Почему изменяется частота эффект доплера. Что такое эффект Доплера

Звук может восприниматься человеком по-разному, если источник звука и слушатель движутся относительно друг друга. Он может казаться более высоким или более низким, чем есть на самом деле.

Если источник звуковых волн и приёмник находятся в движении, то частота звука, которую воспринимает приёмник, отличается от частоты источника звука. При их сближении частота увеличивается, а при удалении уменьшается. Это явление называется эффектом Доплера , по имени учёного, его открывшего.

Эффект Доплера в акустике

Многим из нас приходилось наблюдать, как изменяется тон гудка поезда, двигающегося с большой скоростью. Он зависит от частоты звуковой волны, которую улавливает наше ухо. При приближении поезда эта частота увеличивается, и сигнал становится более высоким. При удалении от наблюдателя частота уменьшается, и мы слышим более низкий звук.

Такой же эффект наблюдается, когда движется приёмник звука, а источник неподвижен, или когда в движении находятся оба.

Почему изменяется частота звуковой волны, объяснил австрийский физик Кристиан Доплер. В 1842 г. он впервые описал эффект изменения частоты, названный эффектом Доплера .

Когда приёмник звука приближается к неподвижному источнику звуковых волн, за единицу времени он встречает на своём пути больше волн, чем если бы он находился в неподвижном состоянии. То есть он воспринимает более высокую частоту и слышит более высокий тон. Когда же он удаляется, число пересечённых в единицу времени волн уменьшается. И звук кажется более низким.

При движении источника звука к приёмнику он словно догоняет волну, созданную им же. Её длина уменьшается, следовательно, увеличивается частота. Если же он удаляется, то длина волны становится больше, а частота меньше.

Как вычислить частоту принимаемой волны

Звуковая волна способна распространяться только в среде. Её длина λ зависит от скорости и направления её движения.

где ω 0 - круговая частота, с которой источник испускает волны;

с - скорость распространения волн в среде;

v - скорость, с которой движется источник волн относительно среды. Её значение положительно, если источник движется навстречу приёмнику, и отрицательно, если он удаляется.

Неподвижный приёмник воспринимает частоту

Если же источник звука неподвижен, а приёмник движется, то частота, которую он будет воспринимать, равна

где u - скорость приёмника относительно среды. Она имеет положительное значение, если приёмник движется навстречу источнику, и отрицательное, если он удаляется.

В общем случае формула частоты, воспринимаемой приёмником, имеет вид:

Эффект Доплера наблюдается для волн любой частоты, а также электромагнитного излучения.

Где применяется эффект Доплера

Эффект Доплера используют везде, где нужно измерить скорость объектов, которые способны излучать или отражать волны. Главное условие для появления этого эффекта - движение источника волн и приёмника относительно друг друга.

Радар Доплера - это прибор, испускающий радиоволну, а затем измеряющий частоту отражённой от движущегося объекта волны. По изменению частоты сигнала он определяет скорость объекта. Такие радары используют сотрудники ГИБДД, чтобы выявить нарушителей, превышающих допустимую скорость. Применяют эффект Доплера в морской и воздушной навигации, в детекторах движения в охранных системах, для измерения скорости ветра и облаков в метеорологии и др.

Мы часто слышим о таком исследовании в кардиологии, как доплеровская эхокардиография. Эффект Доплера используют в этом случае для определения скорости движения клапанов сердца, скорости кровотока.

И даже скорость движения звёзд, галактик и других небесных тел научились определять по смещению спектральных линий с помощью эффекта Доплера.

Эффектом Доплера называют изменение длины и частоты регистрируемых приемником волн, которое вызывает движение их источника либо самого приемника. Данное название эффект получил в честь Кристиана Доплера, который открыл его. Доказать гипотезу экспериментальным методом позднее удалось голландскому ученому Кристиану Баллоту, посадившему в открытый железнодорожный вагон духовой оркестр и собравшему на платформе группу из самых одаренных музыкантов. Когда вагон с оркестром проезжал рядом с платформой, музыканты тянули какую-либо ноту, а слушатели записывали на бумаге то, что им слышалось. Как и ожидалось, восприятие высоты звука напрямую зависело от , как и гласил закон Доплера.

Действие эффекта Доплера

Объясняется данное явление довольно просто. На слышимый тон звука влияет частота звуковой волны, которая доходит до уха. При движении источника звука навстречу человеку каждая последующая волна приходит все быстрее. Ухо воспринимает волны как более частые, из-за чего звук кажется более высоким. Но в процессе удаления источника звука последующие волны испускаются чуть дальше и доходят до уха позднее предыдущих, из-за чего звук ощущается ниже.

Такое явление происходит не только во время движения источника звука, но и человека. «Набегая» на волну, человек пересекает ее гребни чаще, воспринимая звук как более высокий, а уходя от волны – наоборот. Таким образом, эффект Доплера не зависит ни от движется источника звука, ни его приемника по отдельности. Соответствующее звуковое восприятие возникает в процессе их движения относительно друг друга, причем данный эффект характерен не только для звуковых волн, но и световых, а также радиоактивного излучения.

Применение эффекта Доплера

Эффект Доплера не перестает играть чрезвычайно важную роль в самых разных областях науки и жизнедеятельности человека. С помощью него астрономам удалось выяснить, что вселенная постоянно расширяется, а звезды «убегают» друг от друга. Также эффект Доплера позволяет определять параметры движения космических аппаратов и планет. Он же составляет основу действия радаров, которые используют сотрудники ГИБДД для автомобиля. Этим же эффектом пользуются медицинские специалисты, которые при помощи ультразвукового прибора отличают вены от артерий во время проведения инъекций.

Воспринимаемая частота волны зависит от относительной скорости ее источника.

Вам, наверняка, хоть раз в жизни доводилось стоять у дороги, по которой проносится машина со спецсигналом и включенной сиреной. Пока вой сирены приближается, его тон выше, затем, когда машина поравняется с вами, он понижается, и, наконец, когда машина начинает удаляться, он понижается еще, и получается знакомое: ййййииииээээЭААААОоооуууумммм — такой примерно звукоряд. Сами того, возможно, не сознавая, вы при этом наблюдаете фундаментальнейшее (и полезнейшее) свойство волн.

Волны — вообще вещь странная. Представьте себе пустую бутылку, болтающуюся неподалеку от берега. Она гуляет вверх-вниз, к берегу не приближаясь, в то время как вода, казалось бы, волнами набегает на берег. Но нет — вода (и бутылка в ней) — остаются на месте, колеблясь лишь в плоскости, перпендикулярной поверхности водоема. Иными словами, движение среды, в которой распространяются волны, не соответствует движению самих волн. По крайней мере, футбольные болельщики хорошо это усвоили и научились использовать на практике: пуская «волну» по стадиону, они сами никуда не бегут, просто встают и садятся в свой черед, а «волна» (в Великобритании это явление принято называть «мексиканской волной») бежит вокруг трибун.

Волны принято описывать их частотой (число волновых пиков в секунду в точке наблюдения) или длиной (расстояние между двумя соседними гребнями или впадинами). Эти две характеристики связаны между собой через скорость распространения волны в среде, поэтому, зная скорость распространения волны и одну из главных волновых характеристик, можно легко рассчитать другую.

Как только волна пошла, скорость ее распространения определяется только свойствами среды, в которой она распространяется, — источник же волны никакой роли больше не играет. По поверхности воды, например, волны, возбудившись, далее распространяются лишь в силу взаимодействия сил давления, поверхностного натяжения и гравитации. Акустические же волны распространяются в воздухе (и иных звукопроводящих средах) в силу направленной передачи перепада давлений. И ни один из механизмов распространения волн не зависит от источника волны. Отсюда и эффект Доплера.

Давайте еще раз задумаемся над примером с воющей сиреной. Предположим для начала, что спецмашина стоит. Звук от сирены доходит до нас потому, что упругая мембрана внутри нее периодически воздействует на воздух, создавая в нем сжатия — области повышенного давления, — чередующиеся с разрежениями. Пики сжатия — «гребни» акустической волны — распространяются в среде (воздухе), пока не достигнут наших ушей и не воздействуют на барабанные перепонки, от которых поступит сигнал в наш головной мозг (именно так устроен слух). Частоту воспринимаемых нами звуковых колебаний мы по традиции называем тоном или высотой звука: например, частота колебаний 440 герц в секунду соответствует ноте «ля» первой октавы. Так вот, пока спецмашина стоит, мы так и будем слышать неизмененный тон ее сигнала.

Но как только спецмашина тронется с места в вашу сторону, добавится новый эффект. За время с момента испускания одного пика волны до следующего машина проедет некоторое расстояние по направлению к вам. Из-за этого источник каждого следующего пика волны будет ближе. В результате волны будут достигать ваших ушей чаще, чем это было, пока машина стояла неподвижно, и высота звука, который вы воспринимаете, увеличится. И, наоборот, если спецмашина тронется в обратном направлении, пики акустических волн будут достигать ваших ушей реже, и воспринимаемая частота звука понизится. Вот и объяснение тому, почему при проезде машины со спецсигналами мимо вас тон сирены понижается.

Мы рассмотрели эффект Доплера применительно к звуковым волнам, но он в равной мере относится и к любым другим. Если источник видимого света приближается к нам, длина видимой нами волны укорачивается, и мы наблюдаем так называемое фиолетовое смещение (из всех видимых цветов гаммы светового спектра фиолетовому соответствуют самые короткие длины волн). Если же источник удаляется, происходит кажущееся смещение в сторону красной части спектра (удлинение волн).

Этот эффект назван в честь Кристиана Иоганна Доплера, впервые предсказавшего его теоретически. Эффект Доплера меня на всю жизнь заинтересовал благодаря тому, как именно он был впервые проверен экспериментально. Голландский ученый Кристиан Баллот (Christian Buys Ballot, 1817-1870) посадил духовой оркестр в открытый железнодорожный вагон, а на платформе собрал группу музыкантов с абсолютным слухом. (Идеальным слухом называется умение, выслушав ноту, точно назвать её.). Всякий раз, когда состав с музыкальным вагоном проезжал мимо платформы, духовой оркестр тянул какую-либо ноту, а наблюдатели (слушатели) записывали слышащуюся им нотную партитуру. Как и ожидалось, кажущаяся высота звука оказалась в прямой зависимости от скорости поезда, что, собственно, и предсказывалось законом Доплера.

Эффект Доплера находит широкое применение и в науке, и в быту. Во всем мире он используется в полицейских радарах, позволяющих отлавливать и штрафовать нарушителей правил дорожного движения, превышающих скорость. Пистолет-радар излучает радиоволновой сигнал (обычно в диапазоне УКВ или СВЧ), который отражается от металлического кузова вашей машины. Обратно на радар сигнал поступает уже с доплеровским смещением частоты, величина которого зависит от скорости машины. Сопоставляя частоты исходящего и входящего сигнала, прибор автоматически вычисляет скорость вашей машины и выводит ее на экран.

Несколько более эзотерическое применение эффект Доплера нашел в астрофизике: в частности, Эдвин Хаббл, впервые измеряя расстояния до ближайших галактик на новейшем телескопе, одновременно обнаружил в спектре их атомного излучения красное доплеровское смещение, из чего был сделан вывод, что галактики удаляются от нас (см. Закон Хаббла). По сути, это был столь же однозначный вывод, как если бы вы, закрыв глаза, вдруг услышали, что тон звука двигателя машины знакомой вам модели оказался ниже, чем нужно, и сделали вывод, что машина от вас удаляется. Когда же Хаббл обнаружил к тому же, что чем дальше галактика, тем сильнее красное смещение (и тем быстрее она от нас улетает), оно понял, что Вселенная расширяется. Это стало первым шагом на пути к теории Большого взрыва — а это вещь куда более серьезная, чем поезд с духовым оркестром.

Christian Johann Doppler, 1803-53

Австрийский физик. Родился в Зальцбурге в семье каменщика. Окончил Политехнический институт в Вене, остался в нем на младших преподавательских должностях до 1835 года, когда получил предложение возглавить кафедру математики Пражского университета, что в последний момент заставило его отказаться от назревшего решения эмигрировать в Америку, отчаявшись добиться признания в академических кругах на родине. Закончил свою карьеру в должности профессора Венского королевского имперского университета.

Эффектом Доплера называют определенное физическое явление, характеризующее изменение длины и частоты волн, которые регистрируются приемником при условии, что источник волн и их приемник движутся относительно друг друга. Эффект Доплера

Наблюдается при распространении именно волновых явлений - света, звука, радиоволн и так далее, но не частиц, имеющих массу. Эту зависимость первым теоретически обосновал австрийский физик Кристиан Доплер в 1842 году. В честь него она, собственно, и была названа. Десятилетием позже эффект был более детально разработан в трудах француза Армано Физо, а на практике проверен уже в начале XX века.

Эффект Доплера в акустике

Скорость света составляет 300 000 км в секунду, что, по представлениям современной науки, является максимальной скоростью в природе вообще. Это затрудняет наблюдение изменения частоты волн света невооруженным взглядом. Однако эффект Доплера можно наблюдать не только на примере распространения фотонов или электромагнитных волн. Ему подчинены и звуковые колебания. Обычно для популярного объяснения используется пример сирены автомобиля. Представьте, что вы стоите на обочине дороги, к вам приближается автомобиль с включенной сиреной. Когда он находится еще далеко от вас, звук сирены будет казаться низким и глухим. Но по мере приближения частота Доплера (издаваемых волн) будет повышаться (то есть, буквально, расстояние между гребнями волны будет сокращаться), и вы будете слышать все более высокий тон звука. Однако когда автомобиль минует вас и вновь станет

удаляться, соответственно, частота звука вновь станет понижаться. Это происходит по причине того, что издаваемый звук сперва как бы «догоняется» автомобилем, что делает расстояние между гребнями (впадинами) волны все выше, а потом, наоборот, «убегает» от него, и волна «разглаживается». Это и есть эффект Доплера в нашей повседневной жизни.

Значение закономерности

Эффект Доплера является вовсе не сухим научным фактом, известным ученым. Так, например, он широко используется в некоторых современных радарах, основанных на измерении частоты распространения волн. Изменение этой частоты говорит о скорости объекта и ее изменении. Так определяется скорость автомобилей службами ГИБДД, самолетов, кораблей, течений воды в реках и морях и так далее. Охранные сигнализации, реагирующие на движение в помещении, также используют эффект Доплера.

Открытие Хаббла

Однако, пожалуй, наиболее значимым открытием, сделанным благодаря знаниям этой зависимости, стал так называемый закон Хаббла. В 1929 году американский астроном Эдвин Хаббл, наблюдая звездное небо в свой телескоп, обнаружил удивительнейшую

вещь. Далекие галактики были окутаны красноватой дымкой. Так называемое красное смещение, предсказанное еще в 1912-1914 годах другим американцем, Весто Слайфером, означало, что эти галактики буквально отдаляются от нашей. Спектр волн нашего видимого света укладывается в промежуток между 380 и 780 нм. Все, что ниже, называют ультрафиолетовым излучением, выше - инфракрасным. Смещение доходящего до нас света галактики в красную сторону говорит об увеличении частоты и, таким образом, аналогично звуку, о ее отдалении. Будь это смещение синим, галактики бы приближались. Но, что интересно, Эдвин Хаббл развернул свой телескоп на другие точки Вселенной и обнаружил, что почти все галактики отдаляются и от нашей, и друг от друга, более того, чем дальше находится в данный момент галактика, тем сильнее красное смещение, то есть скорость ее удаления увеличивается. Это существенно способствовало становлению в научном мире самой популярной на сегодняшний день теории о происхождении нашего мира: теории Большого взрыва.

В наше время все чаще стали упоминать некий феномен, получивший название «эффект Доплера». Гениальное открытие трудолюбивого и, бесспорно, талантливого деятеля, чье имя и присвоено удивительному изобретению, не только принесло ученому мировую известность, но и стало настоящей находкой, широко используемой ныне во всевозможных научно-технических сферах.

Феномен утверждает следующее: звуковая волна (акустическое действие) или волна электромагнитного излучения (оптическое действие) распространяется в воздухе с неизменной скоростью, зависящей лишь от свойств окружающей среды. Впрочем, длина волны и ее звуковая частота могут значительно варьироваться в результате смены положения:

Источника, из которого исходит звук;
непосредственного наблюдателя.

Так, в случае приближения наблюдателя к источнику повышается частота волны, в то время как отдаление их способствует понижению частоты. «Эффект Доплера» легко увидеть в действии, когда мимо человека проезжает автомобиль с включенной сиреной. Допустим, она издает не меняющийся тон определенной высоты. Когда машина остается неподвижной относительно человека, его ухо воспринимает тон, непосредственно издаваемый сиреной. Но как только автомобиль начнет приближение к нему, частота звука усилится, и человек услышит более громкий тон, чем истинный. И наоборот, при отдалении машины звуковые волны приобретут низкую частоту, и ему будет слышен более тихий тон.

Как был открыт и доказан практически «эффект Доплера»? Основываясь на итогах проведенных им наблюдений за течением волн на водной поверхности, Кристиан Доплер сделал предположение, что полученные результаты можно использовать и применительно к волнам, которые распространяются в воздушной среде. На базе волновой теории в 1842 году он пришел к такому выводу: с приближением светового источника к наблюдателю увеличивается наблюдаемая частота, а с отдалением она, напротив, уменьшается. Таким образом, ученый дал теоретическое объяснение зависимости частоты звуковых и электромагнитных колебаний, воспринимаемых наблюдателем, от направления и скорости движения источника этих волн относительно самого наблюдателя.

Научное доказательство эффекта состоялось через три года, в 1845 году. Тогда ученый Кристиан Баллот, голландец по происхождению, провел следующий эксперимент:

1. в незакрытый ж/д вагон он поместил одну группу трубачей;
2. на платформе осталась другая группа трубачей;
3. предполагалось, что поезд проедет близь платформы;
4. музыканты в это время должны были взять любую тональность;
5. перед наблюдателем была поставлена задача записать на бумаге услышанное.

В результате выяснилось, что то, как испытуемые воспринимали высоту звукового тона, прямо пропорционально зависело от того, на какой скорости движется поезд, как и предполагал ученый.

Великое открытие Доплера и сегодня продолжает играть необыкновенно важную роль в различных областях человеческой жизни. Вот лишь некоторые возможности его применения на практике:

Астрономы с его помощью определили постоянную расширяемость Вселенной, вследствие чего звезды отдаляются друг от друга.


Благодаря такому эффекту становится возможным успешное определение параметров движения планет и летательных космических аппаратов.

Принцип действия обыкновенных радаров, повсеместно используемых сотрудниками ГИБДД с целью определения скорости движения автомобиля, также основан на доплеровском открытии.

Наконец, его применяют в медицинских целях – при помощи проведения УЗИ различают вены и артерии во время проведения инъекций.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .



Случайные статьи

Вверх