Применение в медицине

«Синтетический каучук» - Почти 60% используется для изготовления покрышек. Ковер на натуральном каучуке. Обувь. Задумайтесь. Бутилкаучук (БК) - сополимер 2-метилпропена с небольшим количеством изопрена. Структура производства синтетических каучуков по странам Западной Европы. С. В. Лебедев. Не забыт и природный каучук, доля которого в общем производстве составляет стабильные 20%.

«Получение каучука» - Каучук бывает двух видов: натуральный и синтетический. Дальше каучук идет по транспортеру и попадает в измельчитель. Сок из цистерны переливают в специальные бассейны. Здесь пластина измельчается и по трубам подается в специальный контейнер. Держат каучук в печи минут пятнадцать. Такая же сладковатая.

«Каучук» - Сравните свойства бутадиенового и дивинилового каучуков. Сделайте вывод о характере каучука как полимера. Форма макромолекул каучука. О каучуке. Как изменилась окраска раствора? ПРЕЗИДИУМ ВСНХ». Задание № 7. Лабораторный опыт. Конец газоотводной трубки опустите в пробирку с бромной водой. Быль. Строение каучука.

«Синтетические полимеры» - Полимеры. Линейная структура полимеров. Разветвлённая структура полимеров. Природные и синтетические полимеры. Волокна подразделяются на природные и химические. Мономер – исходное вещество для получения полимеров. Как же образуются эти необычные соединения? Что же такое полимеры? Как правило из полимеров получают полимерные материалы.

«Природный каучук» - Чарльз Гудьир. Строение природного каучука. Физические свойства каучука. В 1834 г. Открыл процесс вулканизации резины. Процесс полимеризации изопрена. Гудьир упорно смешивал каучук со всем подряд: с солью, перцем, песком, маслом и даже с супом и, в конце концов, добился успеха. Макромолекула природного каучука состоит из макромолекул изопрена. | CH2 = C - CH = CH2 | CH3.

«Полимеры химия» - Заключение. Знаете ли вы, что... Все живое состоит из полимеров: Подлинный переворот в медицине совершен полимерами. М. Ломоносов. Вклад химии в победу. Неожиданные качества полимер. Материалы будущего. Широко распространяет химия руки свои в дела человеческие… В настоящее время нет необходимости говорить о важной роли полимеров.

Всего в теме 16 презентаций

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

П О Л И М Е Р Ы Учитель химии: МАКАРКИНА М.А.

ПРИРОДНЫЕ И СИНТЕТИЧЕСКИЕ ПОЛИМЕРЫ ПОЛИМЕРЫ - высокомолекулярные соединения, состоящие из множества одинаковых структурных звеньев пластмассы целлюлоза крахмал природные синтетические полиэтилен

природный полимер

к р а х м а л

Ц Е Л Л Ю Л О З А

п л е н к и

2. СПОСОБЫ ПОЛУЧЕНИЯ ПОЛИМЕРОВ поликонденсация полимеризация n CH ₂=CH₂→(−CH₂−CH₂−) n

Гомополимеризация – соединение молекул одного мономера Сополиконденсация – соединение молекул двух и более исходных веществ Способы получени я Поликонденсация Это химический процесс соединения исходных молекул мономера в макромолекулы полимера, идущий с образованием побочного низкомолекулярного продукта (чаще всего воды) Полимеризация Это химический процесс соединения множества исходных молекул низкомолекулярного вещества (мономера) в крупные молекулы (макромолекулы) полимера. Гомополиконденсация – соединение молекул одного мономера

Форма макромолекул Линейная Разветвлённая Пространственная Изогнутая (волокна, сера пластическая) Скрученная (каучуки) (крахмал, полиэтилен У Р) (резина, кварц)

Прочность Деформация (растяжение) Ударопрочность Теплостойкость Свойства полимеров

3. ОСНОВНЫЕ ПОНЯТИЯ МАКРОМОЛЕКУЛА – молекула полимера (макрос – большой, длинный) МОНОМЕР – исходная молекула вещества для получения полимера ПОЛИМЕР - молекула высокомолекулярного соединения СТРУКТУРНОЕ ЗВЕНО - многократно повторяющаяся группа атомов в молекуле полимера СТЕПЕНЬ ПОЛИМЕРИЗАЦИИ - n - число структурных звеньев в макромолекуле

4. ПЛАСТМАССЫ И ВОЛОКНА ПЛАСТМАССА - это материал, в котором связующим компонентом является полимер. Остальное - наполнители, пластификаторы, красители и другие вещества. Наполнители: снижают себестоимость, повышают прочность и жесткость полимера. (стекловолокно, опилки, асбест и др.)

ПЛАСТИФИКАТОРЫ - эластичности и (или) пластичности при переработке или эксплуатации полимера. Пластификаторы снижают температуру технологической обработки, улучшают морозостойкость полимеров, но иногда ухудшают их теплостойкость. Некоторые могут повышать огне-, свето - и термостойкость полимеров. Наиболее распространенные пластификаторы: сложные эфиры, минеральные и невысыхающие растительные масла. вещества для придания

В О Л О К Н А химические природные шелк, шерсть, хлопок, лен вискоза, ацетат, капрон, нейлон лавсан и др. Переработка природных (целлюлоза) или синтетических полимеров

Х Л О П О К

Ш е р с т ь

кокосовая койра

а ц е т а т

в и с к о з а

н е й л о н

к а у ч у к

натуральный каучук

синтетический каучук

вулканизация каучука

изделия из резины

применение полимеров

литий-полимерный конденсатор

полимерные трубы

В строительстве В медицине В текстильной промышленности В сельском хозяйстве Полимеры применяются

Применение в медицине Изготовление медицинских приборов Изготовление медицинских протезов Основа для многих пленок и мазей Хирургия

Применение в строительстве Изделия из пластмассы и полимерной смолы являются экологичными, долговечными, устойчивыми к холоду, влаге, солнцу фонтаны садовые фигурки Окна ПВХ Предметы интерьера

Применение в сельском хозяйстве 1. Использование тепличной плёнки из полиэтилена, что повышает урожайность многих культур. 2 .Мелиорация. Изготовление шлангов и труб для полива. 3. Строительство животноводческих помещений.


По теме: методические разработки, презентации и конспекты

Классный час: Здоровый образ жизни. Гигиена в нашей жизни.

Классный час в игровой форме: Здоровый образ жизни. Гигиена в нашей жизни.

Цель: формирование знаний у учащихся понятия о науке гигиене; навыков использования знаний в области гигиены в повседневной жизни....

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Новейшая область химии Новейшая область химии - химия высокомолекулярных соеди­нений- дает медицине возможность подняться на еще одну ка­чественно высшую ступень. Синтетические полимеры в течение ко­роткого периода времени вторглись в мир человека, поэтому XX век принято называть «веком полимеров». Началом применения полимерных материалов в медицине сле­дует считать 1788 г., когда А. М. Шумлянский применил каучук. Fraenkel (1895) впервые использовал искусственный полимер-целлулоид для закрытия костных дефектов после операций на черепе, что положило начало аллопластике - использованию раз­личных материалов для замены живых тканей. Большой опыт, накопленный многими исследователями по при­менению полимеров в различных областях медицинской практики, позволяет условно разделить полимеры в зависимости от того, ка­кие требования предъявляет к ним медицина:

3 слайд

Описание слайда:

II группа. Полимерные материалы, контактирующие с тканями организма, а также с веществами, которые в него вводятся: - тара для упаковки и хранения лекарственных средств, крови и плазмозаменителей; - полимеры, применяемые в стоматологии (кроме пломб); - хирургический инструментарий, шприцы; - узлы и детали для медицинских аппаратов и приборов, в том числе - полупроницаемые мембраны.

4 слайд

Описание слайда:

I группа. Полимерные материалы, предназначенные для вве­дения в организм: - «внутренние» протезы, пломбы, искусственные органы; - клеи; - шовный и перевязочный материалы; - плазмо - и кровезаменители, дезинтоксикаторы, интерфероногены, антидоты; - лекарственные препараты, изготовленные на основе поли­меров (в том числе - ионитов); - полимеры, используемые в технологии лекарственных форм (защитные пленки, капсулы и микрокапсулы, вспомогательные вещества и т. п.).

5 слайд

Описание слайда:

III группа. Полимерные материалы, не предназначенные для введения и не контактирующие с веществами, вводимыми в орга­низм: - полимеры, применяемые в анатомии и гистологии; - предметы ухода за больными; - лабораторная посуда, штативы и т. п.; - оборудование операционных и больниц; - оправы и линзы для очков; - протезно-ортопедические изделия (в том числе - обувь); - больничные одежда, белье, постельные принадлежности.

6 слайд

Описание слайда:

Полимеры 1-й группы Полимеры 1-й группы предназначены для имплантации в организм на различные сроки. Сюда относятся протезы кровеносных сосудов, клапаны сердца, протезы пищевода, мочевого пузыря, уретры, хрусталика глаза, протезы для замещения дефектов скелета и мягких тканей, штифты, пластинки для фиксации костей при переломах, полимерные сетчатые каркасы для соединения кишок, сухожилий, трахей. К полимерам, применяемым для изготовления протезов внутренних ор­ганов, предъявляются жесткие требования. Главнейшие из них - длитель­ное сохранение основных физико-механических свойств в условиях посто­янного воздействия ферментативной системы живого организма; биологи­ческая инертность, обусловливающая легкую адаптацию организма к имп­лантанту, проявляющуюся в его инкапсуляции. Наиболее успешно применя­ются полиакрилаты - полимеры на основе производных акриловой и метакриловой кислот для целей аллопластики.

7 слайд

Описание слайда:

У нас в стране с 1946 г полиметилакрилат применяется в клинике Центрального института и ортопедии при артропластике тазобедренного сустава и остеосинтезе, для замещения дефектов костей черепа. В 1952 г. М. В. Шеляховский при операциях грыж передней брюшной стенки применил перфорированные пла­стинки из фторопласта-4. В последующие годы для этих же це­лей, а также для пластики диафрагмы использовали капроновую сетку (поликонденсат аминокапроновой кислоты) Были получены также более совершенные сосудистые протезы из лавсана, синтезируемого методом поликонденсации терефталевой кислоты с этиленгликолем, и фторопласта- 3 и- 4

8 слайд

Описание слайда:

Силиконовый каучук Важнейшим представителем класса кремнийорганических полимеров является полидиметилсилоксан (силиконовый каучук). Одним из самых примечательных свойств силиконовых каучуков явля­ется их физиологическая инертность, они не имеют ни запаха, ни вкуса, обладают непревзойденными свойствами по проницаемости по отношению к кислороду и углекислому газу, что позволяет их использовать в качестве мембран для оксигенаторов. Интересным качеством вулканизаторов из си­ликоновых каучуков является их способность не прилипать к липким по­верхностям. Они обладают удовлетворительной совместимостью с кровью, а при модификации поверхности не вызывают свертывания крови. Силиконовые резины на основе полидиметилсилоксана не вызывают тканевых реакций, поэтому их используют как материалы для имплантации.

9 слайд

Описание слайда:

Полиуретаны Полиуретаны - продукты синтеза полиизоцианатов с полиспир­тами. В реакции участвует как минимум два полифункциональных мономера, один из которых имеет подвижный водород, а другой – группы, способные принять его Полиуретаны имеют в своем составе сильно полярные уретановые группы О_С_NH_. Их свойства в значительной мере определяются расстоянием между уретановыми группами в макромолекуле. Известно большое количество полимеров этого класса соеди­нений с самыми разнообразными свойствами. Этим полиуретаны завоевали репутацию достаточно перспективных для применения в медицине. Они легче воды, устойчивы к действию щелочей и сла­бых кислот. Распространение получили пенополиуретаны - губчатые пла­стики. Выпускаются жесткие и эластичные пенопласты с разными по величине порами и различной механической прочностью. Они чрезвычайно легки, эластичны, структуростабильны, химически и физиологически инертны, хорошо впитывают влагу, применяются для пломбировки околопочечного пространства при урологических операциях.

10 слайд

Описание слайда:

Пломбировочные материалы на основе акриловых сополимеров. Быстротвердеющие пластмассы па основе акриловых со­полимеров (со­полимеры – полимеры, содержащие несколько типов мономерных звеньев и получаемые путем совместной полимеризации двух или большего числа мономеров) явились одними из первых сополимерных пломбировочных материалов. Начиная с 50-х годов у нас в стране и за рубежом были выпущены различные марки этих материалов: портекс, стеллон, норакрил. Возможность затвердения этих композиций при комнатной температуре обусловлена введением в их состав окислительно-восстановительных систем, состоящих из инициаторов и активаторов.

11 слайд

Описание слайда:

Пломбировочные материалы на основе эпоксидных сополимеров Вопросы создания и клинического изучения пломбировоч­ных материалов на основе эпоксидных сополимеров доста­точно полно изложены в монографии Б. Я. Горового и В. С. Иванова (1973). Впервые эпоксидные композиции были разработаны и предложены для зубоврачебной практики швейцарским доктором II. Кастан и другими сотрудниками фирмы «де Трей» в 1934-1938 гг. Эпоксидные смолы получают в результате реакции поликонденсации энихлоргидрина с дифенилолпропаном или резорцином в различных агрегатных состояниях - в виде жидких, вязких и твердых продуктов. В случае использо­вания дифенилолпропана получаются диановые смолы, а в случае использования резорцина резорциновые. В этой связи заслуживает упоминания имя русского уче­ного А. ТТ. Дианина, впервые получившего и 1891 г. это соединение: в его честь эти смолы и получили название диановые. В различных отраслях промышленности в настоящее вре­мя применяются главным образом диановые смолы, кото­рые в отличие от резорциновых обладают меньшей ток­сичностью, большей доступностью и дешевизной исход­ных продуктов синтеза. Эпоксидно-диановые смолы обладают наиболее универсальными свойствами (по сравнению с другими эпоксидными смолами) и получаются из дешевого и весьма доступного сырья (продуктов переработки нефти). Полезные свойства, определяющие широкое применение эпоксидно-диановых смол как основы для разнообразных материалов (связующие, клеи, покрытия, герметики и др.), могут быть охарактеризованы следующим образом: высокая адгезия (явление соединения (прилипания) приведенных в контакт поверхностей фаз) ко всем полярным материалам (металлы, стекло, керамика, дентин и эмаль зубов). Это свойство эпоксидно-диановых смол обеспечивается наличием гидроксильных и простых эфирных группировок. механическая прочность, обусловленная высокой концентрацией сравнительно жестких дифенилолпропановых блоков, содержащих ароматические ядра, в сочетании с группировкой__O__CH2__CH__CH2__O__ .

12 слайд

Описание слайда:

Используемые сайты: https://studfiles.net/preview/4081600/ http://medbe.ru/videoarchive/nauka-i-tekhnologii-v-meditsine/polimery-v-meditsine/ https://vuzlit.ru/915800/primenenie_polimerov_meditsine

13 слайд

Описание слайда:

Полимеры (греч. πολύ- много; μέρος часть) неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Как правило, полимеры вещества с молекулярной массой от нескольких тысяч до нескольких миллионов. Мономер (др.-греч. μόνος один; μέρος часть) это низкомолекулярное вещество, образующее полимер в реакции полимеризации. Мономерами также называют повторяющиеся звенья (структурные единицы) в составе полимерных молекул.


Полимеризацииполиконденсации Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п.


Полимеризацией Реакцию образования полимера из мономера называют полимеризацией. В процессе полимеризации вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости или твердое. Реакция полимеризации не сопровождается отщеплением каких-либо низкомолекулярных побочных продуктов. При полимеризации полимер и мономер характеризуются одинаковым элементным составом.




Особые механические свойства Особые механические свойства: эластичность эластичность способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки); малая хрупкость стеклообразных и кристаллических полимеров малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло); способность макромолекул к ориентации способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).


Особенности растворов полимеров: высокая вязкость раствора при малой концентрации полимера; растворение полимера происходит через стадию набухания. Особые химические свойства: способность резко изменять свои физико- механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.). Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают гибкостью.


Природные искусственные синтетические Получаются в ходе фото-, биосинтеза из простейших соединений (H 2 O, CO 2, NH 4) под действием ферментов и УФ-лучей Получаются химической модификацией природных полимеров(обычно обрабатывают природные полимеры кислотами, щелочами, ангидридами кислот, солями и др. реагентами. Получают синтезом из простейших низкомолекулярных соединений – мономеров. Целлюлоза, крахмал, лигнин, гемицеллюлозы, белки(глоубилин, казеин, альбумин, гемоглобин), натуральный каучук, графит, алмаз и др. Ацетаты, целлюлозы НЦ, нитраты, ксантогенаты целлюлозы, метил-, этил-, карбок симетилцеллюлоза КМЦ и др. Полиэтилен ПЭ, полипропилен ПП, поливинилхлорид ПВХ, полистирол ПС, полиакрилонитрил ПА, поливинилацетат ПВА, поливиниловый спирт ПВС и др.


Природные искусственные Органические полимеры подразделяются на природные и искусственные. К природным полимерам относятся: целлюлоза, белки, крахмал, натуральный каучук, природные смолы (копал, канифоль, шеллак, янтарь). Природные полимеры редко применяются в строительстве. Широкое распространение получили искусственные полимеры, получаемые в результате синтеза простых низкомолекулярных соединений - мономеров.






Гетероцепные полимеры Гетероцепные полимеры, в основных цепях которых кроме атомов углерода содержатся атомы кислорода, азота, серы, реже фосфора и других элементов. К этой группе полимеров относятся полиэфиры, полиамиды, полиуретаны, полиэпоксидные соединения.


Элементоорганические полимеры Элементоорганические полимеры, содержащие в основных цепях атомы кремния, алюминия, титана и других элементов, например, кремнийорганические соединения. Эти полимеры имеют в макромолекуле кремний- кислородные связи, называемые силоксановыми.



Полимеры Благодаря механической прочности, эластичности, электроизоляционным и другим свойствам изделия из полимеров применяют в различных отраслях. Основные типы полимерных материалов пластические массы, резины, волокна, лаки, краски, клеи, ионообменные смолы. В технике полимеры нашли широкое применение в качестве электроизоляционных и конструкционных материалов. Полимеры – хорошие электроизоляторы, широко используются в производстве разнообразных по конструкции и назначению электрических конденсаторов, проводов, кабелей, На основе полимеров получены материалы, обладающие полупроводниковыми и магнитными свойствами. Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.

Слайд 2

Полимеры

Слайд 3

Студент должен: знать Основные определения и классификацию полимеров. Методы получения полимеров. Основные положения теории строения и свойства полимеров. Уметь Классифицировать, составлять общую формулу и название полимеров на основе строения органических и неорганических миономеров. Составлять уравнение реакций получения полимеров. Составлять структурные формулы полимеров и описывать их свойства.

Слайд 4

4 Полимеры -(от греч "poly" - много, " meres" - часть) – химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев).

Слайд 5

5 Например, полиэтилен, получаемый при полимеризации этилена CH2=CH2 ...-CH2-CH2-CH2-CH2-CH2-CH2-CH2-... или (-CH2-CH2-)n

Слайд 6

6 Низкомолекулярные соединения, из которых образуются полимеры, называются мономерами. Например, пропилен СН2=СH–CH3 является мономером полипропилена: а такие соединения, как α-аминокислоты, служат мономерами при синтезе природных полимеров – белков (полипептидов):

Слайд 7

По происхождению Природные, или биополимеры (нуклеиновые кислоты, белки) Синтетические полимеры (полиэтилен, полипропилен)

Слайд 8

8 По химическому строению: Структурные звeнья несимметричного строения, например, могут соединяться между собой двумя способами: Полимеры, макромолекулы которых построены одним из этих способов, называютрегулярными. Полимерынерегулярногостроения образованы произвольным сочетанием обоих способов соединения звeньев.

Слайд 9

9 По пространственному строению макромолекулы: Стереорегулярные Атактические

Слайд 10

10 Полимер называется стереорегулярным, если заместители R в основной цепи макромолекул (–CH2–CHR–)n расположены упорядоченно: или все они находятся по одну сторону от плоскости цепи или строго очередно по одну и другую стороны от этой плоскости (синдиотактические полимеры)

Слайд 11

11 Если боковые заместители в макромолекулах располагаются в беспорядке относительно плоскости основной цепи, то такой полимер является стереонерегулярным или атактическим.

Слайд 12

12 По химическому составу макромолекулы: Гомополимеры (полимер образован из одного мономера, например полиэтилен); Сополимеры (полимер образован по меньшей мере из двух разл. мономеров, например бутадиен-стирольный

Слайд 13

Особые механические свойства: Эластичность - способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки); Малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло); Способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и пленок).

Слайд 14

14 Особенности растворов полимеров: высокая вязкость раствора при малой концентрации полимера; растворение полимера происходит через стадию набухания. Особые химические свойства: способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т.п.). Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают уникальным для неживой природы свойством - гибкостью.

Слайд 15

15 Гибкость макромолекул - это их способность обратимо (без разрыва химических связей) изменять свою форму. Особенности полимеров, обусловленные гибкостью макромолекул, проявляются при деформировании полимеров. В отсутствие внешних воздействий равновесным состоянием гибкой макромолекулы является форма рыхлого клубка (максимум энтропии). При деформации полимера макромолекулы распрямляются, а после снятия деформирующей нагрузки, стремясь к равновесному состоянию, они снова сворачиваются за счет поворотов вокруг σ- связей в результате теплового движения. Это является причиной высоких обратимых деформаций (эластичности) полимеров.

Слайд 16

16 По степени гибкости полимеры подразделяют на гибкоцепные (с большей свободой внутримолекулярного вращения) и жесткоцепные. Это определяет область применения полимеров. Гибкоцепные полимеры используют как каучуки (резиновые изделия), жесткоцепные – в производстве пластмасс, волокон, пленок. Гибкость макромолекул уменьшается под влиянием внутри- и межмолекулярных взаимодействий, которые препятствуют вращению по σ-связям. Например: При кристаллизации полимера усиливаются межмолекулярные взаимодействия и его гибкость (эластичность) уменьшается. По этой причине легко кристаллизующийся полиэтилен не проявляет свойств каучука.

Слайд 17

Синтез полимеров из мономеров основан на реакциях двух типов:. полимеризации и поликонденсации Кроме того, следует отметить, что некоторые полимеры получают не из мономеров, а из других полимеров, используя химические превращения макромолекул (например, при действии азотной кислоты на природный полимер целлюлозу получают новый полимер - нитрат целлюлозы).

Слайд 18

18 Полимеризация - реакция образования высокомолекулярных соединений путем последовательного присоединения молекул мономера к растущей цепи. Пoлимеризация является цепным процессом и протекает в несколько стадий: инициирование рост цепи обрыв цепи

Слайд 19

19 Характерные признаки полимеризации: 1. В основе полимеризации лежит реакция присоединения 2. Полимеризация является цепным процессом, т.к. включает стадии инициирования, роста и обрыва цепи. 3. Элементный состав (молекулярные формулы) мономера и полимера одинаков.

Слайд 20

Схематически реакцию полимеризации часто изображают как простое соединение молекул мономера в макромолекулу. Например, полимеризация этилена записывается следующим образом: n CH2=CH2 → (–CH2–CH2–)n или СH2=CH2 + CH2=CH2 + CH2=CH2 + ... → ® -CH2–CH2- + -CH2–CH2- + -CH2–CH2- + ... → (–СН2–СH2–)n

Слайд 21

21 Однако самопроизвольно кратные связи в мономере не раскрываются и частицы типа -СH2–CH2- на самом деле не существуют. Чтобы началась цепная реакция полимеризации, необходимо "сделать" незначительную часть молекул мономера активными, то есть превратить их в свободные радикалы (радикальная полимеризация) или в ионы (катионная полимеризация или анионная полимеризация).

Слайд 22

Процесс образования высокомолекулярных соединений при совместной полимеризации двух или более различных мономеров называют сополимеризацией. Пример. Схема сополимеризации этилена с пропиленом: Химическое строение сополимеров зависит от свойств мономеров и условий реакции.

Слайд 23

Слайд 24

Пoликонденсация - процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов. Например, получение капрона из ε-аминокапроновой кислоты: n H2N-(CH2)5-COOH H-[-NH-(CH2)5-CO-]n-OH + (n-1) H2O ; или лавсана из терефталевой кислоты и этиленгликоля: n HOOC-C6H4-COOH + n HO-CH2CH2-OH→ HO-(-CO-C6H4-CO-O-CH2CH2-O-)n-H + (n-1) H2O

Слайд 25

1. В основе поликонденсации лежит реакция замещения. Например, при поликонденсации двухосновной кислоты и двухатомного спирта группа -ОН в кислоте замещается на остаток спирта -О-R-OH: НOOC-R-CO-OH + H-O-R-OH HOOC-R-CO-O-R-OH + H2O Образовавшийся димер является одновременно и кислотой (-COOH) и спиртом (-OH). Поэтому он может вступать в новую реакцию как с мономерами, так и с другими димерами, тримерами или n-мерами.

Слайд 26

26 2. Поликонденсация – процесс ступенчатый, т.к. образование макромолекул происходит в результате ряда реакций последовательного взаимодействия мономеров, димеров или n-меров как между собой, так и друг с другом. 3. Элементные составы исходных мономеров и полимера отличаются на группу атомов, выделившихся в виде низкомолекулярного продукта (в данном примере – H2O).

Слайд 27

Существуют два основных способа названий полимеров. 1. Название полимера строится по названию исходного мономера с добавлением приставки "поли" (полиэтилен, полистирол и т.п.). Этот способ используется обычно для полимеров, полученных путем полимеризации. 2. Полимеру дается тривиальное название (лавсан, нитрон, найлон и т.п.), которое не отражает строения макромолекул, но удобно своей краткостью. Данный способ применяют создатели полимерных материалов (фирмы, научные и производственные коллективы). Так, название ЛАВСАН присвоено полимеру [–O–CH2–CH2–O–CO–C6H4–CO–]n полиэтиленгликольтерефталат как сокращенное название ЛАборатории Высокомолекулярных Соединений Академии Наук.

Слайд 28

28 Коровин Николай Васильевич. Общая химия: Учебник. - 2-е изд., испр. и доп. - М.: Высш. шк., 2000. - 558с.: ил. Павлов Н.Н. Общая и неорганическая химия: Учеб. для вузов. – 2-е изд., перераб. и доп. – М.: Дрофа, 2002. – 448 с.: ил. Ахметов Наиль Сибгатович. Общая и неорганическая химия: Учебник для студ. химико-технологических спец. вузов / Н.С.Ахметов. - 4-е изд., исп. - М.:Высш. шк.: Академия, 2001. - 743с.: ил. Глинка Николай Леонидович. Общая химия: Учебное пособие для вузов / Н.Л.Глинка; Ермаков Л.И (ред.) – 29–е изд.; исп. – М.: Интеграл Пресс, 2002 – 727с.: ил. Писаренко А.П., Хавин З.Я. Курс органической химии – М.: Высшая школа,1975,1985. Альбицкая В.М., Серкова В.И. Задачи и упражнения по органической химии. – М.: Высш. шк., 1983. Грандберг И.И. Органическая химия – М.: Дрофа, 2001. Петров А.А., Бальян Х.В., Трощенко А.Т. Органическая химия М.: Высш. Шк., 1981 Иванов В.Г., Гева О.Н., Гаверова Ю.Г. Практикум по органической химии – М.: Академия., 2000.

Посмотреть все слайды



Случайные статьи

Вверх