Преобразования графиков

Конспект урока алгебры и начала анализав 10 классе

по теме: «Преобразование графиков тригонометрических функций»

Цель урока: систематизировать знания по теме «Свойства и графики тригонометрических функций у=sin (x ), у=cos (x )».

Задачи урока:

  • повторить свойства тригонометрических функций у=sin (x ), у=cos (x );
  • повторить формулы приведения;
  • преобразование графиков тригонометрических функций;
  • развивать внимание, память, логическое мышление; активизировать мыслительную деятельность, умение анализировать, обобщать и рассуждать;
  • воспитание трудолюбия, усердия в достижении цели, интерес к предмету.

Оборудование урока:икт

Тип урока: изучение нового

Ход урока

Перед уроком 2 ученика на доске строят графики из домашнего задания.

    Организационный момент:

    Здравствуйте, ребята!

    Сегодня на уроке мы будем преобразовывать графики тригонометрических функций у=sin (x ), у=cos (x ).

    Устная работа:

    Проверка домашнего задания.

    разгадывание ребусов.

    Изучение нового материала

    Все преобразования графиков функций являются универсальными - они пригодны для всех функций, в том числе и тригонометрических. Здесь же ограничимся кратким напоминанием основных преобразований графиков.

    Преобразование графиков функций.

    Дана функция у = f (x ). Все графики начинаем строить с графика этой функции, затем производим с ним действия.

Функция

Что делать с графиком

y = f(x) + a

Все точки первого графика поднимаем на а единиц вверх.

y = f(x) – a

Все точки первого графика опускаем на а единиц вниз.

y = f(x + a)

Все точки первого графика сдвигаем на а единиц влево.

y = f (x – a)

Все точки первого графика сдвигаем на а единиц вправо.

y = a*f (x),a>1

Закрепляем нули на месте, верхние точки сдвигаем выше в а раз, нижние – опускаем ниже в а раз.

График «вытянется» вверх и вниз, нули остаются на месте.

y = a*f(x), a<1

Закрепляем нули, верхние точки опустятся вниз в а раз, нижние – поднимутся в а раз. График «сожмётся» к оси абсцисс.

y = -f (x )

Зеркально отобразить первый график относительно оси абсцисс.

y = f (ax ), a <1

Закрепить точку на оси ординат. Каждый отрезок на оси абсцисс увеличить в а раз. График растянется от оси ординат в разные стороны.

y = f (ax ), a >1

Закрепить точку на оси ординат, каждый отрезок на оси абсцисс уменьшить в а раз. График «сожмётся» к оси ординат с обеих сторон.

у = | f(x)|

Части графика, расположенные под осью абсцисс зеркально отобразить. Весь график будет расположен в верхней полуплоскости.

Схемы решения.

1)y = sin x + 2.

Строим график у = sin x . Каждую точку графика поднимаем вверх на 2 единицы (нули тоже).

2)y = cos x – 3.

Строим график y = cos x . Каждую точку графика опускаем вниз на 3 единицы.

3)y = cos (x - /2)

Строим график y = cos x . Все точки сдвигаем на п/2 вправо.

4)у = 2 sin x .

Строим график у = sin x . Нули оставляем на месте, верхние точки поднимаем в 2 раза, нижние опускаем на столько же.

    ПРАКТИЧЕСКАЯ РАБОТА Построение графиков тригонометрических функций с помощью программы Advanced Grapher.

    Построим график функции у = -cos 3x + 2.

  1. Построим график функции у = cos x .
  2. Отразим его относительно оси абсцисс.
  3. Этот график надо сжать в три раза вдоль оси абсцисс.
  4. Наконец, такой график надо поднять вверх на три единицы вдоль оси ординат.

y = 0,5 sin x.

y = 0,2cos x-2

у = 5cos 0,5 x

y= -3sin(x+π).

2) Найди ошибку и исправь её.

V. Исторический материал. Сообщение об Эйлере.

Леонард Эйлер – крупнейший математик 18-го столетия. Родился в Швейцарии. Долгие годы жил и работал в России, член Петербургской академии.

Почему же мы должны знать и помнить имя этого ученого?

К началу 18 века тригонометрия была еще недостаточно разработана: не было условных обозначений, формулы записывались словами, усваивать их было трудно, неясным был и вопрос о знаках тригонометрических функций в разных четвертях круга, под аргументом тригонометрической функции понимали только углы или дуги. Только в трудах Эйлера тригонометрия получила современный вид. Именно он стал рассматривать тригонометрическую функцию числа, т.е. под аргументом стали понимать не только дуги или градусы, но и числа. Эйлер вывел все тригонометрические формулы из нескольких основных, упорядочил вопрос о знаках тригонометрической функции в разных четвертях круга. Для обозначения тригонометрических функций он ввел символику: sin x, cos x, tg x, ctg x.

На пороге 18-го века в развитии тригонометрии появилось новое направление – аналитическое. Если до этого главной целью тригонометрии считалось решение треугольников, то Эйлер рассматривал тригонометрию как науку о тригонометрических функциях. Первая часть: учение о функции – часть общего учения о функциях, которое изучается в математическом анализе. Вторая часть: решение треугольников – глава геометрии. Такие вот нововведения были сделаны Эйлером.

VI. Повторение

Самостоятельная работа “Допиши формулу”.

VII. Итоги урока:

1) Что нового вы узнали сегодня на уроке?

2) Что еще вы хотите узнать?

3) Выставление оценок.

Гипотеза: Если изучить движение графика при образовании уравнения функций то можно заметить что все графики подчиняются общим закономерностям поэтому можно сформулировать общие законы вне зависимости от функций, что позволит не только облегчить построение графиков различных функций, но и использовать их при решении задач.

Цель: Изучить движение графиков функций:

1)Задача изучение литературы

2) Научится строить графики различных функций

3) Научится преобразовывать графики линейных функций

4) Рассмотреть вопрос применения графиков при решении задач

Объект исследования: Графики функций

Предмет исследования: Движения графиков функций

Актуальность: Построение графиков функций, как правило занимает очень много времени и требует внимательности со стороны ученика, но зная правила преобразования графиков функций и графики основных функций можно достаточно быстро и легко построить графики функций что позволит не только выполнять задания на построения графиков функций, но и решать связанные с ним задачи (на нахождения максимально (минимально высоты времени и точки встречи))

Данный проект полезен всем ученикам школы.

Обзор литературы :

В литературе рассматриваются способы построения графика различных функций, а так же приведены примеры преобразования графиков этих функций. Графики практически всех основных функций используются в различных технических процессах, что позволяет более наглядно представить течение процесса и спрограммировать результат

Постоянная функция. Эта функция задана формулой у = b, где b – некоторое число. Графиком постоянной функции является прямая, параллельная оси абсцисс и проходящая через точку (0; b) на оси ординат. Графиком функции у = 0 является ось абсцисс.

Виды функции 1Прямая пропорциональность. Эта функция задана формулой у = kx, где коэффициент пропорциональности k ≠ 0. Графиком прямой пропорциональности является прямая, проходящая через начало координат.

Линейная функция. Такая функция задана формулой у = kx + b, где k и b – действительные числа. Графиком линейной функции является прямая.

Графики линейных функций могут пересекаться или быть параллельными.

Так, прямые графиков линейных функций у = k 1 x + b 1 и у = k 2 x + b 2 пересекаются, если k 1 ≠ k 2 ; если же k 1 = k 2 , то прямые параллельны.

2Обратная пропорциональность – это функция, которая задана формулой у = k/x, где k ≠ 0. K называется коэффициентом обратной пропорциональности. Графиком обратной пропорциональности является гипербола.

Функция у = х 2 представлена графиком, получившим название парабола: на промежутке [-~; 0] функция убывает, на промежутке функция возрастает.

Функция у = х 3 возрастает на всей числовой прямой и графически представлена кубической параболой.

Степенная функция с натуральным показателем. Эта функция задана формулой у = х n , где n – натуральное число. Графики степенной функции с натуральным показателем зависят от n. Например, если n = 1, то графиком будет прямая (у = х), если n = 2, то графиком будет парабола и т.д.

Степенная функция с целым отрицательным показателем представлена формулой у = х -n , где n – натуральное число. Данная функция определена при всех х ≠ 0. График функции также зависит от показателя степени n.

Степенная функция с положительным дробным показателем. Эта функция представлена формулой у = х r , где r – положительная несократимая дробь. Данная функция также не является ни четной, ни нечетной.

График-линия которая отображает взаимосвязь зависимой и независимой переменных на координатной плоскости. График служит для наглядного отображения этих элементов

Независимая переменная это переменная которая может принимать любые значения в области определения функций (где данная функция имеет смысл(нельзя делить на нуль))

Чтобы построить график функций необходимо

1)Найти ОДЗ (область допустимых значений)

2)взять несколько произвольных значений для независимой переменной

3)Найти значен6ие зависимой переменной

4)Построить координатную плоскость отметить на ней данные точки

5) Соединить их линии при необходимости исследовать полученный график Преобразование графиков элементарных функций.

Преобразование графиков

В чистом виде основные элементарные функции встречаются, к сожалению, не так часто. Гораздо чаще приходится иметь дело с элементарными функциями, полученными из основных элементарных при помощи добавления констант и коэффициентов. Графики таких функций можно строить, применяя геометрические преобразования к графикам соответствующих основных элементарных функций (или переходить к новой системе координат). К примеру, квадратичная функция формула представляет собой квадратичную параболу формула, сжатую втрое относительно оси ординат, симметрично отображенную относительно оси абсцисс, сдвинутую против направления этой оси на 2/3 единицы и сдвинутую по направлению оси ординат на 2 единицы.

Давайте разберемся в этих геометрических преобразованиях графика функции пошагово на конкретных примерах.

С помощью геометрических преобразований графика функции f(x) может быть построен график любой функции вида формула, где формула - коэффициенты сжатия или растяжения вдоль осей oy и ox соответственно, знаки «минус» перед коэффициентами формула и формула указывают на симметричное отображение графика относительно координатных осей, а и b определяют сдвиг относительно осей абсцисс и ординат соответственно.

Таким образом, различают три вида геометрических преобразований графика функции:

Первый вид - масштабирование (сжатие или растяжение) вдоль осей абсцисс и ординат.

На необходимость масштабирования указывают коэффициенты формулы отличные от единицы, если число меньше 1 , то происходит сжатие графика относительно oy и растяжение относительно ox , если число больше 1, то производим растяжение вдоль оси ординат и сжатие вдоль оси абсцисс.

Второй вид - симметричное (зеркальное) отображение относительно координатных осей.

На необходимость этого преобразования указывают знаки «минус» перед коэффициентами формулы (в этом случае симметрично отображаем график относительно оси ox) и формула (в этом случае симметрично отображаем график относительно оси oy). Если знаков «минус» нет, то этот шаг пропускается.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Преобразование графиков функции является одним из основных математических понятий, непосредственно связанные с практической деятельностью. Преобразование графиков функций впервые встречается в алгебре 9 класса при изучении темы «Квадратичная функция». Квадратичная функция вводится и изучается в тесной связи с квадратными уравнениями и неравенствами. Так же многие математические понятия рассматриваются графическими методами, например в 10 - 11 классах исследование функции дает возможность найти область определения и область значения функции, области убывания или возрастания, асимптоты, интервалы знакопостоянства и др. Так же этот немаловажный вопрос выносится на ГИА. Отсюда следует, построение, и преобразование графиков функции является одной из главных задач обучения математике в школе.

Однако для построения графиков многих функций можно использовать ряд методов, облегчающих построение. Выше сказанное определяет актуальность темы исследования.

Объектом исследования является изучение преобразование графиков в школьной математике.

Предмет исследования - процесс построение и преобразование графиков функции в общеобразовательной школе.

Проблемный вопрос : можно ли построить график не знакомой функции, имея навык преобразования графиков элементарных функций?

Цель: построение графиков функции в незнакомой ситуации.

Задачи:

1. Проанализировать учебный материал по исследуемой проблеме. 2. Выявить схемы преобразования графиков функции в школьном курсе математики. 3. Отобрать наиболее эффективные методы и средства построение и преобразование графиков функции. 4.Уметь применять данную теории в решении задач.

Необходимые начальные знания, умения, навыки:

Определять значение функции по значению аргумента при различных способах задания функции;

Строить графики изученных функций;

Описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

Описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.

Основная часть

Теоретическая часть

В качестве исходного графика функции y = f(x) выберу квадратичную функциюy = x 2 . Рассмотрю случаи преобразования данного графика, связанные с изменениями формулы, задающей эту функцию и сделаю выводы для любой функции.

1. Функция y = f(x) + a

В новой формуле значения функции (ординаты точек графика) изменяются на число a, по сравнению со «старым» значением функции. Это приводит к параллельному переносу графика функции вдоль оси OY:

вверх, если a > 0; вниз, если a < 0.

ВЫВОД

Таким образом график функции y=f(x)+a, получается из графика функции y=f(x) с помощью параллельного переноса вдоль оси ординат на a единиц вверх, если a > 0, и на a единиц вниз, если a < 0.

2. Функция y = f(x-a),

В новой формуле значения аргумента (абсциссы точек графика) изменяются на число a, по сравнению со «старым» значением аргумента. Это приводит к параллельному переносу графика функции вдоль оси OX: вправо, если a < 0, влево, если a >0.

ВЫВОД

Значит график функции y= f(x - a), получается из графика функции y=f(x) с помощью параллельного переноса вдоль оси абсцисс на a единиц влево, если a > 0, и на a единиц вправо, если a < 0.

3. Функция y = k f(x), где k > 0 и k ≠ 1

В новой формуле значения функции (ординаты точек графика) изменяются в k раз, по сравнению со «старым» значением функции. Это приводит к: 1) «растяжению» от точки (0; 0) вдоль оси ОY в k раз, если k > 1, 2) «сжатию» к точке (0; 0) вдоль оси OY в раз, если 0 < k < 1.

ВЫВОД

Следовательно: чтобы построить график функции y = kf(x), где k > 0 и k ≠ 1 нужно ординаты точек заданного графика функции y = f(x) умножить на k. Такое преобразование называется растяжением от точки (0; 0) вдоль оси ОY в k раз, если k > 1; сжатием к точке (0; 0) вдоль оси OY в раз, если 0 < k < 1.

4. Функция y = f(kx), где k > 0 и k ≠ 1

В новой формуле значения аргумента (абсциссы точек графика) изменяются в k раз, по сравнению со «старым» значением аргумента. Это приводит к: 1) «растяжению» от точки (0; 0) вдоль оси ОX в 1/k раз, если 0 < k < 1; 2) «сжатию» к точке (0; 0) вдоль оси OX. в k раз, если k > 1.

ВЫВОД

И так: чтобы построить график функции y = f(kx), где k > 0 и k ≠ 1 нужно абсциссы точек заданного графика функции y=f(x) умножить на k. Такое преобразование называется растяжением от точки (0; 0) вдоль оси ОX в 1/k раз, если 0 < k < 1, сжатием к точке (0; 0) вдоль оси OX. в k раз, если k > 1.

5. Функция y = - f (x).

В данной формуле значения функции (ординаты точек графика) изменяются на противоположные. Это изменение приводит к симметричному отображению исходного графика функции относительно оси Ох.

ВЫВОД

Для построения графика функции y = - f (x) необходимо график функции y= f(x)

симметрично отразить относительно оси OX. Такое преобразование называется преобразованием симметрии относительно оси OX .

6. Функция y = f (-x).

В данной формуле значения аргумента (абсциссы точек графика) изменяются на противоположные. Это изменение приводит к симметричному отображению исходного графика функции относительно оси ОY.

Пример для функции у = - х² это преобразование не заметно, т. к. данная функция чётная и график после преобразования не меняется. Это преобразование видно, когда функция нечётная и когда ни чётная и ни нечётная.

7. Функция y = |f(x)|.

В новой формуле значения функции (ординаты точек графика) находятся под знаком модуля. Это приводит к исчезновению частей графика исходной функции с отрицательными ординатами (т.е. находящихся в нижней полуплоскости относительно оси Ох) и симметричному отображению этих частей относительно оси Ох.

8. Функция y= f (|x|).

В новой формуле значения аргумента (абсциссы точек графика) находятся под знаком модуля. Это приводит к исчезновению частей графика исходной функции с отрицательными абсциссами (т.е. находящихся в левой полуплоскости относительно оси ОY) и замещению их частями исходного графика, симметричными относительно оси ОY.

Практическая часть

Рассмотрим несколько примеров применения вышеизложенной теории.

ПРИМЕР 1.

Решение. Преобразуем данную формулу:

1) Построим график функции

ПРИМЕР 2.

Построить график функции, заданной формулой

Решение. Преобразуем данную формулу, выделив в данном квадратном трехчлене квадрат двучлена:

1) Построим график функции

2) Выполним параллельный перенос построенного графика на вектор

ПРИМЕР 3.

ЗАДАНИЕ ИЗ ЕГЭПостроение графика кусочной функции

График функции График функции y=|2(x-3)2-2|; 1



Случайные статьи

Вверх