Преобразование выражений. Подробная теория (2019). Буквенные выражения

С помощью любого языка можно выразить одну и ту же информацию разными словами и оборотами. Не является исключением и математический язык. Но одно и то же выражение можно эквивалентным образом записать по-разному. И в некоторых ситуациях одна из записей является более простой. Об упрощении выражений мы и поговорим на этом уроке.

Люди общаются на разных языках. Для нас важным сравнением является пара «русский язык - математический язык». Одну и ту же информацию можно сообщить на разных языках. Но, кроме этого, её можно и на одном языке произнести по-разному.

Например: «Петя дружит с Васей», «Вася дружит с Петей», «Петя с Васей друзья». Сказано по-разному, но одно и то же. По любой из этих фраз мы бы поняли, о чём идёт речь.

Давайте посмотрим на такую фразу: «Мальчик Петя и мальчик Вася дружат». Мы поняли, о чем идет речь. Тем не менее, нам не нравится, как звучит эта фраза. Не можем ли мы её упростить, сказать то же, но проще? «Мальчик и мальчик» - можно же один раз сказать: «Мальчики Петя и Вася дружат».

«Мальчики»… Разве по именам не понятно, что они не девочки. Убираем «мальчики»: «Петя и Вася дружат». А слово «дружат» можно заменить на «друзья»: «Петя и Вася - друзья». В итоге первую, длинную некрасивую фразу заменили эквивалентным высказыванием, которое проще сказать и проще понять. Мы эту фразу упростили. Упростить- значит сказать проще, но не потерять, не исказить смысл.

В математическом языке происходит примерно то же самое. Одно и то же можно сказать, записать по-разному. Что значит упростить выражение? Это значит, что для исходного выражения существует множество эквивалентных выражений, то есть тех, что означают одно и то же. И из всего этого множества мы должны выбрать самое простое, на наш взгляд, или самое подходящее для наших дальнейших целей.

Например, рассмотрим числовое выражение . Ему эквивалентное будет .

Также будет эквивалентно первым двум: .

Получается, что мы упростили наши выражения и нашли самое краткое эквивалентное выражение.

Для числовых выражений всегда нужно выполнять все действия и получать эквивалентное выражение в виде одного числа.

Рассмотрим пример буквенного выражения . Очевидно, что более простое будет .

При упрощении буквенных выражений необходимо выполнить все действия, которые возможны.

Всегда ли нужно упрощать выражение? Нет, иногда нам удобнее будет эквивалентная, но более длинная запись.

Пример : от числа нужно отнять число .

Вычислить можно, но если бы первое число было представлено своей эквивалентной записью: , то вычисления были бы мгновенными: .

То есть упрощенное выражение не всегда нам выгодно для дальнейших вычислений.

Тем не менее очень часто мы сталкиваемся с заданием, которое так и звучит «упростить выражение».

Упростить выражение: .

Решение

1) Выполним действия в первых и во вторых скобках: .

2) Вычислим произведения: .

Очевидно, последнее выражение имеет более простой вид, чем начальное. Мы его упростили.

Для того чтобы упростить выражение, его необходимо заменить на эквивалентное (равное).

Для определения эквивалентного выражения необходимо:

1) выполнить все возможные действия,

2) пользоваться свойствами сложение, вычитания, умножения и деления для упрощения вычислений.

Свойства сложения и вычитания:

1. Переместительное свойство сложения: от перестановки слагаемых сумма не меняется.

2. Сочетательное свойство сложения: чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего числа.

3. Свойство вычитания суммы из числа: чтобы вычесть сумму из числа, можно вычитать каждое слагаемое по отдельности.

Свойства умножения и деления

1. Переместительное свойство умножения: от перестановки множителей произведение не меняется.

2. Сочетательное свойство: чтобы умножить число на произведение двух чисел, можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель.

3. Распределительное свойство умножения: чтобы число умножить на сумму, нужно его умножить на каждое слагаемое по отдельности.

Посмотрим, как мы на самом деле делаем вычисления в уме.

Вычислите:

Решение

1) Представим как

2) Представим первый множитель как сумму разрядных слагаемых и выполним умножение:

3) можно представить как и выполнить умножение:

4) Заменим первый множитель эквивалентной суммой:

Распределительный закон можно использовать и в обратную сторону: .

Выполните действия:

1) 2)

Решение

1) Для удобства можно воспользоваться распределительным законом, только использовать его в обратную сторону - вынести общий множитель за скобки.

2) Вынесем за скобки общий множитель

Необходимо купить линолеум в кухню и прихожую. Площадь кухни - , прихожей - . Есть три вида линолеумов: по , и рублей за . Сколько будет стоить каждый из трёх видов линолеума? (Рис. 1)

Рис. 1. Иллюстрация к условию задачи

Решение

Способ 1. Можно по отдельности найти, сколько денег потребуется на покупку линолеума в кухню, а потом в прихожую и полученные произведения сложить.

Математический-Калькулятор-Онлайн v.1.0

Калькулятор выполняет следующие операции: сложение, вычитание, умножение, деление, работа с десятичными, извлечение корня, возведение в степень, вычисление процентов и др. операции.


Решение:

Как работать с математическим калькулятором

Клавиша Обозначение Пояснение
5 цифры 0-9 Арабские цифры. Ввод натуральных целых чисел, нуля. Для получения отрицательного целого числа необходимо нажать клавишу +/-
. точка (запятая) Разделитель для обозначения десятичной дроби. При отсутствии цифры перед точкой (запятой) калькулятор автоматически подставит ноль перед точкой. Например: .5 - будет записано 0.5
+ знак плюс Сложение чисел (целые, десятичные дроби)
- знак минус Вычитание чисел (целые, десятичные дроби)
÷ знак деления Деление чисел (целые, десятичные дроби)
х знак умножения Умножение чисел (целые, десятичные дроби)
корень Извлечение корня из числа. При повторном нажатие на кнопку "корня" производится вычисление корня из результата. Например: корень из 16 = 4; корень из 4 = 2
x 2 возведение в квадрат Возведение числа в квадрат. При повторном нажатие на кнопку "возведение в квадрат" производится возведение в квадрат результата Например: квадрат 2 = 4; квадрат 4 = 16
1 / x дробь Вывод в десятичные дроби. В числителе 1, в знаменателе вводимое число
% процент Получение процента от числа. Для работы необходимо ввести: число из которого будет высчитываться процент, знак (плюс, минус, делить, умножить), сколько процентов в численном виде, кнопка "%"
( открытая скобка Открытая скобка для задания приоритета вычисления. Обязательно наличие закрытой скобки. Пример: (2+3)*2=10
) закрытая скобка Закрытая скобка для задания приоритета вычисления. Обязательно наличие открытой скобки
± плюс минус Меняет знак на противоположный
= равно Выводит результат решения. Также над калькулятором в поле "Решение" выводится промежуточные вычисления и результат.
удаление символа Удаляет последний символ
С сброс Кнопка сброса. Полностью сбрасывает калькулятор в положение "0"

Алгоритм работы онлайн-калькулятора на примерах

Сложение.

Сложение целых натуральных чисел { 5 + 7 = 12 }

Сложение целых натуральных и отрицательных чисел { 5 + (-2) = 3 }

Сложение десятичных дробных чисел { 0,3 + 5,2 = 5,5 }

Вычитание.

Вычитание целых натуральных чисел { 7 - 5 = 2 }

Вычитание целых натуральных и отрицательных чисел { 5 - (-2) = 7 }

Вычитание десятичных дробных чисел { 6,5 - 1,2 = 4,3 }

Умножение.

Произведение целых натуральных чисел { 3 * 7 = 21 }

Произведение целых натуральных и отрицательных чисел { 5 * (-3) = -15 }

Произведение десятичных дробных чисел { 0,5 * 0,6 = 0,3 }

Деление.

Деление целых натуральных чисел { 27 / 3 = 9 }

Деление целых натуральных и отрицательных чисел { 15 / (-3) = -5 }

Деление десятичных дробных чисел { 6,2 / 2 = 3,1 }

Извлечение корня из числа.

Извлечение корня из целого числа { корень(9) = 3 }

Извлечение корня из десятичных дробей { корень(2,5) = 1,58 }

Извлечение корня из суммы чисел { корень(56 + 25) = 9 }

Извлечение корня из разницы чисел { корень (32 – 7) = 5 }

Возведение числа в квадрат.

Возведение в квадрат целого числа { (3) 2 = 9 }

Возведение в квадрат десятичных дробей { (2,2) 2 = 4,84 }

Перевод в десятичные дроби.

Вычисление процентов от числа

Увеличить на 15% число 230 { 230 + 230 * 0,15 = 264,5 }

Уменьшить на 35% число 510 { 510 – 510 * 0,35 =331,5 }

18% от числа 140 это { 140 * 0,18 = 25,2 }

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

§ 1 Понятие упрощения буквенного выражения

В этом занятии познакомимся с понятием «подобные слагаемые» и на примерах научимся выполнять приведение подобных слагаемых, упрощая, таким образом, буквенные выражения.

Выясним смысл понятия «упрощение». Слово «упрощение» образовано от слова «упрости́ть». Упрости́ть - значит сделать простым, проще. Следовательно, упростить буквенное выражение - это сделать его более коротким, с минимальным количеством действий.

Рассмотрим выражение 9х + 4х. Это буквенное выражение, которое является суммой. Слагаемые здесь представлены в виде произведений числа и буквы. Числовой множитель таких слагаемых называется коэффициентом. В этом выражении коэффициентами будут числа 9 и 4. Обратите внимание, множитель, представленный буквой - одинаковый в обоих слагаемых данной суммы.

Вспомним распределительный закон умножения:

Чтобы умножить сумму на число, можно умножить на это число каждое слагаемое и полученные произведения сложить.

В общем виде записывается так: (а + b) ∙ с = ac + bc.

Этот закон выполняется в обе стороны ac + bc = (а + b) ∙ с

Применим его к нашему буквенному выражению: сумма произведений 9х и 4х равна произведению, первый множитель которого равен сумме 9 и 4, второй множитель - х.

9 + 4 = 13, получается 13х.

9х + 4 х = (9 + 4)х = 13х.

Вместо трех действий в выражении осталось одно действие - умножение. Значит, мы сделали наше буквенное выражение проще, т.е. упрости́ли его.

§ 2 Приведение подобных слагаемых

Слагаемые 9х и 4х отличаются только своими коэффициентами - такие слагаемые называют подобными. Буквенная часть у подобных слагаемых одинаковая. К подобным слагаемым относятся также числа и равные слагаемые.

Например, в выражении 9а + 12 - 15 подобными слагаемыми будут числа 12 и -15, а в сумме произведения 12 и 6а, числа 14 и произведения 12 и 6а (12 ∙6а + 14 + 12 ∙ 6а) подобными будут равные слагаемые, представленные произведением 12 и 6а.

Важно отметить, что слагаемые, у которых равны коэффициенты, а буквенные множители различны, подобными не являются, хотя к ним полезно иногда применить распределительный закон умножения, например, сумма произведений 5х и 5у равна произведению числа 5 и суммы х и у

5х + 5y = 5(x + y).

Упрости́м выражение -9а + 15а - 4 + 10.

Подобными слагаемыми в данном случае являются слагаемые -9а и 15а, так как они отличаются только своими коэффициентами. Буквенный множитель у них одинаковый, также подобными являются слагаемые -4 и 10, так как являются числами. Складываем подобные слагаемые:

9а + 15а - 4 + 10

9а + 15а = 6а;

Получаем: 6а + 6.

Упрощая выражение, мы находили суммы подобных слагаемых, в математике это называют приведением подобных слагаемых.

Если приведение подобных слагаемых вызывает затруднение, можно придумать к ним слова и складывать предметы.

Например, рассмотрим выражение:

На каждую букву берем свой предмет: b-яблоко, с-груша, тогда получится: 2 яблока минус 5 груш плюс 8 груш.

Можем из яблок вычесть груши? Конечно, нет. А вот к минус 5 грушам прибавить 8 груш можем.

Приведем подобные слагаемые -5 груш + 8 груш. У подобных слагаемых буквенная часть одинаковая, поэтому при приведении подобных слагаемых достаточно выполнить сложение коэффициентов и к результату дописать буквенную часть:

(-5 + 8) груш - получится 3 груши.

Возвращаясь к нашему буквенному выражению, имеем -5 с + 8с = 3с. Таким образом, после приведения подобных слагаемых получим выражение 2b + 3с.

Итак, на этом занятии Вы познакомились с понятием «подобные слагаемые» и научились упрощать буквенные выражения путем приведения подобных слагаемых.

Список использованной литературы:

  1. Математика. 6 класс: поурочные планы к учебнику И.И. Зубаревой, А.Г. Мордковича//автор-составитель Л.А. Топилина. Мнемозина 2009.
  2. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений. И.И.Зубарева, А.Г. Мордкович.- М.: Мнемозина, 2013.
  3. Математика. 6 класс: учебник для общеобразовательных учреждений/Г.В. Дорофеев, И.Ф. Шарыгин, С.Б. Суворова и др./по редакцией Г.В. Дорофеева, И.Ф. Шарыгина; Рос.акад.наук, Рос.акад.образования. М.: «Просвещение», 2010.
  4. Математика. 6 класс: учеб.для общеобразоват.учреждений/Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – М.:Мнемозина, 2013.
  5. Математика. 6 кл.:учебник/Г.К. Муравин, О.В. Муравина. – М.: Дрофа, 2014.

Использованные изображения:

Удобный и простой онлайн калькулятор дробей с подробным решением может:

  • Складывать, вычитать, умножать и делить дроби онлайн,
  • Получать готовое решение дробей картинкой и удобно его переносить.


Результат решения дробей будет тут...

0 1 2 3 4 5 6 7 8 9
Знак дроби "/" + - * :
_cтереть Очистить
У нашего онлайн калькулятора дробей быстрый ввод . Чтобы получить решение дробей, к примеру , просто напишите 1/2+2/7 в калькулятор и нажмите кнопку "Решать дроби ". Калькулятор напишет вам подробное решение дробей и выдаст удобную для копирования картинку .

Знаки используемые для записи в калькуляторе

Набирать пример для решения вы можете как, с клавиатуры, так и используя кнопки.

Возможности онлайн калькулятора дробей

Калькулятор дробей может выполнить операции только с 2-мя простыми дробями. Они могут быть как правильными(числитель меньше знаменателя), так и неправильными(числитель больше знаменателя). Числа в числителе и знаменатели не могут быть отрицательными и больше 999.
Наш онлайн калькулятор решает дроби и приводит ответ к правильному виду - сокращает дробь и выделяет целую часть, если потребуется.

Если вам нужно решить отрицательные дроби, просто воспользуйтесь свойствами минуса. При перемножении и делении отрицательных дробей минус на минус дает плюс. То есть произведение и делении отрицательных дробей, равно произведению и делению таких же положительных. Если одна дробь при перемножении или делении отрицательная, то просто уберите минус, а потом добавьте его к ответу. При сложении отрицательных дробей, результат будет таким же как если бы вы складывали такие же положительные дроби. Если вы прибавляете одну отрицательную дробь, то это тоже самое, что вычесть такую же положительную.
При вычитании отрицательных дробей, результат будет таким же, как если бы поменяли их местами и сделали положительными. То есть минус на минус в данном случае дает плюс, а от перестановки слагаемых сумма не меняется. Этими же правилами мы пользуемся при вычитании дробей одна из которых отрицательная.

Для решения смешанных дробей (дробей, в которых выделена целая часть) просто загоните целую часть в дробь. Для этого умножьте целую часть на знаменатель и прибавьте к числителю.

Если вам нужно решить онлайн 3 и более дроби, то решать их следует по очереди. Сначала посчитайте первые 2 дроби, потом с полученным ответом прорешайте следующую дробь и так далее. Выполняйте операции по очереди по 2 дроби, и в итоге вы получите верный ответ.



Случайные статьи

Вверх