Особенности титана как металла с превосходной коррозийной стойкостью. Области применения, основные характеристики и свойства титана и его сплавов

Cтраница 1


Теплопроводность титана составляет - 14 0 Вт / м град, что несколько ниже теплопроводности легированной стали. Материал хорошо куется, штампуется, обрабатывается резанием. Сварка изделий из титана производится вольфрамовым электродом в защитной атмосфере аргона. В последнее время титан используется для изготовления широкого ассортимента труб, листа, проката.  

Теплопроводность титана низкая - примерно в 13 раз ниже алюминия и в 4 4 раза ниже железа.  

Теплопроводность титана близка к теплопроводности нержавеющей стали и составляет 14 ккал / м С час. Титан хорошо куется, штампуется и удовлетворительно обрабатывается резанием. При температуре более 200 С склонен поглощать газы. Сварка титана производится вольфрамовым электродом в защитной атмосфере аргона.  

Теплопроводность титана и его сплавов примерно в 15 раз ниже, чем у алюминия, и в 3 5 - 5 раз ниже, чем у стали. Коэффициент линейного термического расширения титана также значительно ниже, чем у алюминия и нержавеющей стали.  

Теплопроводность титана составляет - 14 0 Вт / (м - К), что несколько ниже теплопроводности легированной стали. Материал хорошо куется, штампуется, обрабатывается резанием. Сварка изделий из титана производится вольфрамовым электродом в защитной атмосфере аргона. В последнее время титан используется для изготовления широкого ассортимента труб, листа, проката.  

Коэффициент теплопроводности титана в области рабочих температур (20 - 400 С) составляет 0 057 - 0 055 кал / (см-с - С), что примерно в 3 раза меньше теплопроводности железа, в 16 раз меньше теплопроводности меди и близко к теплопроводности нержавеющих сталей аустенитного класса.  

Поэтому, например, теплопроводность титана в 8 - 10 раз меньше теплопроводности алюминия.  

Полученные расчетные значения фононнои теплопроводности титана совпадают с оценкой этой величины, сделанной в работе , где она принята равной 3 -: - 5 вт / м-град.  

При легировании так же, как и при увеличении содержания примесей, теплопроводность титана, как правило, уменьшается. При нагреве теплопроводность сплавов, как и чистого титана, увеличивается; уже при 500 - 600 С она приближается к теплопроводности нелегированного титана.  

Модуль упругости титана почти вдвое меньше модуля упругости железа, находится на одном уровне с модулем медных сплавов и значительно выше, чем у алюминия. Теплопроводность титана низкая: она составляет около 7 % от теплопроводности алюминия и 16 5 % от теплопроводности железа. Это необходима учитывать при нагреве металла для обработки давлением и при сварке. Электросопротивление титана примерно в 6 раз больше чем у железа и в 20 раз больше, чем у алюминия.  

Прежде всего необходимо учитывать, что теплопроводность титана и его сплавов при невысоких температурах очень низка. При комнатной температуре теплопроводность титана равна приблизительно 3 % от теплопроводности меди и в несколько раз ниже, чем, например, у сталей (теплопроводность титана равна 0 0367 кал / см сек С, а теплопроводность стали 40 равна 0 142 кал. С повышением температуры теплопроводность титановых сплавов возрастает и приближается к теплопроводности сталей. Это сказывается на скоростях нагрева титановых сплавов в зависимости от температуры, на которую они нагреваются, что видно по скоростям нагрева и охлаждения технически чистого титана (сплав ВТ1) сечением 150 мм (фиг.  

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза меньше теплопроводности железа. С повышением температуры теплопроводность титана несколько понижается и при 700 С составляет 0 0309 кал / см сек СС.  

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза меньше теплопроводности железа. С повышением температуры теплопроводность титана несколько понижается и при 700 С составляет 0 0309 кал / см сек С.  

При сварке плавлением для получения соединения хорошего качества необходима надежная защита от газов атмосферы (О2, Nj, H2) металла сварного соединения, нагретого до температуры выше 400 С с обеих сторон шва. Рост зерна усугубляется низкой теплопроводностью титана, увеличивающей время пребывания металла сварного соединения при высоких температурах. Для преодоления указанных трудностей сварку выполняют при минимально возможной погонной энергии.  

Поскольку титан представляет собой металл, обладающий хорошей твердостью, но невысокой прочностью в промышленном производстве большее распространение получили сплавы на основе титана. Сплавы с различной структурой зерна, отличаются между собой строением и типом кристаллической решетки.

Их можно получить при обеспечении в процессе производства определенных температурных режимов. А путем добавления к титану различных легирующих элементов можно получать сплавы, характеризующиеся более высокими эксплуатационными и технологическими свойствами.

При добавлении легирующих элементов и различных типах кристаллических решеток в структурах на основе титана можно получить более высокую по сравнению с чистым металлом жаропрочность и прочность . При этом полученные структуры характеризуются небольшой плотностью, хорошими антикоррозионными свойствами и хорошей пластичностью, что расширяет сферу их использования.

Характеристика титана

Титан представляет собой легкий металл, сочетающий в себе высокую твердость и небольшую прочность , что усложняет его обработку. Температура плавления этого материала в среднем составляет 1665°С . Материал характеризуется невысокой плотностью (4,5г/см3) и хорошей антикоррозионной способностью.

На поверхности материала образуется окисная пленка толщиной в несколько нм, что исключает процессы коррозии титана в морской и пресной воде, атмосфере, окислению под действием органических кислот, процессов кавитации и в конструкциях, находящихся под напряжением.

В обычном состоянии материал не обладает жаропрочностью, для него характерно явление ползучести при комнатных температурах. Однако в условиях холода и глубокого холода материал характеризуется высокими прочностными характеристиками.

Титан отличается низким значением модуля упругости, это ограничивает его использование для изготовления конструкций, в которых необходима жесткость. В чистом состоянии металл обладает высокими противорадиационными характеристиками и не обладает магнитными свойствами.

Титан характеризуется хорошими пластическими свойствами и легко поддается обработке при комнатных температурах и выше. Сварные швы из титана и его соединений обладают пластичностью и прочностью. Однако, для материала свойственны интенсивные процессы поглощения газов при нахождении в неустойчивом химическом состоянии, возникающем при повышении температуры. Титан в зависимости от газа, с которым соединяется, образует гидридные, оксидные, карбидные соединения, плохо влияющие на его технологические свойства.

Материал характеризуется плохой приспособленностью к обработке резанием , в результате ее проведения он в течение короткого промежутка времени прилипает на инструмент , что снижает его ресурс. Проведение обработки титана резанием возможно с использованием охлаждения интенсивного типа на больших подачах, при низких скоростях обработки и значительной глубине резания. Кроме того в качестве инструмента для обработки выбирается быстрорежущая сталь.

Материал характеризуется высокой химической активностью, что обуславливает использование инертных газов при проведении работ по выплавке, литье титана или проведении дуговой сварки.

В процессе использования титановые изделия необходимо защищать от возможного поглощения газов при вероятности повышения эксплуатационных температур.

Титановые сплавы

Широкое распространение получили структуры на основе титана с добавлением таких легирующих элементов, как:

Структуры, получаемые деформированием сплавов титановой группы, используются для изготовления изделий, проходящих механическую обработку.

По прочности различают:

  • Высокопрочные материалы, прочность которых составляет более 1000МПа;
  • Структуры, обладающие средней прочностью, в диапазоне значений от 500 до 1000МПа;
  • Низкопрочные материалы, с прочностью ниже 500МПа.

По области использования:

  • Структуры, обладающие коррозионной стойкостью.
  • Конструкционные материалы;
  • Жаропрочные структуры;
  • Структуры с высокой стойкостью к действию холода.

Виды сплавов

По входящим в состав легирующим элементам выделяют шесть основных видов сплавов.

Сплавы типа α-сплавы

Сплавы типа α-сплавы на основе титана с применением для легирования алюминия, олова, циркония, кислорода характеризуются хорошей свариваемостью, понижением границы застывании титана и увеличением его жидкотекучести . Указанные свойства позволяют использовать так называемые α-сплавы для получения заготовок фасонным способом или при отливке деталей . Получаемые изделия этого типа обладают высокой термической стойкостью, что позволяет использовать их для изготовления ответственных деталей, работающих в температурных условиях до 400°С .

При минимальных количествах легирующих элементов соединения называются техническим титаном. Он характеризуется хорошей термической устойчивостью, и обладают отличными сварными характеристиками при проведении сварочных работ на различных аппаратах. Материал обладает удовлетворительными характеристиками по возможности обработки резанием. Не рекомендуется повышение прочности для сплавов этого типа с применением термообработки, материалы этого типа используются после проведения отжига. Сплавы, содержащие цирконий обладают наибольшей стоимостью и отличаются высокой технологичностью.

Формы поставки сплава представлены в виде проволоки, труб, прутков сортового проката, поковок. Наиболее используемым материалом этого класса является сплав ВТ5-1 , характеризующийся средней прочностью, жаропрочностью до 450°С и отличными характеристиками при работе в условиях низких и сверхнизких температур. Этот сплав не практикуется упрочнять термическими способами, однако его использование в условиях низких температур предполагает минимальное количество легирующих материалов.

Сплавы типа β-сплавы

Сплавы β-типа получаются при легировании титана ванадием, молибденом, никелем, при этом получаемые структуры характеризуются повышением прочности в диапазоне от комнатных до отрицательных температур по сравнению с α-сплавами. При их использовании увеличивается жаропрочность материала, его температурная стабильность, однако при этом наблюдается снижение пластических характеристик сплавов этой группы.

Для получения устойчивых характеристик сплавы этой группы должны быть легированы значительным количеством указанных элементов. Исходя из высокой стоимости этих материалов, широкого промышленного распространения структуры этой группы не получили. Для сплавов этой группы характерно противодействие ползучести, возможность повышения прочности различными способами, возможность механической обработки. Однако, с увеличением рабочей температуры до 300°С сплавы этой группы приобретают хрупкость .

Псевдо α-сплавы

Псевдо α-сплавы , большую часть легирующих элементов которых составляют компоненты α-фазы с добавлениями до 5% элементов группы β . Наличие β-фазы в сплавах добавляет к преимуществам легирующих элементов α-группы свойство пластичности. Увеличение жаростойкости сплавов этой группы достигается использованием алюминия, кремния и циркония. Последний из перечисленных элементов оказывает положительное воздействие на растворение β-фазы в структуре сплава. Однако, для этих сплавов характерны и недостатки , среди которых хорошее поглощение титаном водорода и образование гидридов, с возможностью возникновения водородной хрупкости. Водород фиксируется в соединении в форме гидридной фазы, уменьшает вязкость и пластические характеристики сплава и способствует увеличению хрупкости соединения.Одним из наиболее распространенных материалов этой группы является титановый сплав марки ВТ18 , обладающий жаропрочностью до 600°С, обладает хорошими характеристиками пластичности. Перечисленные свойства позволяют применять материал для изготовления деталей компрессоров в авиастроении . Термическая обработка материала включает отжиг при температурах около 1000°С с дальнейшим воздушным охлаждением или двойной отжиг, позволяющий на 15% увеличить его сопротивление разрыву.

Псевдо β- сплавы

Псевдо β- сплавы характеризуются наличием после проведения закалки или нормализации наличием только β-фазы. В состоянии отжига структура этих сплавов представлена α-фазой со значительным количеством легирующих компонентов группы β . Эти сплавы характеризуются самым большим среди титановых соединений показателем удельной прочности , обладают низкой термической стойкостью. Кроме того, сплавы этой группы мало подвержены хрупкости при воздействии водорода, однако обладают высокой чувствительностью к содержанию углерода и кислорода, влияющим на снижение вязких и пластичных свойств сплава. Эти сплавы характеризуются плохой свариваемостью, широким диапазоном механических характеристик, обуславливаемых неоднородностью состава и низкой стабильностью при работе в условиях высоких температур .Форма выпуска сплава представлена листами, поковками, прутками и полосовым металлом, с рекомендуемым использованием в течение длительного времени при температурах не выше 350°С. Примером такого сплава является ВТ 35 , для которого свойственна обработка давлением при воздействии температуры. После выполнения закалки материал характеризуется высокими пластическими характеристиками и способностью к деформации в холодном состоянии. Проведение операции старения для этого сплава обуславливает многократное упрочнение при наличии высокой вязкости.

Сплавы типа α+β

Сплавы типа α+β с возможными включениями интерметаллидов характеризуются меньшей хрупкостью при воздействии гидритов по сравнению со сплавами 1 и 3 групп. Кроме того, для них свойственна большая технологичность и удобство обработки с использованием различных методов по сравнению со сплавами α-группы. При проведении сварки с использованием материала этого типа для повышения пластичности шва после окончания операции требуется проведение отжига. Материалы этой группы изготавливаются в форме лент, листового металла, поковок, штамповок и прутков. Самым распространенным материалом этой группы является сплав ВТ6 , характеризуется хорошей деформируемостью при температурной обработке, сниженной вероятностью водородной хрупкости. Из этого материала производят несущие детали самолетов и жаропрочные изделия для компрессоров двигателей в авиации. Практикуется использование отожженных или упрочненных температурной обработкой сплавов ВТ6. Например, детали тонкостенного профиля или листовые заготовки отжигают при температуре 800°С в дальнейшем охлаждая на воздухе или оставляя в печи.

Сплавы из титана на базе интерметаллидов.

Интерметаллиды — сплав 2ух металлов, один из которых титан.

Получение изделий

Структуры, получаемые литьем, осуществляемым в специальные формы из металла в условиях ограничения доступа активных газов, учитывая высокую активность титановых сплавов при повышении температуры. Сплавы, получаемые при помощи литья, обладают худшими свойствами, по сравнению со сплавами, получающимися методом деформации. Термическая обработка с целью повышения прочности для сплавов этого типа не проводится, поскольку оказывает существенное воздействие на показатели пластичности этих структур.

В периодической системе химический элемент титан обозначается, как Ti (Titanium) и располагается в побочной подгруппе IV группы, в 4 периоде под атомным номером 22. Это серебристо-белый твёрдый металл, который входит в состав большого количества минералов. Купить титан вы можете на нашем сайте.

Открыли титан в конце 18 века химики из Англии и Германии Ульям Грегор и Мартин Клапрот, причём независимо друг от друга с шестилетней разницей. Название элементу дал именно Мартин Клапрот в честь древнегреческих персонажей титанов (огромных, сильных, бессмертных существ). Как оказалось, название стало пророческим, но чтобы познакомиться со всеми свойствами титана, человечеству понадобилось ещё больше 150 лет. Только через три десятилетия удалось получить первый образец металла титана. На тот момент времени его практически не использовали из-за хрупкости. В 1925 году после ряда опытов, при помощи йодидного метода химики Ван Аркель и Де Бур добыли чистый титан.

Благодаря ценным свойствам металла, на него сразу же обратили внимание инженеры и конструкторы. Это был настоящий прорыв. В 1940 году Кролль разработал магниетермический способ получения титана из руды. Этот способ актуален и на сегодняшний день.

Физические и механические свойства

Титан является довольно тугоплавким металлом. Температура его плавления составляет 1668±3°С. По этому показателю он уступает таким металлам, как тантал, вольфрам, рений, ниобий, молибден, тантал, цирконий. Титан - это парамагнитный металл. В магнитном поле он не намагничивается, но не выталкивается из него. Изображение 2
Титан обладает низкой плотностью (4,5 г/см³) и высокой прочностью (до 140 кг/мм²). Эти свойства практически не меняются при высоких температурах. Он более чем в 1,5 раза тяжелее алюминия (2,7 г/см³), зато в 1,5 раза легче железа (7,8 г/см³). По механическим свойствам титан намного превосходит эти металлы. По прочности титан и его сплавы располагаются в одном ряду со многими марками легированных сталей.

По стойкости к коррозии титан не уступает платине. Металл обладает отличной устойчивостью в условиях кавитации. Пузырьки воздуха, образующиеся в жидкой среде при активном движении титановой детали, практически не разрушают её.

Это прочный металл, способный сопротивляться разрушению и пластической деформации. Он в 12 раз твёрже алюминия и в 4 раза - меди и железа. Ещё один важный показатель - это предел текучести. С увеличением этого показателя улучшается сопротивление деталей из титана эксплуатационным нагрузкам.

В сплавах с определёнными металлами (особенно с никелем и водородом) титан способен «запоминать» форму изделия, созданную при определённой температуре. Такое изделие потом можно деформировать и оно надолго сохранит это положение. Если же изделие нагреть до температуры, при которой оно было сделано, то изделие примет первоначальную форму. Называют это свойство «памятью».

Теплопроводность титана сравнительно низкая и коэффициент линейного расширения соответственно тоже. Из этого следует, что металл плохо проводит электричество и тепло. Зато при низких температурах он является сверхпроводником электричества, что позволяет ему передавать энергию на значительные расстояния. Также титан обладает высоким электросопротивлением.
Чистый металл титан подлежит различным видам обработки в холодном и горячем состоянии. Его можно вытягивать и делать проволоку, ковать, прокатывать в ленты, листы и фольгу с толщиной до 0,01 мм. Из титана изготавливают такие виды проката: титановая лента , титановая проволока , титановые трубы , титановые втулки , титановый круг , титановый пруток .

Химические свойства

Чистый титан - это химически активный элемент. Благодаря тому, что на его поверхности формируется плотная защитная плёнка, металл обладает высокой устойчивостью к коррозии. Он не подвергается окислению на воздухе, в соленой морской воде, не меняется во многих агрессивных химических средах (например: разбавленная и концентрированная азотная кислота, царская водка). При высоких температурах титан взаимодействует с реагентами намного активнее. На воздухе при температуре 1200°С происходит его воспламенение. Возгораясь, металл даёт яркое свечение. Активная реакция происходит и с азотом, с образованием нитридной плёнки желто-коричневого цвета на поверхности титана.

Реакции с соляной и серной кислотами при комнатной температуре слабые, но при нагреве металл усиленно растворяется. В результате реакции образуются низшие хлориды и моносульфат. Также происходят слабые взаимодействия с фосфорной и азотной кислотами. Металл реагирует с галогенами. Реакция с хлором происходит при 300°С.
Активная реакция с водородом протекает при температуре чуть выше комнатной. Титан активно поглощает водород. 1 г титана может поглотить до 400 см³ водорода. Нагретый металл разлагает двуокись углерода и пары воды. Взаимодействие с парами воды происходит при температуре более 800°С. В результате реакции образуется окисел металла и улетучивается водород. При более высокой температуре горячий титан поглощает углекислый газ и образует карбид и окисел.

Способы получения

Титан является одним из самых распространённых элементов на Земле. Содержание его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%). Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана - это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия.
Существует несколько способов получения титана. Все они применяются на практике и вполне эффективны.

1. Магниетермический процесс.

Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде. Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием. Полученный металл нагревают в вакуумном оборудовании при высокой температуре. В результате магний и хлорид магния испаряются, остаётся титан с множеством пор и пустот. Губчатый титан переплавляют для получения качественного металла.

2. Гидридно-кальциевый метод.

Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре. Образуется оксид кальция, который проходит отмывку слабыми кислотами.
Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах. Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.

3. Электролизный метод.

Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.

4. Йодидный метод.

Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.

Применение титана

Благодаря хорошим антикоррозионным свойствам титан используют для изготовления химической аппаратуры. Высокая жаростойкость металла и его сплавов способствует применению в современной технике. Сплавы титана - это прекрасный материал для самолётостроения, ракетостроения и судостроения.

Из титана создают памятники. А колокола из этого металла известны необычайным и очень красивым звучанием. Двуокись титана является компонентом некоторых лекарственных препаратов, например: мази против кожных заболеваний. Также большим спросом пользуются соединения металла с никелем, алюминием и углеродом.

Титан и его сплавы нашли применение в таких сферах, как химическая и пищевая промышленность, цветная металлургия, электроника, ядерная техника, энергомашиностроение, гальванотехника. Вооружение, броневые плиты, хирургические инструменты и имплантаты, оросительные установки, спортинвентарь и даже украшения делают из титана и его сплавов. В процессе азотирования на поверхности металла образуется золотистая плёнка, не уступающая по красоте даже настоящему золоту.

Вечный, загадочный, космический, - все эти и многие другие эпитеты присваиваются в различных источниках титану. История открытия этого металла не была тривиальной: одновременно над выделением элемента в чистом виде трудились несколько ученых. Процесс изучения физических, химических свойств и определение областей его применения на сегодняшний день. Титан - металл будущего, место его в жизни человека еще окончательно не определено, что дает современным исследователям огромный простор для творчества и научных изысканий.

Характеристика

Химический элемент обозначается в периодической таблице Д. И. Менделеева символом Ti. Располагается в побочной подгруппе IV группы четвертого периода и имеет порядковый номер 22. титан - металл бело-серебристого цвета, легкий и прочный. Электронная конфигурация атома имеет следующую структуру: +22)2)8)10)2, 1S 2 2S 2 2P 6 3S 2 3P 6 3d 2 4S 2 . Соответственно, титан имеет несколько возможных степеней окисления: 2, 3, 4, в наиболее устойчивых соединениях он четырехвалентен.

Титан - сплав или металл?

Этот вопрос интересует многих. В 1910 году американский химик Хантер получил впервые чистый титан. Металл содержал всего 1 % примесей, но при этом его количество оказалось ничтожно мало и не давало возможности дальнейшего исследования его свойств. Пластичность полученного вещества достигалась толькопод воздействием высоких температур, при нормальных условиях (комнатной температуре) образец был слишком хрупок. Фактически этот элемент не заинтересовал ученых, так как перспективы его использования казались слишком неопределенными. Сложность получения и исследования еще больше снизили потенциал его применения. Только в 1925 году ученые-химики из Нидерландов И. де Бур и А. Ван-Аркел получили металл титан, свойства которого привлекли внимание инженеров и конструкторов всего мира. История исследования этого элемента начинается с 1790 года, именно в это время параллельно, независимо друг от друга, двое ученых открывают титан как химический элемент. Каждый из них получает соединение (оксид) вещества, не сумев выделить металл в чистом виде. Первооткрывателем титана считается английский минеролог монах Уильям Грегор. На территории своего прихода, расположенного в юго-западной части Англии, молодой ученый начал изучение черного песка долины Менакэна. Результатом стало выделение блестящих крупиц, которые являлись соединением титана. В это же время в Германии химик Мартин Генрих Клапрот выделил новое вещество из минерала рутиле. В 1797 году он же доказал, что открытые параллельно элементы являются аналогичными. Двуокись титана более века являлась загадкой для многих химиков, получить чистый металл оказалось не по силам даже Берцелиусу. Новейшие технологии XX века значительно ускорили процесс изучения упомянутого элемента и определили начальные направления его использования. При этом сфера применения расширяется постоянно. Ограничить её рамки может только сложность процесса получения такого вещества, как чистый титан. Цена сплавов и металла достаточно высока, поэтому на сегодняшний день он не может вытеснить традиционное железо и алюминий.

Происхождение названия

Менакин - первое название титана, которое применялось до 1795 года. Именно так, по территориальной принадлежности, назвал новый элемент У. Грегор. Мартин Клапрот присваивает элементу в 1797 году наименование «титан». В это время его французские коллеги во главе с достаточно авторитетным химиком А. Л. Лавуазье предлагают именовать вновь открытые вещества в соответствии с их основными свойствами. Немецкий ученый не был согласен с таким подходом, он вполне обоснованно считал, что на стадии открытия достаточно сложно определить все характеристики, свойственные веществу, и отразить их в названии. Однако следует признать, что интуитивно выбранный Клапротом термин в полной мере соответствует металлу - это неоднократно подчеркивали современные ученые. Существуют две основные теории возникновения названия титан. Металл мог быть обозначен так в честь эльфийской царицы Титании (персонаж германской мифологии). Такое название символизирует одновременно легкость и прочность вещества. Большинство ученых склоняются к версии использования древнегреческой мифологии, в которой титанами называли могучих сыновей богини земли Геи. В пользу этой версии говорит и название открытого ранее элемента - урана.

Нахождение в природе

Из металлов, которые в техническом отношении представляют ценность для человека, титан занимает четвертое место по степени распространенности в земной коре. Большим процентным содержанием в природе характеризуются только железо, магний и алюминий. Наибольшее содержание титана отмечено в базальтовой оболочке, чуть меньше его в гранитном слое. В морской воде содержание данного вещества невысокое - приблизительно 0,001 мг/л. Химический элемент титан достаточно активен, поэтому в чистом виде его встретить невозможно. Чаще всего он присутствует в соединениях с кислородом, при этом имеет валентность, равную четырем. Количество титаносодержащих минералов варьируется от 63 до 75 (в различных источниках), при этом на современном этапе исследований ученые продолжают открывать новые формы его соединений. Для практического использования наибольшее значение имеют следующие минералы:

  1. Ильменит (FeTiO 3).
  2. Рутил (TiO 2).
  3. Титанит (CaTiSiO 5).
  4. Перовскит (CaTiO 3).
  5. Титаномагнетит (FeTiO 3 +Fe 3 O 4) и т. д.

Все существующие титаносодержащие руды делят на россыпные и основные. Данный элемент является слабым мигрантом, он может путешествовать только в виде обломов камней или перемещения илистых придонных пород. В биосфере наибольшее количество титана содержится в водорослях. У представителей наземной фауны элемент накапливается в роговых тканях, волосе. Для человеческого организма характерно присутствие титана в селезенке, надпочечниках, плаценте, щитовидной железе.

Физические свойства

Титан - цветной металл, имеющий серебристо-белую окраску, внешне напоминает сталь. При температуре 0 0 С его плотность составляет 4,517 г/см 3 . Вещество имеет низкую удельную массу, что характерно для щелочных металлов (кадмий, натрий, литий, цезий). По плотности титан занимает промежуточную позицию между железом и алюминием, при этом его эксплуатационные характеристики выше, чем у обоих элементов. Основными свойствами металлов, которые учитываются при определении сферы их применения, являются и твердость. Титан прочнее алюминия в 12 раз, железа и меди - в 4 раза, при этом он значительно легче. Пластичность и предел его текучести позволяют производить обработку при низких и высоких температурных значениях, как и в случае с остальными металлами, т. е. методами клепки, ковки, сварки, проката. Отличительная характеристика титана - его низкая тепло- и электропроводность, при этом данные свойства сохраняются при повышенных температурах, вплоть до 500 0 С. В магнитном поле титан является парамагнитным элементом, он не притягивается, как железо, и не выталкивается, как медь. Очень высокие антикоррозийные показатели в агрессивных средах и при механических воздействиях уникальны. Более 10 лет нахождения в морской воде не изменили внешнего вида и состава пластины из титана. Железо в этом случае было бы уничтожено коррозией полностью.

Термодинамические свойства титана

  1. Плотность (при нормальных условиях) составляет 4,54 г/см 3 .
  2. Атомный номер - 22.
  3. Группа металлов - тугоплавкий, легкий.
  4. Атомная масса титана - 47,0.
  5. Температура кипения (0 С) - 3260.
  6. Молярный объем см 3 /моль - 10,6.
  7. Температура плавления титана (0 С) - 1668.
  8. Удельная теплота испарения (кДж/моль) - 422,6.
  9. Электросопротивление (при 20 0 С) Ом*см*10 -6 - 45.

Химические свойства

Повышенная коррозийная устойчивость элемента объясняется образованием на поверхности небольшой оксидной пленки. Она предотвращает (при нормальных условиях) с газами (кислород, водород), находящимися в окружающей атмосфере такого элемента, как металл титан. Свойства его изменяются под воздействием температуры. При ее повышении до 600 0 С происходит реакция взаимодействия с кислородом, в результате образуется оксид титана (TiO 2). В случае поглощения атмосферных газов образуются хрупкие соединения, которые не имеют никакого практического применения, именно поэтому сварка и плавка титана производятся в условиях вакуума. Обратимой реакцией является процесс растворения водорода в металле, он более активно происходит при повышении температуры (от 400 0 С и выше). Титан, особенно его мелкие частицы (тонкая пластина или проволока), сгорает в атмосфере азота. Химическая реакция взаимодействия возможна только при температуре 700 0 С, в результате образуется нитрид TiN. Со многими металлами формирует высокотвердые сплавы, часто является легирующим элементом. В реакцию с галогенами (хром, бром, йод) вступает только при наличии катализатора (высокой температуры) и при условии взаимодействия с сухим веществом. При этом образуются очень твердые тугоплавкие сплавы. С растворами большинства щелочей и кислот титан химически не активен, исключением является концентрированная серная (при длительном кипячении), плавиковая, горячие органические (муравьиная, щавелевая).

Месторождения

Наиболее распространены в природе ильменитовые руды - их запасы оцениваются в 800 млн тонн. Залежи рутиловых месторождений гораздо скромнее, но общий объем - при сохранении роста добычи - должен обеспечить человечество на ближайшие 120 лет таким металлом, как титан. Цена готового продукта будет зависеть от спроса и повышения уровня технологичности производства, но в среднем варьируется в диапазоне от 1200 до 1800 руб./кг. В условиях постоянного технического совершенствования значительно понижается себестоимость всех производственных процессов при их своевременной модернизации. Наибольшими запасами обладают Китай и Россия, также минерально-сырьевую базу имеют Япония, ЮАР, Австралия, Казахстан, Индия, Южная Корея, Украина, Цейлон. Месторождения отличаются объемами добычи и процентным содержанием титана в руде, геологические изыскания продолжаются постоянно, что дает возможность предполагать снижение рыночной стоимости металла и его более широкое применение. Россия на сегодняшний день является наиболее крупным производителем титана.

Получение

Для производства титана чаще всего используется его диоксид, содержащий минимальное количество примесей. Его получают путем обогащения ильменитовых концентратов или рутиловых руд. В электродуговой печи происходит термическая обработка руды, которая сопровождается отделением железа и образованием шлака, содержащего оксид титана. Сернокислый или хлоридный метод применяется для обработки свободной от железа фракции. Оксид титана является порошком серого цвета (см. фото). Металл титан получается при его поэтапной обработке.

Первой фазой является процесс спекания шлака с коксом и воздействия парами хлора. Полученный TiCl 4 восстанавливают магнием или натрием при воздействии температуры 850 0 С. Титановая губка (пористая сплавленная масса), полученная в результате химической реакции, очищается или переплавляется в слитки. В зависимости от дальнейшего направления использования, формируется сплав или металл в чистом виде (примеси удаляются путем нагрева до 1000 0 С). Для производства вещества с долей примесей 0,01 % используется йодидный метод. Он основан на процессе выпаривания из титановой губки, предварительно обработанной галогеном, его паров.

Сферы применения

Температура плавления титана является достаточно высокой, что при легкости металла является неоценимым преимуществом использования его в качестве конструкционного материала. Поэтому наибольшее применение он находит в судостроении, авиационной промышленности, изготовлении ракет, химических производствах. Титан достаточно часто используют в качестве легирующей добавки в различных сплавах, которые обладают повышенными характеристиками твердости и жаропрочности. Высокие антикоррозийные свойства и способность выдерживать большинство агрессивных сред делают этот металл незаменимым для химической промышленности. Из титана (его сплавов) изготавливают трубопроводы, емкости, запорную арматуру, фильтры, используемые при перегонке и транспортировке кислот и других химически активных веществ. Он востребован при создании приборов, работающих в условиях повышенных температурных показателях. Соединения титана используются для изготовления прочного режущего инструмента, красок, пластика и бумаги, хирургических инструментов, имплантатов, ювелирных изделий, отделочных материалов, применяется в пищевой промышленности. Все направления сложно описать. Современная медицина из-за полной биологической безопасности часто использует металл титан. Цена - это единственный фактор, который пока влияет на широту применения данного элемента. Справедливым является утверждение, что титан - материал будущего, изучая который, человечество перейдет на новый этап развития.

ОПРЕДЕЛЕНИЕ

Титан в виде слитка - твердый серебристо-белый металл (рис. 1), ковкий и пластичный, хорошо поддающийся механической обработке. Однако даже незначительная доля примесей резко изменяет его механические свойства, делая его более твердым и хрупким.

Рис. 1. Титан. Внешний вид.

Основные константы титана приведены в таблице ниже.

Таблица 1. Физические свойства и плотность титана.

Титан имеет гексагональную плотноупакованную структуру, которая при высоких температурах трансформируется в кубическую объемно-центрированную.

Распространенность титана в природе

По распространенности в земной коре титан занимает девятое место среди всех химических элементов. Его содержание в ней составляет 0,63% (масс.). Титан встречается в природе исключительно в виде соединений. Из минералов титана наибольшее значение имеют рутил TiO 2 , ильменит FeTiO 3 , перовскит CaTiO 3 .

Краткая характеристика химических свойств и плотность титана

При обычной температуре титан в компактном виде (т.е. в форме слитков, толстой проволоки и т.д.) на воздухе коррозионно устойчив. Например, он в противоположность сплавам на основе железа не ржавеет даже в морской воде. Это объясняется образованием на поверхности тонкой, но сплошной и плотной защитной пленки оксида. При нагревании пленка разрушается, и активность титана заметно возрастает. Так, в атмосфере кислорода компактный титан загорается лишь при температуре белого каления (1000 o С), превращаясь в порошок оксида TiO 2 . Реакции с азотом и водородом протекают примерно при тех же температурах, но гораздо медленнее, при этом образуются нитрид TiN и гидрид TiH 4 титана.

Ti + O 2 = TiO 2 ;

2Ti + N 2 = 2TiN;

Ti + 2H 2 = TiH 4 .

Площадь поверхности титана существенно влияет на скорость реакций окисления: тонкие стружки титана вспыхивают при внесении в пламя, а очень мелкие порошки пирофорны - на воздухе самовоспламеняются.

Реакция с галогенами начинается при слабом нагревании и, как правило, сопровождается выделением значительного количества теплоты, при этом всегда образуются тетрагалогенидытитна. Лишь в взаимодействие с йодом требует более высоких (200 o С) температур.

Ti + 2Cl 2 = TiCl 4 ;

Ti + 2Br 2 = TiBr 4 .

Примеры решения задач

ПРИМЕР 1

Задание Определите плотность по водороду смеси гелия и кислорода объемами 300 дм 3 и 100 дм 3 соответственно.
Решение Найдем объемные доли веществ в смеси:

j = V gas / V mixture_gas ;

j (O 2) = V(O 2) / V mixture_gas ;

j (O 2) = 100 / (300 + 100) = 100 / 400 = 0,25.

j (He) = V(He) / V mixture_gas ;

j (He) = 300 / (300 + 100) = 300 / 400 = 0,75.

Объемные доли газов будут совпадать с молярными, т.е. с долями количеств веществ, это следствие из закона Авогадро. Найдем условную молекулярную массу смеси:

M r conditional (mixture) = j (O 2) ×M r (O 2) + j (He) ×M r (He);

M r conditional (mixture) = 0,25× 32 + 0,75×20 = 8 + 15 = 23.

Найдем относительную плотность смеси по кислороду:

D H2 (mixture) = M r conditional (mixture) / M r (O 2);

D H 2 (mixture) = 23 / 2 = 11,5.

Ответ Относительная плотность по водороду смеси, состоящей из гелия и кислорода равна 11,5.

ПРИМЕР 2

Задание Определите плотность по водороду газовой смеси, в которой массовая доля диоксида серы составляет 60%, а диоксида углерода - 40%.
Решение Объемные доли газов будут совпадать с молярными, т.е. с долями количеств веществ, это следствие из закона Авогадро. Найдем условную молекулярную массу смеси:

M r conditional (mixture) = j (SO 2) ×M r (SO 2) + j (CO 2) ×M r (CO 2);



Случайные статьи

Вверх