосомы и соединяющие их участки ДНК плотно упакованы в виде спирали, на каждый виток такой спирали приходится шесть нуклеосом. Так формируется структура хромосомы.

Наследственная информация организма строго упорядочена по отдельным хромосомам. Каждый организм характеризуется определенным набором хромосом (число, размеры и структура), который называется кариотипом. Кариотип человека представлен двадцатью четырьмя разными хромосомами (22 пары аутосом, Х- и Y-хромосомы). Кариотип - это паспорт вида. Анализ кариотипа позволяет выявлять нарушения, которые могут приводить к аномалиям развития, наследственным болезням или гибели плодов и эмбрионов на ранних стадиях развития.

Длительное время полагали, что кариотип человека состоит из 48 хромосом. Однако в начале 1956 г. было опубликовано сообщение, согласно которому число хромосом в кариотипе человека равно 46.

Хромосомы человека различаются по размеру, расположению центромеры и вторичных перетяжек. Впервые подразделение кариотипа на группы было проведено в 1960 г. на конференции в г. Денвере (США). В описание кариотипа человека первоначально были заложены два следующих принципа: расположение хромосом по их длине; группировка хромосом по расположению центромеры (метацентрические, субметацентрические, акроцентрические).

Точное постоянство числа хромосом, их индивидуальность и сложность строения свидетельствуют о важности выполняемой ими функции. Хромосомы выполняют функцию основного генетического аппарата клетки. В них в линейном порядке расположены гены, каждый из которых занимает строго определенное место (локус) в хромосоме. В каждой хромосоме много генов, но для нормального развития организма необходим набор генов полного хромосомного набора.

Строение и функции ДНК

ДНК - полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение - некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК - 2 нм, расстояние между соседними нуклеотидами - 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес - десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека - около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК - нуклеотид (дезоксирибонуклеотид) - состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) - тимин, цитозин. Пуриновые основания (имеют два кольца) - аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой - 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина - всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином - три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин - тимин, гуанин - цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина - тимину («правило Чаргаффа» ), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы - сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» - комплементарные азотистые основания.

Функция ДНК - хранение и передача наследственной информации.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации ). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

РНК - полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение - некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК - нуклеотид (рибонуклеотид) - состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК - урацил, цитозин, пуриновые основания - аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК : 1) информационная (матричная) РНК - иРНК (мРНК), 2) транспортная РНК - тРНК, 3) рибосомная РНК - рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса - 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон - три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000–5000 нуклеотидов; молекулярная масса - 1 000 000–1 500 000. На долю рРНК приходится 80–85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы - органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК : 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК : 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) - универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2–0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты - в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

Свойства гена

  1. дискретность - несмешиваемость генов;
  2. стабильность - способность сохранять структуру;
  3. лабильность - способность многократно мутировать;
  4. множественный аллелизм - многие гены существуют в популяции во множестве молекулярных форм;
  5. аллельность - в генотипе диплоидных организмов только две формы гена;
  6. специфичность - каждый ген кодирует свой признак;
  7. плейотропия - множественный эффект гена;
  8. экспрессивность - степень выраженности гена в признаке;
  9. пенетрантность - частота проявления гена в фенотипе;
  10. амплификация - увеличение количества копий гена.

Классификация

  1. Структурные гены - уникальные компоненты генома, представляющие единственную последовательность, кодирующую определенный белок или некоторые виды РНК. (См. также статью гены домашнего хозяйства).
  2. Функциональные гены - регулируют работу структурных генов.

Генети́ческий код - свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

В ДНК используется четыре нуклеотида - аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом - урацилом, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Генетический код

Для построения белков в природе используется 20 различных аминокислот. Каждый белок представляет собой цепочку или несколько цепочек аминокислот в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства. Набор аминокислот также универсален почти для всех живых организмов.

Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке.

Свойства

  1. Триплетность - значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
  2. Непрерывность - между триплетами нет знаков препинания, то есть информация считывается непрерывно.
  3. Неперекрываемость - один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).
  4. Однозначность (специфичность) - определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты - цистеин и селеноцистеин)
  5. Вырожденность (избыточность) - одной и той же аминокислоте может соответствовать несколько кодонов.
  6. Универсальность - генетический код работает одинаково в организмах разного уровня сложности - от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).
  7. Помехоустойчивость - мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными ; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными .

Биосинтез белка и его этапы

Биосинтез белка - сложный многостадийный процесс синтеза полипептидной цепи из аминокислотных остатков, происходящий на рибосомах клеток живых организмов с участием молекул мРНК и тРНК.

Биосинтез белка можно разделить на стадии транскрипции, процессинга и трансляции. Во время транскрипции происходит считывание генетической информации, зашифрованной в молекулах ДНК, и запись этой информации в молекулы мРНК. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, ненужные в последующих стадиях, и происходит редактирование нуклеотидных последовательностей. После транспортировки кода из ядра к рибосомам происходит собственно синтез белковых молекул, путём присоединения отдельных аминокислотных остатков к растущей полипептидной цепи.

Между транскрипцией и трансляцией молекула мРНК претерпевает ряд последовательных изменений, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. К 5΄-концу присоединяется кэп, а к 3΄-концу поли-А хвост, который увеличивает длительность жизни мРНК. С появлением процессинга в эукариотической клетке стало возможно комбинирование экзонов гена для получения большего разнообразия белков, кодируемым единой последовательностью нуклеотидов ДНК, - альтернативный сплайсинг.

Трансляция заключается в синтезе полипептидной цепи в соответствии с информацией, закодированной в матричной РНК. Аминокислотная последовательность выстраивается при помощи транспортных РНК (тРНК), которые образуют с аминокислотами комплексы - аминоацил-тРНК. Каждой аминокислоте соответствует своя тРНК, имеющая соответствующий антикодон, «подходящий» к кодону мРНК. Во время трансляции рибосома движется вдоль мРНК, по мере этого наращивается полипептидная цепь. Энергией биосинтез белка обеспечивается за счёт АТФ.

Готовая белковая молекула затем отщепляется от рибосомы и транспортируется в нужное место клетки. Для достижения своего активного состояния некоторые белки требуют дополнительной посттрансляционной модификации.

Причины мутаций

Мутации делятся на спонтанные и индуцированные . Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около 10 − 9 - 10 − 12 на нуклеотид за клеточную генерацию.

Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций - репликация ДНК, нарушения репарации ДНК и генетическая рекомбинация.

Роль мутаций в эволюции

При существенном изменении условий существования те мутации, которые раньше были вредными, могут оказаться полезными. Таким образом, мутации являются материалом для естественного отбора. Так, мутанты-меланисты (темноокрашенные особи) в популяциях березовой пяденицы в Англии впервые были обнаружены учеными среди типичных светлых особей в середине XIX века. Темная окраска возникает в результате мутации одного гена. Бабочки проводят день на стволах и ветвях деревьев, обычно покрытых лишайниками, на фоне которых светлая окраска является маскирующей. В результате промышленной революции, сопровождающейся загрязнением атмосферы, лишайники погибли, а светлые стволы берез покрылись копотью. В результате к середине XX века (за 50-100 поколений) в промышленных районах темная морфа почти полностью вытеснила светлую. Было показано, что главная причина преимущественного выживания черной формы - хищничество птиц, которые избирательно выедали светлых бабочек в загрязненных районах.

Если мутация затрагивает «молчащие» участки ДНК, либо приводит к замене одного элемента генетического кода на синонимичный, то она обычно никак не проявляется в фенотипе (проявление такой синонимичной замены может быть связано с разной частотой употребления кодонов). Однако методами генного анализа такие мутации можно обнаружить. Поскольку чаще всего мутации происходят в результате естественных причин, то в предположении, что основные свойства внешней среды не менялись, получается, что частота мутаций должна быть примерно постоянной. Этот факт можно использовать для исследования филогении - изучения происхождения и родственных связей различных таксонов, в том числе и человека. Таким образом, мутации в молчащих генах служат для исследователей своеобразными «молекулярными часами». Теория «молекулярных часов» исходит также из того, что большинство мутаций нейтральны, и скорость их накопления в данном гене не зависит или слабо зависит от действия естественного отбора и потому остается постоянной в течение длительного времени. Для разных генов эта скорость, тем не менее, будет различаться.

Исследование мутаций в митохондриальной ДНК (наследуется по материнской линии) и в Y-хромосомах (наследуется по отцовской линии) широко используется в эволюционной биологии для изучения происхождения рас и народностей, реконструкции биологического развития человечества.

Строение клетки

Строение клеток

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток - прокариоты (доядерные) и эукариоты (ядерные). Прокариотические клетки - более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки - более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Несмотря на многообразие форм организация клеток всех живых организмов подчинена единым структурным принципам.

Живое содержимое клетки - протопласт - отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариотическая клетка

Строение типичной клетки прокариот: капсула, клеточная стенка, плазмалемма, цитоплазма, рибосомы, плазмида, пили, жгутик, нуклеоид.

Прокариоты (от лат. pro - перед, до и греч. κάρῠον - ядро, орех) - организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов - линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток - митохондрии и пластиды.

Эукариотическая клетка Эукариоты (эвкариоты) (от греч. ευ - хорошо, полностью и κάρῠον - ядро, орех) - организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты - митохондрии, а у водорослей и растений - также и пластиды.

Строение эукариотической клетки

Схематическое изображение животной клетки. (При нажатии на какое-либо из названий составных частей клетки, будет осуществлён переход на соответствующую статью.)

Митохондрии и пластиды имеют собственную кольцевую ДНК и мелкие рибосомы, за счет них делают сами часть своих белков (полуавтономные органоиды).

Митохондрии принимают участие в (окислении органических веществ) – поставляют АТФ (энергию) для жизнедеятельности клетки, являются «энергетическими станциями клетки».

Немембранные органоиды

Рибосомы - это органоиды, которые занимаются . Состоят из двух субъединиц, по химическому составу – из рибосомной РНК и белков. Субъединицы синтезируются в ядрышке. Часть рибосом присоединены к ЭПС, эта ЭПС называется шероховатая (гранулярная).


Клеточный центр состоит из двух центриолей, которые образуют веретено деления во время деления клетки – митоза и мейоза.


Реснички, жгутики служат для движения.

Выберите один, наиболее правильный вариант. В состав цитоплазмы клетки входят
1) белковые нити
2) реснички и жгутики
3) митохондрии
4) клеточный центр и лизосомы

Ответ


Установите соответствие между функциями и органоидами клеток: 1) рибосомы, 2) хлоропласты. Запишите цифры 1 и 2 в правильном порядке.
А) расположены на гранулярной ЭПС
Б) синтез белка
В) фотосинтез
Г) состоят из двух субъединиц
Д) состоят из гран с тилакоидами
Е) образуют полисому

Ответ


Установите соответствие между строением органоида клетки и органоидом: 1) аппарат Гольджи, 2) хлоропласт. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) двумембранный органоид
Б) есть собственная ДНК
В) имеет секреторный аппарат
Г) состоит из мембраны, пузырьков, цистерн
Д) состоит из тилакоидов гран и стромы
Е) одномембранный органоид

Ответ


Установите соответствие между характеристиками и органоидами клетки: 1) хлоропласт, 2) эндоплазматическая сеть. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) система канальцев, образованных мембраной
Б) органоид образован двумя мембранами
В) транспортирует вещества
Г) синтезирует первичное органическое вещество
Д) включает тилакоиды

Ответ


1. Выберите один, наиболее правильный вариант. Одномембранные компоненты клетки -
1) хлоропласты
2) вакуоли
3) клеточный центр
4) рибосомы

Ответ


2. Выберите три варианта. Какие органоиды клетки отделены от цитоплазмы одной мембраной?
1) комплекс Гольджи
2) митохондрия
3) лизосома
4) эндоплазматическая сеть
5) хлоропласт
6) рибосома

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для описания особенностей строения и функционирования рибосом. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) состоят из триплетов микротрубочек
2) участвуют в процессе биосинтеза белка
3) формируют веретено деления
4) образованы белком и РНК
5) состоят из двух субъединиц

Ответ


Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Выберите двумембранные органеллы:
1) лизосома
2) рибосома
3) митохондрия
4) аппарат Гольджи
5) хлоропласт

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Двухмембранными органоидами растительной клетки являются.
1) хромопласты
2) центриоли
3) лейкопласты
4) рибосомы
5) митохондрии
6) вакуоли

Ответ


ЯДРО1-МИТОХОНДРИЯ1-РИБОСОМА1
Проанализируйте таблицу. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка:

1) ядро
2) рибосома
3) биосинтез белка
4) цитоплазма
5) окислительное фосфорилирование
6) транскрипция
7) лизосома

Ответ


МИТОХОНДРИЯ2-ХРОМОСОМА1-РИБОСОМА2

Проанализируйте таблицу «Структуры эукариотической клетки». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.

1) гликолиз
2) хлоропласты
3) трансляция
4) митохондрии
5) транскрипция
6) ядро
7) цитоплазма
8) клеточный центр

Ответ


ЛИЗОСОМА1-РИБОСОМА3-ХЛОРОПЛАСТ1


1) комплекс Гольджи
2) синтез углеводов
3) одномембранный
4) гидролиз крахмала
5) лизосома
6) немембранный

Ответ


ЛИЗОСОМА2-ХЛОРОПЛАСТ2-РИБОСОМА4

Проанализируйте таблицу. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.

1) двумембранный
2) эндоплазматическая сеть
3) биосинтез белка
4) клеточный центр
5) немембранный
6) биосинтез углеводов
7) одномембранный
8) лизосома

Ответ


ЛИЗОСОМА3-АГ1-ХЛОРОПЛАСТ3
Проанализируйте таблицу «Структуры клетки». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.

1) гликолиз
2) лизосома
3) биосинтез белка
4) митохондрия
5) фотосинтез
6) ядро
7) цитоплазма
8) клеточный центр

Ответ


ХЛОРОПЛАСТ4-АГ2-РИБОСОМА5

Проанализируйте таблицу «Структуры клетки». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.

1) окисление глюкозы
2) рибосома
3) расщепление полимеров
4) хлоропласт
5) синтез белка
6) ядро
7) цитоплазма
8) образование веретена деления

Ответ


АГ3-МИТОХОНДРИЯ3-ЛИЗОСОМА4

Проанализируйте таблицу «Органоиды клетки». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.

1) хлоропласт
2) эндоплазматическая сеть
3) цитоплазма
4) кариоплазма
5) аппарат Гольджи
6) биологическое окисление
7) транспорт веществ в клетке
8) синтез глюкозы

Ответ


1. Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Цитоплазма выполняет в клетке ряд функций:
1) осуществляет связь между ядром и органоидами
2) выполняет роль матрицы для синтеза углеводов
3) служит местом расположения ядра и органоидов
4) осуществляет передачу наследственной информации
5) служит местом расположения хромосом в клетках эукариот

Ответ


2. Определите два верных утверждения из общего списка, и запишите цифры, под которыми они указаны. В цитоплазме происходит
1) синтез белков рибосом
2) биосинтез глюкозы
3) синтез инсулина
4) окисление органических веществ до неорганических
5) синтез молекул АТФ

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Выберите немембранные органеллы:
1) митохондрия
2) рибосома
3) ядро
4) микротрубочка
5) аппарат Гольджи

Ответ



Перечисленные ниже признаки, кроме двух, используются для описания функций изображенного органоида клетки. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) служит энергетической станцией
2) расщепляет биополимеры на мономеры
3) обеспечивает упаковку веществ из клетки
4) синтезирует и накапливает молекулы АТФ
5) участвует в биологическом окислении

Ответ


Установите соответствие между строением органоида и его видом: 1) клеточный центр, 2) рибосома
А) состоит из двух перпендикулярно расположенных цилиндров
Б) состоит из двух субъединиц
В) образован микротрубочками
Г) содержит белки, обеспечивающие движение хромосом
Д) содержит белки и нуклеиновую кислоту

Ответ


Установите последовательность расположения структур в эукариотной клетке растения (начиная снаружи)
1) плазматическая мембрана
2) клеточная стенка
3) ядро
4) цитоплазма
5) хромосомы

Ответ


Выберите три варианта. Чем митохондрии отличаются от лизосом?
1) имеют наружную и внутреннюю мембраны
2) имеют многочисленные выросты - кристы
3) участвуют в процессах освобождения энергии
4) в них пировиноградная кислота окисляется до углекислого газа и воды
5) в них биополимеры расщепляются до мономеров
6) участвуют в обмене веществ

Ответ


1. Установите соответствие между характеристикой органоида клетки и его видом: 1) митохондрия, 2) лизосома. Запишите цифры 1 и 2 в правильном порядке.
А) одномембранный органоид
Б) внутреннее содержимое – матрикс

Г) наличие крист
Д) полуавтономный органоид

Ответ


2. Установите соответствие между характеристиками и органоидами клетки: 1) митохондрия, 2) лизосома. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) гидролитическое расщепление биополимеров
Б) окислительное фосфорилирование
В) одномембранный органоид
Г) наличие крист
Д) формирование пищеварительной вакуоли у животных

Ответ


3. Установите соответствие между признаком и органоидом клетки, для которого он характерен: 1) лизосома, 2) митохондрия. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) наличие двух мембран
Б) аккумулирование энергии в АТФ
В) наличие гидролитических ферментов
Г) переваривание органоидов клетки
Д) образование пищеварительных вакуолей у простейших
Е) расщепление органических веществ до углекислого газа и воды

Ответ


Установите соответствие между органоидом клетки: 1) клеточный центр, 2) сократительная вакуоль, 3) митохондрия. Запишите цифры 1-3 в правильном порядке.
A) участвует в делении клеток
Б) синтез АТФ
B) выделение излишек жидкости
Г) «клеточное дыхание»
Д) поддержание постоянства объема клеток
Е) участвует в развитии жгутиков и ресничек

Ответ


1. Установите соответствие между названием органоидов и наличием или отсутствием у них клеточной мембраны: 1) мембранные, 2) немембранные. Запишите цифры 1 и 2 в правильном порядке.
А) вакуоли
Б) лизосомы
В) клеточный центр
Г) рибосомы
Д) пластиды
Е) аппарат Гольджи

Ответ


2. Установите соответствие между органоидами клетки и их группами: 1) мембранные, 2) немембранные. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) митохондрии
Б) рибосомы
В) центриоли
Г) аппарат Гольджи
Д) эндоплaзматическая сеть
Е) микротрубочки

Ответ


3. Какие три из перечисленных органоидов являются мембранными?
1) лизосомы
2) центриоли
3) рибосомы
4) микротрубочки
5) вакуоли
6) лейкопласты

Ответ


1. Все перечисленные ниже структуры клетки, кроме двух, не содержат ДНК. Определите две структуры клетки, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) рибосомы
2) комплекс Гольджи
3) клеточный центр
4) митохондрии
5) пластиды

Ответ


2. Выберите три органоида клетки, содержащих наследственную информацию.

1) ядро
2) лизосомы
3) аппарат Гольджи
4) рибосомы
5) митохондрии
6) хлоропласты

Ответ


3. Выберите два верных ответа из пяти. В каких структурах клетки эукариот локализованы молекулы ДНК?
1) цитоплазме
2) ядре
3) митохондриях
4) рибосомах
5) лизосомах

Ответ


Выберите один, наиболее правильный вариант. Где в клетке имеются рибосомы, кроме ЭПС
1) в центриолях клеточного центра
2) в аппарате Гольджи
3) в митохондриях
4) в лизосомах

Ответ


Каковы особенности строения и функций рибосом? Выберите три правильных варианта.
1) имеют одну мембрану
2) состоят из молекул ДНК
3) расщепляют органические вещества
4) состоят из большой и малой частиц
5) участвуют в процессе биосинтеза белка
6) состоят из РНК и белка

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. В структуру ядра эукариотической клетки входят
1) хроматин
2) клеточный центр
3) аппарат Гольджи
4) ядрышко
5) цитоплазма
6) кариоплазма

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Какие процессы происходят в ядре клетки?
1) образование веретена деления
2) формирование лизосом
3) удвоение молекул ДНК
4) синтез молекул иРНК
5) образование митохондрий
6) формирование субъединиц рибосом

Ответ


Установите соответствие между органоидом клетки и типом строения, к которому его относят: 1) одномембранный, 2) двумембранный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) лизосома
Б) хлоропласт
В) митохондрия
Г) ЭПС
Д) аппарат Гольджи

Ответ


Установите соответствие между характеристиками и органоидами: 1) хлоропласт, 2) митохондрия. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) наличие стопок гран
Б) синтез углеводов
В) реакции диссимиляции
Г) транспорт электронов, возбуждённых фотонами
Д) синтез органических веществ из неорганических
Е) наличие многочисленных крист

Ответ



Все перечисленные ниже признаки, кроме двух, можно использовать для описания изображённого на рисунке органоида клетки. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) одномембранный органоид
2) содержит фрагменты рибосом
3) оболочка пронизана порами
4) содержит молекулы ДНК
5) содержит митохондрии

Ответ



Перечисленные ниже термины, кроме двух, используются для характеристики органоида клетки, обозначенного на рисунке вопросительным знаком. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) мембранный органоид
2) репликация
3) расхождение хромосом
4) центриоли
5) веретено деления

Ответ


Установите соответствие между характеристиками органоида клетки и его видом: 1) клеточный центр, 2) эндоплазматическая сеть. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) транспортирует органические вещества
Б) образует веретено деления
В) состоит из двух центриолей
Г) одномембранный органоид
Д) содержит рибосомы
Е) немембранный органоид

Ответ


1. Установите соответствие между характеристиками и органоидами клетки: 1) ядро, 2) митохондрия. Запишите цифры 1 и 2 в порядке, соответствующем цифрам.
А) замкнутая молекула ДНК
Б) окислительные ферменты на кристах
В) внутреннее содержимое – кариоплазма
Г) линейные хромосомы
Д) наличие хроматина в интерфазе
Е) складчатая внутренняя мембрана

Ответ


2. Установите соответствие между характеристиками и органоидами клеток: 1) ядро, 2) митохондрия. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) является местом синтеза АТФ
Б) отвечает за хранение генетической информации клетки
В) содержит кольцевую ДНК
Г) имеет кристы
Д) имеет одно или несколько ядрышек

Ответ


Установите соответствие между признаками и органоидами клетки: 1) лизосома, 2) рибосома. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) состоит из двух субъединиц
Б) является одномембранной структурой
В) участвует в синтезе полипептидной цепи
Г) содержит гидролитические ферменты
Д) размещается на мембране эндоплазматической сети
Е) превращает полимеры в мономеры

Ответ


Установите соответствие между характеристиками и клеточными органоидами: 1) митохондрия, 2) рибосома. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) немембранный органоид
Б) наличие собственной ДНК
В) функция - биосинтез белка
Г) состоит из большой и малой субъединиц
Д) наличие крист
Е) полуавтономный органоид

Ответ



Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке структуры клетки. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) состоит из РНК и белков
2) состоит из трех субъединиц
3) синтезируется в гиалоплазме
4) осуществляет синтез белка
5) может прикрепляться к мембране ЭПС

Ответ

© Д.В.Поздняков, 2009-2019

1. Основы клеточной теории

2. Общий план строения прокариотической клетки

3. Общий план строения эукариотической клетки

1. Основы клеточной теории

Впервые клетку обнаружил и описал Р. Гук (1665). В XIX в. в трудах Т. Шванна, М. Шлейдена были заложены основы клеточной теории строения организмов. Современную клеточную теорию можно выразить в следующих положениях: все организмы состоят из клеток; клетка является элементарной структурной, генетической и функциональной единицей живого. Развитие всех организмов начинается с одной клетки, поэтому она является элементарной единицей развития всех организмов. В многоклеточных организмах клетки специализируются на выполнении определенных функций.

В зависимости от структурной организации выделяют следующие формы жизни: доклеточные (вирусы) и клеточные. Среди клеточных форм исходя из особенностей организации клеточного наследственного материала выделяют про- и эукариотические клетки.

Вирусы – это организмы, имеющие очень малые размеры (от 20 до 3000 нм). Их жизнедеятельность может осуществляться только внутри клетки организма хозяина. Тело вируса образовано нуклеиновой кислотой (ДНК или РНК), которая содержится в белковой оболочке – капсиде, иногдакапсид покрыт мембраной.

2. Общий план строения прокариотической клетки

Основные компоненты прокариотической клетки : оболочка, цитоплазма. Оболочка состоит из плазмалеммы и поверхностных структур (клеточная стенка, капсула, слизистый чехол, жгутики, ворсинки).

Плазмалемма имеет толщину 7,5 нм и с наружной части образована слоем белковых молекул, под которым находятся два слоя молекул фосфолипидов, а далее располагается новый слой молекул белка. В плазмалемме имеютсяканалы, выстланные белковыми молекулами, через эти каналы осуществляется транспорт различных веществ, как в клетку, так и из нее.

Основной компонент клеточной стенки – муреин. В него могут быть встроены полисахариды, белки (антигенные свойства), липиды. Придает клетке форму, препятствует ее осмотическому набуханию и разрыву. Через поры легко проникают вода, ионы, мелкие молекулы.

Цитоплазма прокариотической клетки выполняет функцию внутренней среды клетки, в ней находятся рибосомы, мезосомы, включения и молекула ДНК.

Рибосомы – органоиды бобовидной формы, состоят из белка и РНК более мелкие (70S-рибосомы), чем у эукариот. Функция – синтез белка.

Мезосомы – система внутриклеточных мембран образующие складчатые впячивания, содержат ферменты дыхательной цепи (синтез АТФ).

Включения : липиды, гликоген, полифосфаты, белки, запасные питательные вещества

Молекула ДНК. Одна гаплоидная кольцевая двухцепочечная суперконденсированная молекула ДНК. Обеспечивает хранение, передачу генетической информации и регуляцию жизнедеятельности клетки.

3. Общий план строения эукариотической клетки

Типичная клетка эукариот состоит из трех составных частей – оболочки, цитоплазмы и ядра. Основу клеточной оболочки составляетплазмалемма (клеточная мембрана) иуглеводно-белковая поверхностная структура.

1. Плазмалемма эукариот отличается от прокариотической меньшим содержанием белков.

2. Углеводно-белковая поверхностная структура. Животные клетки имеют небольшую белковую прослойку (гликокаликс) . У растений поверхностная структура клетки –клеточная стенка состоит из целлюлозы (клетчатки).

Функции клеточной оболочки: поддерживает форму клетки и придает механическую прочность, защищает клетку, осуществляет узнавание молекулярных сигналов, регулирует обмен веществ между клеткой и средой, осуществляет межклеточное взаимодействие.

Цитоплазма состоит изгиалоплазмы (основное вещество цитоплазмы),органоидов и включений. В гиалоплазме содержатся 3 типа органоидов:

двумембранные (митохондрии, пластиды);

одномембранные (эндоплазматическая сеть (ЭПС), аппарат Гольджи, вакуоли, лизосомы);

немембранные (клеточный центр, микротрубочки, микрофиламенты, рибосомы, включения).

1. Гиалоплазма представляет собой коллоидный раствор органических и неорганических соединений. Гиалоплазма способна к перемещению внутри клетки – циклозу . Основные функции гиалоплазмы: среда для нахождения органоидов и включений, среда для протекания биохимических и физиологических процессов, объединяет все структуры клетки в единое целое.

2. Митохондрии («энергетические станции клеток»). Наружная мембрана гладкая, внутренняя имеютскладки – кристы. Между внешней и внутренними мембранами находится матрикс . В матриксе митохондрий содержатся молекулы ДНК, мелкие рибосомы и различные вещества.

3. Пластиды характерны для растительных клеток. Различают три вида пластид: хлоропласты, хромопласты и лейкопласты.

I. Хлоропласты – зеленые пластиды, в которых осуществляется фотосинтез. Хлоропласт имеет двухмембранную оболочку. Тело хлоропласта состоит из бесцветногобелково-липидного стромы, пронизанной системой плоских мешочков (тилакоидов) образованных внутренней мембраной.Тилакоиды образуютграны. В строме содержатся рибосомы, крахмальные зерна, молекулы ДНК.

II . Хромопласты придают разным органам растения окраску.

III . Лейкопласты запасают питательные вещества. Из лейкопластов возможно образование хромопластов и хлоропластов.

4. Эндоплазматическая сеть представляет собой разветвленную систему трубочек, каналов и полостей. Различаютнегранулярную (гладкую) и гранулярную (шероховатую) ЭПС. На негранулярной ЭПС находятся ферменты жирового и углеводного обмена (происходит синтез жиров и углеводов). Награнулярной ЭПС располагаются рибосомы, осуществляющие биосинтез белка. Функции ЭПС: механическая и формообразующая функции; транспортная; концентрация и выделение.

5. Аппарат Гольджи состоит из плоских мембранных мешочков и пузырьков. В животных клетках аппарат Гольджи выполняет секреторную функцию. В растительных он является центром синтеза полисахаридов.

6. Вакуоли заполнены клеточным соком растений. Функции вакуолей: запасание питательных веществ и воды, поддержаниетургорного давления в клетке.

7 . Лизосомы – мелкие органоиды сферической формы, образованы мембраной, внутри которой содержатся ферменты, гидролизующие белки, нуклеиновые кислоты, углеводы, жиры.

8. Клеточный центр. Функцией клеточного центра является управление процессом деления клеток.

9. Микротрубочки и микрофиламенты в совокупности формируют клеточный скелет животных клеток.

10. Рибосомы эукариот более крупные (80S).

11. Включения – запасные вещества, ивыделения – только в растительных клетках.

Ядро – важнейшая часть эукариотической клетки. Оно состоит из ядерной оболочки, кариоплазмы, ядрышек, хроматина.

1. Ядерная оболочка по строению аналогична клеточной мембране, содержит поры. Ядерная оболочка защищает генетический аппарат от воздействия веществ цитоплазмы. Осуществляет контроль за транспортом веществ.

2. Кариоплазма представляет собой коллоидный раствор, содержащий белки, углеводы, соли, другие органические и неорганические вещества. В кариоплазме содержатся все нуклеиновые кислоты: практически весь запас ДНК, информационные, транспортные и рибосомальные РНК.

3. Ядрышко – сферическое образование, содержит различные белки, нуклеопротеиды, липопротеиды, фосфопротеиды. Функция ядрышек – синтез зародышей рибосом.

4. Хроматин (хромосомы). В стационарном состоянии (время между делениями) ДНК равномерно распределены в кариоплазме в виде хроматина. При делении хроматин преобразуется в хромосомы.

Функции ядра: в ядре сосредоточена информация о наследственных признаках организма (информативная функция); хромосомы передают признаки организма от родителей к потомкам (функция наследования); ядро согласует и регулирует процессы в клетке (функция регуляции).



Случайные статьи

Вверх