Приоритеты развития робототехники в медицине. Роботы в медицине. Обучение: симуляторы пациентов

Введение

В эпоху бурного развития науки и техники появляется множество различных нововведений в самых различных областях. Медицина так же не стоит на месте, появляются новые сложнейшие аппараты для жизнеобеспечения человека, примером тому могут стать множество аппаратов, например аппарат для искусственной вентиляции легких, либо аппарат искусственной почки и т.п. Появились миниатюрные измерители сахара в крови, электронные измерители пульса и давления, этот список можно дополнить неоднократно.

Конкретнее хочется остановиться на примере внедрения робототехники в медицинскую отрасль. Различные роботы создаются человеком примерно с конца 20 века, за пройденное время они были значительно улучшены и модернизированы.

Роботы в медицине

Рисунок 1 - Робот-хирург «Да Винчи»

Один из наиболее известных и прославленных достижений последнего времени стал робот «Да Винчи», названный в честь великого инженера, художника и ученого Леонардо Да Винчи, который в свое время сконструировал первого антропоморфного робота, способного двигать ногами и руками, осуществлять иные действия (рисунок 1). Эта передовая методика сочетает в себе все преимущества классической и лапароскопической операций. Во время операции хирург располагается за удобным пультом управления, на экран выводится трехмерное изображение оперируемого участка. Удобство работы с таким пультом благоприятно сказывается на работе хирурга, так как тот не утомляется, как при стандартном хирургическом вмешательстве.

Рисунок 2 - Джойстики термоманипулятора

Хирург управляет телеманипулятором с помощью специальных джойстиков, которые реагируют на прикосновения кончиков пальцев (рисунок 2). Его движения с абсолютной точностью воспроизводятся робототехникой. Это обеспечивает высокое качество операции и повышает безопасность ее проведения. В реальном времени движения хирурга передаются на операционный стол системы.

Хирургический робот Да Винчи оснащен сверхточными манипуляторами из 4 рук, одна из которых имеет встроенную камеру, которые передают изображения в реальном времени на пульт, еще две заменяют руки хирурга во время проведения операции, а четвертая служит в качестве ассистента (рисунок 3).

Рисунок 3 - Манипуляторы робота

С помощью острия размещенного на конце лапароскопических рук, производятся надрезы величиной 1-2 см. За счет таким маленьких надрезов снижается уровень травматизма тканей.

Точность движения механических манипуляторов превосходят возможности рук человека. Имея семь степеней свободы и способность изгиба на 90 градусов, руки робота имеют широкую амплитуду движений. Это незаменимо при оперативном вмешательстве в ограниченном пространстве, например, при работе с сердечной сумкой или малым тазом. Команда людей-ассистентов контролируют работу робота да Винчи, подготавливая место для надрезов, следя за ходом операции, поднося стерильные инструменты.

В настоящее время робота оснастили самыми продвинутыми «глазами» в мире. Трёхмерное зрение было у него и раньше, а вот высокой чёткости добились только сейчас. Новая версия позволяет следить за операцией сразу двум хирургам. Один из них может как ассистировать, так и учиться мастерству у старших коллег. На рабочем дисплее может быть отображена не только картинка с камер, но и два дополнительных параметра, например данные ультразвука и ЭКГ.

Многорукий da Vinci позволяет оперировать с большой точностью, а значит, и с минимальным вмешательством в организм пациента. В результате восстановление после операции происходит быстрее, чем обычно.

Рисунок 4 - Робот-диагностик «Рози»

Робот - фармацевт «Рози» работает в городе Альбукерке, штат Нью-Мексико.

Задача Рози - приготовление и распределение лекарств сотен наименований. Работает он круглосуточно, практически не делает перерывов и при этом совершенно не ошибается. За два с половиной года службы в больничной аптеке не было ни одного случая, когда бы пациенту отправили не то лекарство. Коэффициент точности работы Рози - 99,7 процентов, а это значит, что сортировка и дозировка прописанных препаратов никогда не отличается от тех, что указаны в рецептах врачей.

Устройство весом более 4.5 тонн разработано подразделением отдела корпоративных общественных проектов корпорации Intel (Intel Community Solutions). Скользя по металлическому рельсу, Рози механической "рукой" собирает наполненные таблетками пакетики, висящие вдоль стен. Затем она вкладывает эти пакетики, на каждый из которых нанесен штрих-код, в конверты и отправляет их по палатам пациентам в контейнерах пневмопочты.

В палате медсестра с помощью небольшого устройства сканирует браслет на запястье пациента и получает информацию о том, какое лекарство он должен принимать, когда и в каком количестве. Затем медсестра сканирует штрих-код на пакете с лекарством - это позволяет проверить, действительно ли лекарство предназначено именно для данного больного, а также совпадают ли частота и дозировка приема.

Так же Рози помог своевременно обнаружить множество ошибок. Рози никогда не отправит больному лекарство с истекшим сроком годности. Залогом его точности являются заложенные в электронный мозг машины государственные стандарты контроля качества. Между тем, согласно данным Национального института здоровья в Вашингтоне из-за ошибок с лекарствами в стране ежегодно умирают около 50 тысяч человек. Но приготовление и распределение лекарств - не единственная проблема, которую в Пресвитерианской больнице решили с помощью Рози. До его появления было очень сложно следить за отпуском наркотических средств: сотрудники тратили уйму времени, пересчитывая таблетки, чтобы ни одна из них не осталась неучтенной. Сегодня от этой рутинной работы их освободил робот Рози.

Рисунок 5 - Робот-нянька

Робот нянька ухаживает за больными людьми, в частности страдающими от болезни Альцгеймера (рисунок 5).

Он облегчает пациентам общение с врачами и родственниками. Оборудованный камерой, экраном и всем необходимым для беспроводной связи через Интернет, робот Companion позволяет врачу контактировать с пациентом, который находится в специализированной клинике. Робот также используется для обучения персонала, помощи пациентам, имеющим проблемы с передвижением, общения пациентов с детьми. Как ни странно, пациенты, обычно неохотно принимающие все новое, отнеслись к механическому собеседнику совсем неплохо: показывали на него, смеялись, даже пытались заговаривать с ним.

По мнению исполнительного директора создавшей машину компании InTouch Health Юлина Ванга, применение роботов при уходе за престарелыми людьми может снять остроту проблемы старения нации. Пока же фирма собирается сдавать своих роботов в аренду домам престарелых.

Рисунок 6 - Робот-физиотерапевт

Настоящий шаг в будущее сделали инженеры из Массачусетского технологического института, заменившие врача-физиотерапевта роботом. Как известно, люди, перенесшие инсульт, надолго забывают о своей привычной жизни. В течение многих месяцев и даже лет они вновь учатся ходить, держать ложку в руках, совершать те обыденные действия, о которых раньше даже не задумывались. Теперь им могут помочь не только врачи, но и роботы.

Речь идет о сеансах физиотерапии, необходимых для восстановления координации движений рук. Сейчас пациенты обычно занимаются с врачами, которые показывают им соответствующие упражнения. В отделения реабилитации Бостонского городского госпиталя, где проводятся испытания новой установки, выздоравливающему от инсульта предлагается с помощью джойстика перемещать на экране по заданной траектории небольшой курсор. Если же человек не может этого сделать, управляемый компьютером джойстик с помощью встроенных электромоторов сам переместит его руку в необходимое положение.

Врачи остались довольны работой новинки. В отличие от человека, робот может совершать одни и те же движения тысячи раз в день и при этом не уставать.

Рисунок 7 - комплекс KineAssist

Так же существует комплекс KineAssist (рисунок 7). Он является совместной разработкой Чикагского реабилитационного института и компании kinea Design (ранее - Chicago PT). Врачи и инженеры, работавшие над данным проектом, в результате исследований выявили основные проблемы, возникающие при реабилитации пациентов с нарушением опорно-двигательного аппарата. Основное назначение KineAssist - предоставить более интенсивное и эффективное лечение пациентам, не нарушая их физической и психологической связи с физиотерапевтами и исключая фактор страха перед падением.

Устройство весом 227 кг представляет собой механизированную платформу с «интеллектуальными» ремнями, поддерживающими туловище человека, чтобы помочь пациентам с нарушениями неврологических функций научиться удерживать равновесие и ходить. Тренажёр KineAssist разрабатывался как средство помощи для терапевтов, а не как их замена. Датчики, встроенные в ремни, прогнозируют движения пациента и помогают ему удерживать равновесие. Учитывая, что теперь пациент находится в безопасности, физиотерапевты могут предложить ему выполнить более сложные упражнения, например, тренироваться в ходьбе по лестнице или делать шаги в сторону. Несмотря на свой вес, тренажёр с легкостью балетного танцора передвигается вперёд, назад и в стороны, в зависимости от направления движения пациента. Благодаря специальному программному обеспечению физиотерапевт может регулировать нагрузку и интенсивность во время занятий.

KineAssist предлагает большое количество режимов и видов упражнений, основными из которых являются:

  • - ходьба (возможно использование KineAssist вместе с беговой дорожкой);
  • - тренировка равновесия. Во время данного упражнения инструктор старается расширить привычную для пациента «зону безопасности», например, поставив перед ним препятствие, которое придётся обойти или перешагнуть;
  • - тренировка силы, где при движении пациента тренажёр прилагает сопротивление (возможна тренировка различных групп мышц);
  • - тренировка осанки. В этом режиме инструктор фиксирует тело пациента в определённом положении, а во время выполнения упражнений тренажёр поддерживает именно это положение тела.

KineAssist можно применять как для лечения больных, у которых относительно неплохо восстановились двигательные функции, так и для начальной реабилитации более слабых пациентов сразу после травмы или заболевания. Начиная с 2004 года KineAssist успешно проходит испытания в реабилитационных центрах США (в настоящий момент в центре Alexian Rehabilitation Hospital). Предварительная статистика по больным пережившим инсульт показывает, что реабилитация тех, кто занимался на роботизированном тренажёре, протекает, как минимум, в два раза эффективнее. К сожалению, из-за высокой цены (более 200 000 долларов США) данный комплекс могут позволить себе лишь самые крупные лечебные учреждения.

Рисунок 8 - Робот для переноски пациентов RIBA

Японский институт физических и химических исследований (BMC RIKEN) и компания Tokai Rubber Industries (TRI) представили «медвежеподобного» робота, предназначенного для оказания помощи медсёстрам в больницах. Новая машина буквально носит пациентов на руках (рисунок 8).

RIBA (Robot for Interactive Body Assistance) - это усовершенствованная версия андроида RI-MAN.

По сравнению с предшественником RIBA серьёзно продвинулся вперёд.

Как и RI-MAN, новичок способен аккуратно поднимать человека с кровати или инвалидного кресла, переносить его на руках, например в туалет, а потом доставлять обратно и так же бережно укладывать в постель или усаживать в коляску. Но если RI-MAN носил, лишь зафиксированных в определённом положении кукол весом 18,5 кг, RIBA уже транспортирует живых людей массой до 61 кило.

Рост «медведя» 140 сантиметров (RI-MAN - 158 см), и весит он вместе с аккумуляторами 180 килограммов (предшественник - 100 кг). RIBA распознаёт лица и голоса, выполняет голосовые команды, ориентируется по собранным видео- и аудиоданным, которые обрабатывает в 15 быстрее, чем RI-MAN, и «гибко» реагирует на малейшие изменения в окружающей среде.

Руки нового робота имеют семь степеней свободы, голова - одну (позже будет три), в талии две степени. Корпус покрыт разработанным TRI новым мягким материалом наподобие полиуретановой пены. Двигатели работают довольно тихо (53,4 дБ), а всенаправленные колёса позволяет машине маневрировать в ограниченном пространстве.

Рисунок 9 - Робот-помощник Yurina

Постепенно будут внедрены и роботы помощники, задачей которых будет непосредственная помощь врачам, данные модели уже используются в некоторых клиниках зарубежной медицины. Yurina, робот от японской компании Japan Logic Machine, который способен переносить лежачих пациентов на манер больничной каталки, только гораздо более плавно (рисунок 9).

Что еще интереснее, Yurina может трансформироваться в инвалидное кресло, управляемое сенсорным экраном, контроллера или голосом. Робот достаточно ловок, чтобы перемещаться в узких коридорах, что делает его действительно неплохим помощником для настоящих врачей.

Рисунок 10 - Вспомогательный робот-рука Rapuda

Последняя разработка японского Института исследования интеллектуальных систем (Intelligent Systems Research Institute) также имеет чисто практическое применение. Роботизированная рука Rapuda ориентирована на то, чтобы облегчить жизнь инвалидов, имеющих проблемы с подвижностью верхних конечностей (рисунок 10). Рука, управляемая при помощи джойстика, берет стакан воды со стола и даже поднимает упавшие на пол объекты.

Пока создатели не могут сказать, когда и по какой цене Rapuda будет доступна широкому кругу покупателей. Определенно, еще стоит поработать над скоростью осуществления манипуляций. Но можно сказать точно - такая технология явно будет востребована, поэтому разработка продолжается.

Робот-хирург

На калифорнийской конференции производитель NVIDIA озвучил весьма смелую идею - проводить операцию на сердце без остановки сердца и вскрытия грудной клетки.

Робот-хирург будет производить операцию с помощью манипуляторов, подведенных к сердцу через небольшие отверстия в груди пациента. Технология визуализации «на лету» оцифровывает бьющееся сердце, демонстрируя хирургу трехмерную модель, по которой он может ориентироваться точно так же, как если бы смотрел на сердце через вскрытую грудную клетку. Основная сложность заключается в том, что сердце совершает большое количество движений за короткое время - но, по словам разработчиков, мощности современных вычислительных систем на базе графических процессоров NVIDIA хватит, чтобы визуализировать орган, синхронизируя движения инструментов робота с биением сердца. За счет этого создается эффект неподвижности - хирургу без разницы, «стоит» сердце или работает, ведь манипуляторы робота совершают аналогичные движения, компенсируя биение!

Пока вся информация об этой невероятной технологии состоит из коротенькой видеодемонстрации, но мы будем с нетерпением ожидать новых сведений от NVIDIA. Кто бы мог подумать, что совершить революцию в хирургии задумала компания-производитель видеокарт.

Казанский Государственный

Технологический Университет

Реферат на тему:

Робототехника в медицине

Выполнил студент группы

Нигматуллин А.Р.

Казань 2010.


Вступление

1. Виды медицинских роботов

Заключение


Вступление

В эпоху бурного развития науки и техники появляется множество различных нововведений в самых различных областях. Прилавки супермаркетов заполняются экзотической пищей, в торговых комплексах появляются одежды из новейших материалов, а в гипермаркетах электроники и того дальше, невозможно угнаться за развитием новых изобретений. Все привычное старое стремительно сменяется на необыкновенное, новое, к которому так не просто привыкнуть. Но если бы не было прогресса, то люди не познали бы множества загадок, которые еще не раскрыты, и природа тщательно скрывает их от нас. Несмотря на все это, благодарю высокой профессиональности современных ученых физиков, безостановочно ведутся разработки в различных сферах. Простой человек вряд ли озадачивался вопросом что же нового можно внести в этот и без того безгранично цивилизованный и прогрессивный мир. Для примера можно рассмотреть наш мир, каким он был даже одну сотню лет назад. Не было не телевизоров, не компьютеров, не бытовой техник, без которой современному человеку в быту просто не обойтисьли даже 10 лет назад, когда сотовые телефоны только –только вышли в свет и были громоздкими и очень малофункциональными, что касается и компьютерной техники. Наука движет мир вперед, и в любых областях жизнедеятельности человека нужны какие – либо нововведения. В данном пример хотелось бы выбрать как определенный аспект – область медицины, а точнее ее технического потенциала. Медицина так же не стоит на месте, появляются новее сложнейшие аппараты, для жизнеобеспечения человека, примером тому могут стать множество аппаратов, например аппарат для искусственной вентиляции легких, либо аппарат искусственной почки и т.п. Появились миниатюрные измерители сахара в крови, электронные измерители пульса и давления, этот список можно дополнить неоднократно. Конкретнее хочется остановиться на примере внедрения робототехники в медицинскую отрасль. Различные роботы создаются человеком примерно с конца 20 –ого века, за пройденное время они были значительно улучшены и модернизированы. На данный момент существуют роботы – помощники, военные разработки роботов, космические, бытовые и конечно медицинские. Далее стоит подробнее разобрать какие виды роботов и для какого применения существуют на данный момент времени.


Виды медицинских роботов

Один из наиболее известных и прославленных достижений последнего времени стал робот по названием «Да Винчи», который, как можно догадаться был назван в честь великого инженера, художника и ученого Леонардо Да Винчи. Новинка позволяет хирургам выполнять самые сложные операции, не касаясь пациента и с минимальным повреждением его тканей. Робот, который может применяться в кардиологии, гинекологии, урологии и общей хирургии, был продемонстрирован медицинским центром и отделением хирургии университета штата Аризона.

Во время операции с “да Винчи” хирург находится за пару метров от операционного стола за компьютером, на мониторе которого представлено трехмерное изображение оперируемого органа. Врач управляет тонкими хирургическими инструментами, проникающими в тело пациента сквозь небольшие отверстия. Такие инструменты с дистанционным управлением можно использовать для точных операций на небольших и труднодоступных участках тела.

Доказательством необычайных возможностей “да Винчи” стал первый в мире полностью эндоскопический байпас, выполненный совсем недавно в Колумбийском Пресвитерианском медицинском центре в Нью-Йорке. Уникальную операцию провели директор центра по роботизированной кардиохирургии Майкл Аргензиано, и заведующий отделом кардиоторакальной хирургии доктор Крейг Смит. При этом они использовали всего лишь три небольших отверстия - два для манипуляторов и одно - для видеокамеры. Понять, что это значит, может только человек, хоть раз наблюдавший “традиционную” операцию на открытом сердце.

Действия бригады, “открывающей” грудную клетку пациента, производят на новичка (по журналистскому заданию мне как-то пришлось побывать в этой роли) неизгладимое впечатление. До сих пор помню мурашки по всему телу от жуткого визга разрезающей грудину дисковой пилы и огромную рану, в которой деловито сновали руки в окровавленных резиновых перчатках.

В Соединенных Штатахбайпасили аортокоронарное шунтирование является самой распространенной операцией на открытом сердце. Ежегодно эту процедуру проходят здесь 375 тысяч человек. Широкое внедрение “да Винчи” могло бы значительно облегчить их судьбу, помогая пациентам быстрее поправляться после операции и раньше выписываться из госпиталей.

Главный хирург аризонского центра, где испытывают “да Винчи”, доктор Алан Гамильтон вообще уверен в том, что роботостроение произведет революцию в хирургии. Пока что эта революция только начинается, а вот в... кино “да Винчи” уже произвел изрядный фурор. Хирургический робот сыграл роль в последнем кинофильме сериала о Джеймсе Бонде “Умри в другой день” (Die Another Day).

В начале фильма крупным планом показываются три механические руки, шарящие по телу захваченного врагами агента 007. “Хирурги и шпионы похожи друг на друга, поскольку они стремятся выполнить свои задачи без излишней суеты и с использованием новейших технологий, - сказал представитель лондонского Имперского колледжа, где трудится сейчас “да Винчи”. - Фильмы о Джеймсе Бонде всегда восхищали меня демонстрацией невиданных технических новинок. Но я никогда не думал, что когда-нибудь отдел, который я возглавляю, будет сотрудничать с производителями бондианы”.

“Да Винчи” - лишь один из примеров развития новой отрасли в медицине.

Другие роботы применяются в самых различных операциях, вплоть до хирургии головного мозга. Пока что эти устройства достаточно громоздки, но врачи надеются на появление и миниатюрных помощников. Прошлым летом, например, отдел энергетики американской Национальной лаборатории Sandia в Альбукерке уже построил самый маленький в мире робот высотой в один сантиметр. А британская корпорация Nanotechnology Development разрабатывает крошку Fractal Surgeon, который будет самостоятельно собираться из еще меньших блоков внутри человеческого тела, проводить там необходимые действия и саморазбираться.

Теперь же робота оснастили самыми продвинутыми "глазами" в мире(о чём свидетельствуетпресс-релизкомпании). Трёхмерное зрение было у него и раньше, а вот высокой чёткости добились только сейчас.

Новая версия позволяет следить за операцией сразу двум хирургам.Один из них может как ассистировать, так и учиться мастерству у старших коллег. На рабочем дисплее может быть отображена не только картинка с камер, но и два дополнительных параметра, например данные ультразвука и ЭКГ.

Многорукий da Vinci позволяет оперировать с большой точностью, а значит, и с минимальным вмешательством в организм пациента. В результате восстановление после операции происходит быстрее, чем обычно (фото 2009 Intuitive Surgical)

Еще одна интересная новость. Сотрудники Университета Вандербильта (США) выступили с концепцией новой автоматической когнитивной системы TriageBot. Машины будут собирать медицинскую информацию, осуществлять основные диагностические измерения и в конечном итоге ставить предварительные диагнозы, пока люди занимаются более неотложными проблемами. В результате пациенты будут меньше ждать, а специалисты вздохнут свободнее и существенно снизят количество ошибок.«Последние достижения в области дизайна гуманоидных роботов, сенсорных технологий и архитектуры когнитивного контроля сделали такую систему возможной», - подчёркивает соавтор проекта Митч Уилкс.В США около 40% пациентов отделений экстренной помощи поступают туда в состоянии, опасном для жизни. Врачам приходится уделять им первоочередное внимание. Роботы могли бы заняться остальными 60%.Если проект окажется успешным, через пять лет возле стойки регистрации появятся электронные терминалы, подобные тем, что установлены в аэропортах, а также специальные «умные» стулья и мобильные роботы.При поступлении пациент должен прежде всего зарегистрироваться. В предлагаемой системе сопровождающее лицо сможет внести все необходимые данные через терминал с сенсорным экраном. Возможны голосовые подсказки. При этом автомат сможет распознавать наличие критической информации (например, острая боль в груди) и информировать о ней врача, чтобы пациентом занялись как можно скорее. В противном случае больного направят в зал ожидания.План более подробной диагностики пациента разрабатывается в соответствии с этими первоначальными сведениями. В предлагаемой системе простейшие процедуры можно проделать уже в приёмной, на специальном стуле, который измерит кровяное давление, пульс, насыщение крови кислородом, частоту дыхания, высоту и вес.Кроме того, мобильные помощники будут периодически проверять состояние пациентов в зале ожидания, уделяя особое внимание артериальному давлению, частоте пульса и, возможно, интенсивности болевых ощущений. В случае обнаружения критических изменений робот обязан проинформировать человеческий персонал.Последний элемент системы TriageBot - это администратор, который следит за машинами, обеспечивает связь с больничной базой данных и служит посредником между автоматикой и медиками.Планируется провести ряд исследований, в ходе которых будет определён точный набор функций роботов и их внешний вид. Параллельно разрабатываются прототипы.

Для более точных и удобных расчетов ученые создали чудного робота –фармацевта. Электронно-механическое чудо, работающее в большом подвале Пресвитерианской больницы в городе Альбукерке, штат Нью-Мексико, зовут Рози. “Родитель” этого мощного механического агрегата, перемещающегося по четырехметровому рельсу в темной застекленной комнате, - новое подразделение корпорации Intel - Intel Community Solutions, использующее достижения фирмы для решения социальных задач.

Задача Рози, - приготовление и распределение лекарств сотен наименований. Работает он круглосуточно, практически не делает перерывов и при этом совершенно не ошибается. За два с половиной года службы в больничной аптеке не было ни одного случая, когда бы пациенту отправили не то лекарство. Коэффициент точности работы Рози - 99,7 процентов, а это значит, что сортировка и дозировка прописанных препаратов никогда не отличается от тех, что указаны в рецептах врачей.

Более того, Рози помог своевременно обнаружить множество ошибок. Рози никогда не отправит больному лекарство с истекшим сроком годности. Залогом его точности являются заложенные в электронный мозг машины государственные стандарты контроля качества. Между тем, согласно данным Национального института здоровья в Вашингтоне из-за ошибок с лекарствами в стране ежегодно умирают около 50 тысяч человек. Но приготовление и распределение лекарств - не единственная проблема, которую в Пресвитерианской больнице решили с помощью Рози. До его появления было очень сложно следить за отпуском наркотических средств: сотрудники тратили уйму времени, пересчитывая таблетки, чтобы ни одна из них не осталась неучтенной. Сегодня от этой рутинной работы их освободил робот Рози.

Но и это еще не все. Механической “рукой” скользящий по рельсу Рози собирает висящие вдоль стен маленькие пакетики с таблетками, на каждый из которых нанесен уникальный бар-код. Затем он вкладывает их в герметические конверты и отправляет пациентам.

На свет так же появились два робота помощника – это робот нянька, который ухаживает за больными людьми, в частности страдающими от болезни Альцгеймера, и робот физиотерапевт, позволяющий быстрее адаптироваться людям перенесшим инсульт.

Недавно американские пациенты с болезнью Альцгеймера получили помощника, который облегчает им общение с врачами и родственниками. Оборудованный камерой, экраном и всем необходимым для беспроводной связи через Интернет, робот Companion позволяет врачу контактировать с пациентом, который находится в специализированной клинике. Робот также используется для обучения персонала, помощи пациентам, имеющим проблемы с передвижением, общения пациентов с детьми. Как ни странно, пациенты, обычно неохотно принимающие все новое, отнеслись к механическому собеседнику совсем неплохо: показывали на него, смеялись, даже пытались заговаривать с ним.

По мнению исполнительного директора создавшей машину компании InTouch Health Юлина Ванга, применение роботов при уходе за престарелыми людьми может снять остроту проблемы старения нации. В условиях, когда уже к 2010 году число пенсионеров в стране возрастет до 40, а к 2030 - до 70 миллионов, это очень важно. Пока же фирма собирается сдавать своих роботов в аренду домам престарелых. В будущем компания планирует создание роботов, которые смогут приводить в движение инвалидную коляску.

Настоящий шаг в будущее сделали инженеры из Массачусетского технологического института, заменившие врача-физиотерапевта роботом. Как известно, люди, перенесшие инсульт, надолго забывают о своей привычной жизни. В течение многих месяцев и даже лет они вновь учатся ходить, держать ложку в руках, совершать те обыденные действия, о которых раньше даже не задумывались. Теперь им могут помочь не только врачи, но и роботы.

Речь идет о сеансах физиотерапии, необходимых для восстановления координации движений рук. Сейчас пациенты обычно занимаются с врачами, которые показывают им соответствующие упражнения. В отделения реабилитации Бостонского городского госпиталя, где проводятся испытания новой установки, выздоравливающему от инсульта предлагается с помощью джойстика перемещать на экране по заданной траектории небольшой курсор. Если же человек не может этого сделать, управляемый компьютером джойстик с помощью встроенных электромоторов сам переместит его руку в необходимое положение.

Врачи остались довольны работой новинки. В отличие от человека, робот может совершать одни и те же движения тысячи раз в день и при этом не уставать. Что касается самих врачей, то им не стоит бояться безработицы: просто вместо того, чтобы часами сидеть с больными, они смогут разрабатывать новые, более эффективные программы тренировок.

Так как медицина является довольно обширной областью науки, не обошлось здесь и без вмешательства современных нанотехнологий. Вот что можно отметить в этом разделе.

Беспорядочно мельтешащие под микроскопомбактериивнезапно замирают на месте. Затем, будто сговорившись, начинают выстраиваться в ровную линию. Микробы за считаные секунды занимают свои места в колонне, и тут в движение приходит весь строй -бактериикак по команде синхронно поворачиваются налево.

Движениями микробов действительно управляют. Этим занимается сидящий за пультом ученый - профессор Политехнической школы Монреаля Сильван Мартель. Созданная канадским ученым установка контролирует перемещениебактерийс помощью магнитного поля с точностью до тысячных долей миллиметра. Недавно исследователь показал свой прибор в действии. 5000бактерийсогласованно передвигали в капле воды микроскопические полимерные блоки и сложили из них миниатюрное строение.

Это только начало испытаний. В ближайшем будущем такую «рабочую силу» можно будет применить с большей пользой - в медицине. Уже много лет в лабораториях по всему миру пытаются создатьМИКРОРОБОТОВ, которые смогли бы выполнять различные операции внутри организма пациентов. Дальше простейшихпрототипову инженеров дело пока не пошло. Теперь ученые получили возможность пойти обходным путем - на смену сложным и неэффективным устройствам приходят микроорганизмы.

Возведенноебактериямистроение можно разглядеть только под микроскопом. Оно напоминает египетскую пирамиду. Сходство не случайно. «Пирамиды - один из первых шагов человека к созданию действительно сложных конструкций, - рассказывает Сильван Мартель. - Мы подумали, что будет символично, если микроорганизмы выполнят именно такое задание». Настоящие пирамиды сооружали многие годы.Бактерииуправились с моделью за 15 минут. Это, несмотря на то, что строительные блоки были куда крупнее самих «рабочих».

Микроорганизмы работали сообща. Под микроскопом 5000бактерийвыглядели как сплошное темное облако. Вот этот рой нависает над одним из «кирпичей». В следующую секунду микробы начинают медленно, но верно толкать блок на заданное в чертеже место. «Мы пока только обкатываемтехнологию, - говорит Мартель. - В принципе, все то же самое можно делать значительно быстрее».

Секрет успеха - в выдающихся способностях этих микроорганизмов. Канадские ученые используют в работебактерииMagnetospirillum magnetotacticum. «Оказалось, это настоящие рекордсмены, - объясняет Мартель. - Они движутся на порядок быстрее другихбактерий». Кроме того, эти микроорганизмы чувствительны к магнитным полям - они в больших количествах накапливают в себе соединения железа. Ученые пока не очень хорошо понимают, зачем это нужно самим микробам. Зато теперь понятно, как такую особенность может использовать человек. С помощью магнитного поля Мартель заставляетбактерииразворачиваться в нужную сторону. Дальше они двигаются самостоятельно - у них есть специальные жгутики, работающие, как гребные винты кораблей.

Они могут перемещаться не только в капле воды под микроскопом. Канадский ученый ввелбактериив кровь лабораторных крыс и с помощью магнитного поля заставил микробов маневрировать в сосудах. Оказалось, бактерии способны двигаться даже против течения. Правда, преодолевать поток им удавалось только в небольших капиллярах, где кровь циркулировала медленно. В крупных артериях «пловцов» безнадежно сносило - скорость жидкости там достигала нескольких десятков сантиметров в секунду. Размножаться в крови эти микробы не способны, поэтому на здоровье грызунов их присутствие не повлияло. Микроорганизмы некоторое время двигались по сосудам, а затем погибли.

Эффективности бактериальных двигателей позавидует любой инженер. «Главная проблема, о которую разбиваются попытки создать медицинскихМИКРОРОБОТОВ, - их габариты, - рассуждает Владимир Лобаскин, физик из Университетского колледжа Дублина. - Требования к размеру этих устройств таковы, что для них очень непросто создать достаточно мощный мотор». Сам Лобаскин занимается теоретическими расчетами эффективности как раз таких вот микроскопических двигателей. «Технические характеристики»бактерийМартеля произвели на физика большое впечатление: «Это практически готовая система для решения медицинских задач».

Похоже, разработчикам настоящихМИКРОРОБОТОВна это действительно нечем ответить. Один из самых последнихпрототиповбыл создан несколько лет назад в швейцарском Институтеробототехникии интеллектуальных систем. Он представляет собой крошечную металлическую спираль, которую можно разглядеть только под очень мощным микроскопом. Попав в переменное магнитное поле, она начинает вращаться и работать, как пропеллер. Направлением движения этого устройства тоже можно управлять с помощью магнитов.

Со временем разработчики рассчитывают использовать его для доставки лекарств в различные ткани человеческого организма. Пока получается не очень хорошо. Эти изделия примерно в десять раз медленнее «живыхроботов», с которыми работают в Канаде. О маневрах в кровеносных сосудах говорить даже не приходится. В этом нет ничего удивительного, уверен Мартель. За миллионы лет эволюция хорошо поработала надбактериями. Быстро создать такое же совершенное искусственное устройство будет очень непросто.

Именно поэтомубиотехнологииз корейского Национального университета Чуннам попробовали совместить в своей работе два противоположных подхода. Созданный имипрототипмедицинскогоМИКРОРОБОТАпостроен из синтетического полимера и клеток сердечной мышцы человека - кардиомиоцитов. Клетки натянуты на гибкий пластиковый каркас на специальных ножках. Сокращаясь, клетки приводят в движение всю конструкцию, и устройство начинает перебирать ногами. Разработчики предполагают, что в будущем подобныероботысмогут путешествовать по кровеносным сосудам человека, цепляясь за стенки. Функционировать такие изделия смогут очень долго - «клеточный двигатель» использует в качестве топлива растворенную в крови глюкозу.

«Всего несколько лет назад разговоры ороботах, доставляющих лекарства в определенные точки организма, казались фантазиями, - говорит Алексей Снежко, физик из Аргоннской национальной лаборатории (США). - Теперь понятно, что в самое ближайшее время их начнут испытывать на людях».

Как это будет выглядеть, понятно уже сейчас. В одном из последних опытов Сильван Мартель и его коллеги ввелибактериив организм больной раком крысы. А затем поместили ее в медицинский томограф. Эти приборы используют сильные магнитные поля для построения трехмерных карт организма пациента. После небольшой переделки установка превратилась в командный пункт для микробов. С ее помощью ученые провелибактериипо кровеносной системе грызуна прямо в район опухоли. Микроорганизмы доставили к пораженной области учебный груз - флуоресцирующее вещество. Вскоре Мартель планирует повторить эксперимент. На этот раз бактерии будут нести противоопухолевый препарат.

Так же нанотехнологи продемонстрировали довольно впечатляющие образцы электронной кожи. Электронная кожа впервые ощутила прикосновения бабочки

Решётка из тончайших полупроводниковых нитей, совмещённая с электродами и меняющей в ответна давление проводимость резиной типа PSR (вверху) превращена калифорнийскимиумельцами в "лоскут кожи" (внизу)(иллюстрации Kuniharu Takei et al./Nature Materials).

На этом рисунке кожи робота каждый чёрный квадратик соответствует одному "пикселю", элементарной точке, отвечающей за осязание (иллюстрация Ali Javey and Kuniharu Takei, UC Berkeley).Чувствительность кожи авторы рекламируют красочной фантазией: робот с такимманипулятором смог бы запросто обращаться с куриным яйцом, не уронив его и не раздавив (иллюстрация Ali Javey, Kuniharu Takei/UC Berkeley).

Ещё одна иллюстрация чувствительности стэнфордского сенсора: он регистрирует прикосновения перуанской бабочкиChorinea faunus(фото L.A. Cicero/Stanford University).

Уже немало копий сломано вокруг проблемы создания робототехнического аналога самого крупного органа человека. Главный вопрос – как воспроизвести невероятную чувствительность кожного покрова, который может ощутить дуновение ветерка от пролетевшего насекомого? Недавно две исследовательские группы из Калифорнии одновременно объявили о своих впечатляющих ответах.

Первая команда, из Калифорнийского университета в Беркли, выбрала в качестве ключевого элемента для своей искусственной кожи нанопроводки. Как сообщают учёные впресс-релизе, они вырастили крошечные германиевые и кремниевые нити на специальном барабане, а затем прокатили этим валиком по подложке – клейкойполиимиднойплёнке.

В итоге учёные получили эластичный материал, в структуру которого были включены нанопроводки, играющие роль транзисторов.

Поверх них исследователи нанесли изолирующий слой с периодическим рисунком из тонких отверстий, а ещё выше – чувствительную к прикосновению резину (PSR).Между резиной и нанопроводками при помощи фотолитографии навели проводящие мостики (для этого и понадобились отверстия в слое изолятора) и, наконец, сдобрили бутерброд тонкой алюминиевой плёнкой – финальным электродом. (Подробности авторы системы представили встатьев Nature Materials).Такой эластичный набор способен определять и точно локализовать участки, к которым прикладывается давление.Имя эта кожа получила банальное и предсказуемое - e-skin. Новая технология позволяет использовать в качестве подложки множество материалов, от пластика до резины, а также включать в её состав молекулы различных веществ, например, антибиотиков (что может оказаться весьма важным).На опытном куске e-skin размером 7 х 7 сантиметров уместилась матрица 19 х 18 пикселей. В каждом из которых содержались сотни наноштырей. Такая система оказалась способна регистрировать давление от 0 до 15 килопаскалей.Примерно такие уровни нагрузки испытывает человеческая кожа при печатании на клавиатуре или удерживании на весу небольшого объекта.

Али Джавей (Ali Javey), глава проекта e-skin в Беркли(фото UC Berkeley)

Учёные указывают на вполне определённое преимущество своей разработки перед аналогами. Большинство проектов такого рода полагается на гибкие органические материалы, которым для работы требуется высокое напряжение.

Синтетическая кожа из Беркли - первая, изготовленная на основе монокристаллических неорганических полупроводников. Она функционирует при напряжении всего в 5 вольт. Но что ещё интереснее - опыт показал, что e-skin выдерживает до 2000 изгибаний с радиусом 2,5 миллиметра без потери чувствительности.

В качестве очевидной области применения в будущем такой кожи можно предположить чувствительные манипуляторы,способные оперироватьхрупкими предметами.

Сверхаккуратную кибернетическую руку можно дополнительно оснастить датчиками тепла, радиоактивности, химических веществ, покрыть тонким слоем лекарств и использовать на "пальцах" роботов-хирургов или спасателей.

В последнем случае (при работе роботов с людьми) очень важным с точки зрения безопасности окажется тот факт, что электронная кожа из Беркли, как и человеческая, ощущает прикосновение почти мгновенно (в течение миллисекунд). В теории она может полностью покрывать манипулятор робота или даже всю машину.

Вверху: профессор Чжэнань Бао (Zhenan Bao) – лидер стэнфордского проекта.Внизу: такая простая полимерная плёнка с алюминиевыми проводниками послужила отправной точкой в построении новой кожи(фото L.A. Cicero/Stanford University, Stefan C. B. Mannsfeld et al./Nature Materials).

Вторая разработка, родом из Стэнфордского университета, использует другой подход. Как сообщают учёные впресс-релизе, они поместили между двумя электродами слой высокоэластичной формованной резины.

Такая плёнка накапливает электрические заряды подобно конденсатору. Давление сжимает резину – а это, в свою очередь, изменяет число электрических зарядов, которые способен хранить сандвич, что и определяет электроника благодаря набору электродов.

Описанный процесс позволяет обнаружить легчайшее прикосновение, что учёные доказали на опыте. Они использовали в качестве "тестера" мух.В ходе эксперимента квадратная матрица со стороной в семь сантиметров и в миллиметр толщиной чувствовала посадку насекомых, весящих всего 20 миллиграммов, и реагировала на их касания с высокой скоростью.

Под микроскопом матрица похожа на поле, усеянное остроконечными пирамидками. В таком материале пирамидок этих может быть от сотен тысяч до 25 миллионов на квадратный сантиметр, в зависимости от требуемого пространственного разрешения.

Такой приём (вместо применения сплошного слоя резины) был необходим, поскольку монолитный материал, как выяснилось, терял свои свойства при сдавливании – точность регистрации зарядов падала. А свободное пространство вокруг микроскопических пирамид позволяет им легко деформироваться и восстанавливать исходную форму после снятия нагрузки.

Гибкость и прочность стэнфордской электронной кожи оказались очень высоки. Её нельзя растягивать, но вполне можно сгибать, обернув ею, например, руку робота.

А потому в качестве сфер приложения своей разработки учёные видят опять же хирургических роботов. Но не только. Искусственная кожа могла бы стать основой электронных бинтов, - рассуждают американские исследователи, - способных подавать сигнал при слишком слабом или опасно сильном затягивании. А ещё подобные сенсоры могли бы точно фиксировать степень сжатия руками рулевого колеса, вовремя предупреждая водителя, что он засыпает.

Обе команды утверждают, что ещё продолжат развивать данное направление экспериментов. Так что роботы будущего, по всей видимости, всё же получат кожу, приближённую по возможностям к человеческой. И пусть внешне она будет заметно отличаться от нашей – её чувствительность придаст новый смысл понятию робот-андроид.

Сенсационное заявление дала компания по производству видеокарт для компьютеров. Не успели написать о первой хирургической операции, проведенной исключительно «руками» роботов, как NVIDIA приготовила другую «бомбу» из мира медицины. На калифорнийской конференции GTC 2010 производитель графических чипов озвучил весьма смелую идею – проводить операцию на сердце… без остановки сердца и вскрытия грудной клетки!

Робот-хирург будет производить операцию с помощью манипуляторов, подведенных к сердцу через небольшие отверстия в груди пациента. Технология визуализации «на лету» оцифровывает бьющееся сердце, демонстрируя хирургу трехмерную модель, по которой он может ориентироваться точно так же, как если бы смотрел на сердце через вскрытую грудную клетку.Основная сложность заключается в том, что сердце совершает большое количество движений за короткое время – но, по словам разработчиков, мощности современных вычислительных систем на базе графических процессоров NVIDIA хватит, чтобы визуализировать орган, синхронизируя движения инструментов робота с биением сердца. За счет этого создается эффект неподвижности – хирургу без разницы, «стоит» сердце или работает, ведь манипуляторы робота совершают аналогичные движения, компенсируя биение!

Пока вся информация об этой невероятной технологии состоит из коротенькой видеодемонстрации, но мы будем с нетерпением ожидать новых сведений от NVIDIA. Кто бы мог подумать, что совершить революцию в хирургии задумала компания-производитель видеокарт…

А Японские умельцы не перестают удивлять приятными новинками. Новый робот-медвежонок носит людей на руках

Японцы остановились на "благоприятном имидже плюшевого медвежонка", посчитав, что человекоподобный робот будет только пугать пациентов (фото RIKEN, Tokai Rubber Industries)

Японский институт физических и химических исследований (BMC RIKEN) и компанияTokai Rubber Industries(TRI)вчера представили "медвежеподобного" робота, предназначенного для оказания помощи медсёстрам в больницах. Новая машина буквально носит пациентов на руках.

RIBA (RobotforInteractiveBodyAssistance) - это усовершенствованная версия андроида RI-MAN.

<...> По сравнению с предшественником RIBA серьёзно продвинулся вперёд.

Как и RI-MAN, новичок способен аккуратно поднимать человека с кровати или инвалидного кресла, переносить его на руках, например в туалет, а потом доставлять обратно и так же бережно укладывать в постель или усаживать в коляску. Но если RI-MAN носил лишь зафиксированных в определённом положении кукол весом 18,5 кг,RIBA уже транспортирует живых людей массой до 61 кило.

Рост "медведя" 140 сантиметров (RI-MAN - 158 см), и весит он вместе с аккумуляторами 180 килограммов (предшественник - 100 кг). RIBA распознаёт лица и голоса, выполняет голосовые команды, ориентируется по собранным видео- и аудиоданным, которые обрабатывает в 15 быстрее, чем RI-MAN, и "гибко" реагирует на малейшие изменения в окружающей среде.

Руки нового робота имеют семь степеней свободы, голова - одну (позже будет три), в талии две степени.Корпус покрыт разработанным TRI новым мягким материалом наподобие полиуретановой пены. Двигатели работают довольно тихо (53,4 дБ), а всенаправленные колёса позволяет машине маневрировать в ограниченном пространстве.

Ну и само собой без протезирования в медицине никуда. Поэтому и здесь есть свои ученые и инженеры безустально разрабатывающие новые устройства. А именно Лаборатория прикладной физики им. Д. Хопкинса преподнесла новый сюрприз. В ходе совместной реализации проекта DARPA и Лаборатория прикладной физики им. Д. Хопкинса (Johns Hopkins Applied Physics Laboratory, APL) подготовили к началу тестирования с участием людей очередное поколение протеза руки, названное Modular Prosthetic Limb (MPL). По задумке разработчиков, искусственная конечность будет полностью управляться мозгом посредством вживленных в него сенсоров и даже обеспечивать тактильные ощущения за счет посылки электрических импульсов с внешних сенсоров в соответствующий участок коры головного мозга. В прошлом месяце APL заявила о заключении контракта на 34,5 млн долл. с DARPA, что должно позволить исследователям провести тестирование своей разработки на пяти особах в течение следующих двух лет.

Ожидается, что третья фаза тестирования – испытания с участием людей – позволит внести усовершенствования как в систему управления нейропротезом, так и в алгоритм генерации сигналов обратной связи. MPL, прошедший стадию многолетнего прототипирования, поддерживает 22 разновидности движений, независимое управление каждым пальцем и весит столько же, сколько и настоящая человеческая рука (около 4 килограммов). Исследователи планируют начать тестирование, оснастив протезом парализованного пациента. Реализованные до сих пор нейропротезы были рассчитаны на замену ампутированным конечностям, в то время как MPL позволяет охватить большее количество случаев, включая недуги, связанные с нарушениями нормальной деятельности спинного мозга, поскольку сигналы управления «снимаются» непосредственно с головного мозга.В ходе совершенствования разработки исследователям предстоит решить еще немалое количество затруднений и сложностей, как уже известных, так и тех, которые, несомненно, будут выявлены в процессе тестирования. Среди подобных проблем – малый срок жизни существующих на сегодняшний день нейроинтерфейсов. Внедренные в жидкие ткани организма кремниевые чипы достаточно интенсивно разрушаются, выходят из строя и нуждаются в замене приблизительно каждые два года. Ранее в этом году DARPA анонсировала программу Histology for Interface Stability Over Time, задачей которой названо увеличение срока службы нейроимплантатов до 70 лет.Хотя основными партнерами по разработке значатся APL и DARPA, к процессу исследований привлекается также множество других учреждений. Так, например, Питсбургский университет уже выполнил работы по вживлению обезьянам имплантатов, позволяющих контролировать руки робота, Калифорнийский технологический институт поможет в разработке дизайна интерфейса мозг-компьютер, а Университет Чикаго поучаствует в реализации системы тактильных датчиков.

Постепенно будут внедрены и роботы помощники, задачей которых будет непосредственная помощь врачам, данные модели уже используются в некоторых клиниках зарубежной медицины. Yurina, робот от японской компании Japan Logic Machine, который способен переносить лежачих пациентов на манер больничной каталки, только гораздо более плавно.

Что еще интереснее, Yurina может трансформироваться в инвалидное кресло, управляемое с тачскрина, контроллера или голосом. Робот достаточно ловок, чтобы перемещаться в узких коридорах, что делает его действительно неплохим помощником для настоящих врачей.Отдельно стоит упомянуть видеодемонстрацию, которую обязательно стоит смотреть с включенным звуком. Чем руководствовались режиссеры ролика, сопровождая видеоряд такой зловещей музыкой, мы не узнаем никогда – однако сочетание «доброго робота» и совершенно неуместной звуковой дорожки точно обеспечит вам порцию здорового смеха.

Приятной новостью стало изобретение роботизированных инвалидных кресел, с помощью специальных датчиков этим креслом управлять гораздо удобнее, однако новинка требует неких доработок, которые в ближайшем будущем и будут осуществлены.

Одним из самых приятных дней в жизни собаковода можно считать такой, когда четвероногий любимец полностью освоит следование за хозяином и будет сопровождать его всегда и везде, не требуя постоянного одергивания поводком. А благодаря стараниям команды ученых из Университета Саитамы (Saitama University) подобную концепцию теперь можно применять и к… инвалидным креслам.

Роботизированное кресло несет на борту камеру и датчик определения расстояния, с помощью чего система отслеживает положение плеч человека, идущего рядом с креслом. За счет этих устройств кресло «понимает», в каком направлении двигается человек, соответственно повторяя его путь. Для сидящего в кресле такой способ перемещения получается более приятным, поскольку инвалидное кресло движется плавно, а не толкается вперед спутником.

Робо-кресло способно также огибать препятствия, правда, до определенной степени. Идея, несомненно, хороша, однако требует некоторой доработки. Представьте такую ситуацию: человек сидит в кресле, а помощник в это время с кем-то оживленно беседует и жестикулирует (соответственно, совершая движения туловищем, плечами и руками). Неужели кресло будет все время «елозить» из стороны в сторону, повторяя движения плеч помощника? Создателям определенно есть над чем поработать.


Заключение

Значение роботов – помощников для человека.

Роботы помощники играют огромную роль в современной медицине. Эта отрасль еще достаточно молода и находится на начальном этапе развития, но, несмотря на это некоторые разработки введены уже во всем мире, они успешно функционируют и приносят незаменимую помощь сотрудникам медицинских учреждений. Главная проблема по моему мнению, что если в развитых странах с устойчивой положительной экономикой эти нововведения будут введены сразу после официальной массовой роботизации, то в развивающихся странах они поступят гораздо позже, а в странах третьего мира эти разработки весьма запозднятся и в ближайшем будущем там точно не будет этих уникальных разработок. Дело в том, что вся эта продукция очень дорогостоящая и для ее покупки нужны будут немалые финансирования, которые далеко не всем странам по плечу. Поэтому в будущем нужно поставить вопрос о снижение стоимости данной аппаратуры в пределах разумного, при помощи определенных конференций и заседаний глав правительств.

Научная робототехника – дисциплина, которая предполагает изучение всех особенностей создания роботов. На занятиях учащиеся узнают теоретические основы, историю и законы роботов, особенности их использования в реальной жизни.

Впервые слово «робот» применено чешским драматургом К. Чапеком в 1921 году. Он говорил о рабах, созданных для выполнения желаний человека. Слово robota переводится с чешского как «принудительное рабство».

Практически за 100 лет развития научной робототехники произошли серьезные изменения. Роботы из мира фантастики стали реальностью. Специальные машины применяются практически во всех областях промышленности, добычи полезных ископаемых, медицины. Само же направление стало увлекательным инструментом для получения новых знаний в разных отраслях технических наук, проектирования. У учеников появляется возможность реализовать себя в качестве проектировщиков, техников и даже артистов.

Роботы в современном мире

Активно развивается медицинская робототехника. Многие представляют себе робота в качестве внимательного, всегда вежливого, не устающего врача. Однако сегодня многие ученые говорят о том, что заменить человека техника не может. Она помогает справиться с рутинными задачами, например:

Регистрацией обратившихся за помощью;
- работы с электронными картами;
- предоставление справок.

Роботосекретарей уже создано довольно много. Применяются они в самых разных сферах жизнедеятельности человека. В рамках медицинской робототехники появились и специальные машины, оснащенные специальными камерами для перевозки медикаментов и документов. Такие устройства могут отвечать на вопросы, сопровождать клиентов до нужного места.

Наглядным примером стал Omnicell M5000. Он позволяет оптимизировать работу с медикаментами в стационарах. Машина формирует наборы лекарств для каждого пациента на заранее заданный срок. Это значительно снижает риск возникновения ошибки из-за человеческого фактора. Робот может создать около 50 наборов в час. У обычного медицинского персонала за 60 минут получается сделать только 4 набора.

Использование роботов в промышленности

Активно используется сегодня робототехника в промышленности. Есть три основных типа:

  1. Управляемые. Предполагают, что каждым действием управляет оператор.
  2. Автоматические и полуавтоматические. Работают строго по заданной программе.
  3. Автономные. Совершают последовательные действия без участия человека.

    К примерам можно отнести KUKA KR QUANTEC PA. Это один из самых продвинутых палетоукладчиков. Есть разновидность, которая может работать при очень низких температурах. Создан был специально для функционирования в больших морозильных камерах.

    Робототехника в промышленности представлена и многофункциональными устройствами. Например, Baxter имеет манипуляторы, которые способны выполнять все те же действия, что и рука человека. Интересным является тот факт, что машина может самостоятельно контролировать прилагаемые усилия.

    Stratasys Infinite-Build 3D Demonstrator – еще одна машина, которая является гибридом робота и 3D-принтера. Техника используется в авиационном и космическом производстве, поскольку может производить печать на горизонтальных и вертикальных поверхностях любого размера.

    Активно развивается робототехника в Японии. В этой стране были созданы сиделки RIBA и RIBA-II. Их главная задача заключается в переносе пациентов, которые не могут ходить самостоятельно. Машины помогают им садиться из кровати в кресло-коляску и наоборот. Роботы умеют наклоняться, а поверхность рук создана так, чтобы пациент чувствовал себя максимально комфортно.

    Интересным является изобретение ученых Техасского университета. Они наделили искусственный интеллект шизофренией. Для эксперимента применялся робот с нейронной сетью, повторяющей мозг человека. Машина не могла нормально запоминать, воспроизводить рассказы. В один момент он даже взял на себя ответственность за террористический акт.

    Были созданы специальные модели и для обычных людей. Например, робот-симулятор ребенка. Создан он был тоже в Японии. Такая машина может познакомить будущих родителей со всеми сложностями воспитания. Он умеет выражать эмоции, плакать, просить кушать и пр.

    Достижения в мире робототехники для школьников

    Сегодня кружок робототехники в школе можно найти во многих странах. Родители часто покупают различные устройства для привлечения интереса к науке. Это привело к тому, что на рынке появились игрушки, которые можно программировать на выполнение различных задач. Остановимся на самых интересных:

  4. Sphero 2. и Ollie. Предназначены для детей от 8 лет. Игрушку-робота практически невозможно сломать. Она не боится воды, умеет плавать. Управляется со смартфона или планшета.
  5. KIBO. Довольно простой по внешнему виду конструктор. Он позволяет научиться программировать. Работает следующим образом: сканирует отметки на деревянных кубиках. Каждая надпись обозначает определенное действие.
  6. LEGO Education WeDo. Робот, которого можно создать самостоятельно. В комплекте есть все необходимое для полноценной работы. Можно докупать дополнительные элементы для расширения возможностей машины.

    Обычно на кружках робототехники в школе предлагают самостоятельно собрать свое первое управляемое устройство. Это не только вызывает восторг у большинства детей, но и дает возможность получить новые знания.

    Робототехника для детей в Солнечногорске

    Сегодня количество кружков, на которых можно получить новые знания в самых продвинутых областях, впечатляет. Робототехника в Солнечногорске, например, привлекает как детей дошкольного возраста, так и подростков. Возможно, именно за ними в будущем будет настоящий прорыв в мире роботов. Педагоги следят за всеми новинками, постоянно обучаются сами. Это позволяет им и детям идти в ногу со временем.

    Робототехника в Солнечногорске, как и в других городах, больше имеет познавательную направленность. На сегодняшний день главная задача – заинтересовать детей всех возрастов, научить их применять теоретические знания на практике.

    Робототехника для детей в Солнечногорске предполагает небольшие группы, возможность получения индивидуальных консультаций и применение в работе полноценных конструкторов. Дополнительно дети осваивают работу со светодиодами, 3D-моделированием, пайкой. Обучение начинается всегда с основ сборки. По мере освоения материала даются основы программирования, конструирование.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Рассмотрение принципа работы медицинского робота "Да Винчи", позволяющего хирургам выполнять сложные операции, не касаясь пациента и с минимальным повреждением его тканей. Применение роботов и современных нанотехнологий в медицине и их значение.

    реферат , добавлен 12.01.2011

    Описание истории развития робототехники и применения ее в хирургических операциях на примере программно-управляемого автоматического манипулятора Да Винчи с инструментом Endo Wrist. Создание плавающей капсулы с камерой и эндолюминальной системы ARES.

    реферат , добавлен 07.06.2011

    Правильная и своевременная обработка рук как залог безопасности медицинского персонала и пациентов. Уровни обработки рук: бытовой, гигиенический, хирургический. Основные требования к антисептикам для рук. Европейский стандарт обработки рук EN-1500.

    презентация , добавлен 24.06.2014

    Применение в медицине микроскопических устройств на основе нанотехнологий. Создание микроустройств для работы внутри организма. Методы молекулярной биологии. Нанотехнологические сенсоры и анализаторы. Контейнеры для доставки лекарств и клеточной терапии.

    реферат , добавлен 08.03.2011

    Оказание первой медицинской помощи при несчастных случаях, бедствиях и авариях. Общие правила переноски и подъема пострадавших на носилках и без них при различны травматических повреждениях. Способы выноса пострадавших из очага бедствия или аварии.

    реферат , добавлен 27.02.2009

    Этиология, пато- и морфогенез рака прямой кишки. Маркеры онкогенеза, их прогностическая значимость. Основные критерии оценки результатов иммуногистихимического исследования и результаты состояния РПК у пациентов после радикального хирургического лечения.

    дипломная работа , добавлен 19.05.2013

    Общая характеристика и отличительные признаки различных методик обследования пациентов, используемых в современной медицине. Порядок и инструментарий для проведения обследования. Понятие и причины, разновидности одышки, направления ее исследования.

    реферат , добавлен 12.02.2013

    Разнообразие интересов и талантов Леонардо да Винчи. Проведение анатомических вскрытий художником, создание системы изображений органов и частей тела в поперечном сечении. Исследования в области сравнительной анатомии, содержание дневниковых записей.

    презентация , добавлен 28.10.2013

". Перевод на русский язык редакции сайт

2.3 Медицина и робототехника

2.3.1 Обзор области

Здравоохранение и роботы

В результате демографических изменений во многих странах системы здравоохранения сталкиваются с возрастающей нагрузкой, поскольку им приходится обслуживать стареющее население. На фоне роста спроса на услуги совершенствуются процедуры, что приводит к улучшению результатов. Одновременно растут затраты на оказание медицинских услуг, несмотря на снижение числа людей, занятых в области оказания медицинской помощи.

Применение технологий, включая робототехнику, представляется частью возможного решения. В данном документе отрасль медицины разделена на три подобласти:

- Роботы для больниц (Clinical Robotics) : Можно определить соответствующие робототехнические системы, как те, что обеспечивают процессы "заботы" и "излечения". Прежде всего - это роботы для диагностики, лечения, хирургического вмешательства и ввода медикаментов, а также в системах экстренной помощи. Такие роботы управляются персоналом больницы или обученными специалистами в области заботы о пациентах.

- Роботы для реабилитации (Rehabilitation) : Такие роботы обеспечивают послеоперационную или посттравматическую помощь, когда прямое физическое взаимодействие с робототехнической системой будет либо ускорять процессс восстановления (выздоровления), либо обеспечивать замену утраченной функциональности (например, когда речь идет о протезе ноги или руки).

- Вспомогательные роботы (Assistive robotics) : В этот сегмент относят другие аспекты робототехники, применяемой в медицинской практике, когда первичным назначением робототехнических систем является обеспечение поддержки либо тому, кто оказывает медицинскую помощь, либо непосредственно пациенту, независимо от того, идет ли речь о больнице или о другом медицинском учреждении.

Все перечисленные поддомены характеризуются тем, что требуют обеспечения системами безопасности, которые принимают в расчет клинические потребности пациентов. В типовом случае управлением или настройками таких систем занимается квалифицированный больничный персонал.

Медицинская робототехника - больше, чем просто технология

Кроме развития непосредственно робототехнических технологий, важно, чтобы соответствующие роботы внедрялись, как часть процессов лечения в больнице или других медицинских процедур. Требования к системе должны формироваться на основе четко выявленных потребностей пользователя и получателя услуг. При разработке таких систем, принципиально важно демонстрировать ту дополнительную пользу, которую они могут обеспечить при их внедрении, это критически важно для дальнейшего успеха на рынке. Получение дополнительной пользы требует прямого вовлечения в процесс разработки данной техники профессионалов в области медицины, а также пациентов, как на стадии дизайна, так и на стадии внедрения при разработке роботов. Разработка систем в контексте среды их будушего применения обеспечивает вовлечение заинтересованных сторон. Ясное понимание существующей медицинской практики, очевидная необходимость обучения медицинского персонала пользованию системой, владение различной информацией, которая может потребоваться для разработки, - критически необходимые факторы при создании пригодной к дальнейшему внедрению системы. Введение роботов в медицинскую практику потребует адаптации всей системы оказания медицинских услуг. Это деликатный процесс, в рамках которого технология и практика оказания медицинских услуг оказывают взаимное влияние и должны будут адаптироваться друг к другу. С момента начала разработки, важно принимать во внимание этот аспект "взаимозависимости".

Разработка роботов для нужд медицины включает очень широкий набор различных потенциальных приложений. Рассмотрим их ниже, в контексте выделенных ранее трех основных сегментов рынка.

Роботы для больниц

Этот сегмент представлен разнообразными приложениями. Можно выделить, например, такие категории:

Системы, которые непосредственно расширяют возможности хирурга в плане ловкости (гибкости и точности) и силы;

Системы, которые позволяют проводить дистанционную диагностику и вмешательства. В эту категорию можно включать, как телеуправляемые системы, когда врач может находиться на большем или меньшем удалении от пациента, так и системы для использования внутри тела пациента;

Системы, которые обеспечивают поддержку во время диагностических процедур;

Системы, которые обеспечивают поддержку во время хирургических процедур.

Кроме этих приложений для больниц, существует некоторое количество вспомогательных приложений для больниц, включая роботов для взятия образцов, лабораторных исследований образцов ткани, а также других услуг, необходимых в больничной практике.

Роботы для реабилитации

Реабилитационная робототехника включает такие устройства, как протезы или например, роботизированные экзоскелеты или ортезы, которые обеспечивают тренировку, поддержку или замену утраченных активностей или нарушенной функциональностей человеческого тела и его структуры. Такие устройства могут применяться, как в больницах, так и в повседневной жизни пациентов, но как правило требуют первичной настройки медицинскими специалистами и последующего наблюдения за их правильной работой и взаимодействием с пациентом. Постоперационное восстановление, особенно в ортопедии, согласно прогнозам, будет основной сферой применения таких роботов.

Поддержка специалистов и ассистивная робототехника

Этот сегмент включает ассистивных роботов, предназначенных для использования в больницах или в домашней среде, которые разработаны для того, чтобы помогать персоналу больниц или сиделкам выполнять рутинные операции. Можно отметить существенную разницу в дизайне и внедрениях робототехнических систем, связанную с местом и условиями их использования. В контексте использования квалифицированным персоналом, будь то условия больницы или домашние условия при использовании робота для заботы о пожилом человеке, разработчики могут рассчитывать на то, что роботом управляет квалифицированный специалист. Такой робот должен соответствовать требованиям и стандартам больницы и системы здравоохранения и обладать соответствующими сертификатами. Эти роботы будет оказывать помощь персоналу соответствующих медицинских учреждений в их повседневной работе, особенно медсестрам и сиделкам. Такие робототехнические системы должны позволять сиделке проводить больше времени с пациентами, сокращая физическую нагрузку, например, робот сможет поднимать пациента для того, чтобы провести с ним необходимые рутинные операции.

2.3.2 Возможности в настоящее время и в перспективе

Робототехника для медицины - это чрезвычайно сложное направление для разработок в силу мультидисциплинарной природы и необходимости соблюдения различных жестких требований, а также из-за того, что во многих случаев медицинские робототехнические системы физически взаимодействуют с людьми, которые к тому же могут находиться в весьма уязвимом состоянии. Приведем основные возможности, существующие в выделенных нами сегментах медицины.

2.3.2.1 Больничные роботы

Это роботы для хирургии, диагностики и терапии. Рынок роботов для хирургического вмешательства велик по размерам. Робото-ассистивные возможности могут использоваться практически во всех областях - кардиологии, сосудологии, ортопедии, онкологии и неврологии.

С другой стороны, есть множество технических проблем, связанных с ограничениями на размеры, емкость, связанных с окружающей средой и небольшим числом технологий, которые доступны для немедленного использования в больничных условиях.

Кроме технологических проблем, есть и коммерческие. Например, связанные с тем, что США старается сохранять монопольное положение на этом рынке за счет объемной интеллектуальной сосбственности. Обойти эту ситуацию можно только за счет разработки принципиально нового "железа", ПО и концепций управления. Также для таких разработок требуется солидная финансовая поддержка высокозатратных, но необходимых разработок и соответствующих клинических испытаний. Типичные области, где сейчас есть возможности:

Минимально инвазивная хирургия (MIS)

Здесь можно добиться успеха за счет разработки систем, способных расширить возможности гибкости движений инструментов за пределы, обеспечиваемые анатомией рук хирурга, повысить эффективность, или дополнить системы обратной связью (например, позволяющей судить о силе нажатия), или дополнительными данными, помогающими осуществлять процедуру. Успехи рыночного внедрения могут зависеть от ценовой эффективности продукта, сокращенного времени его развертывания (подготовки к работе) и сокращения уровня дополнительного обучения, которое необходимо, чтобы научиться использованию роботизированной сситемы. Любая разработанная система должна наглядно демонстрировать "добавленную ценность" в контексте хирургии. Клинические опытные внедрения и оценки в ходе такого тестирования в клиниках являются обязательными для того, чтобы систему приняло хирургическое сообщество.

Если сравнивать с другими направлениями малоинвазивной хирургии, робото-ассистивные системы потенциально обеспечивают хирургу лучшее управление хирургическими инструментами, а также лучший обзор во время операции. От хирурга более не требуется стоять все время операции, поэтому он не устает столь же быстро, как при традиционном подходе. Тремор рук может быть почти полностью отфильтрован программным обеспечением робота, что особенно важно для применения в хирургии, имеющей дело с микромасштабами, например, хирургии глаза. В теории, хирургический робот можно использовать почти 24 часа в день, заменяя бригады хирургов, которые с ним работают.

Робототхеника может обеспечивать быстрое восстановление, сокращение травматизма и снижение негативного влияния на ткани пациента, а также снижение нобходимой радиационной дозы. Роботизированные хирургические инструменты могут разгрузить мозг врача, сократить "кривую обучения" и повысить эргономику рабочего процесса для хирурга. Способы терапии, использование которых сдерживают границы возможностей человеческого тела, также становятся возможными при переходе к использованию робототехнических технологий. Например, новое поколение гибких роботов и инструментов, позволяющих добраться до органов, глубоко скрытых в теле человека, позволяют сократить размер входного разреза в человеческом теле или обойтись естественными отверстиями в человеческом теле для выполнения хирургических операций.

В долгоросрочной перспективе, использование обучающихся систем в хирургии может сократить сложность проведения операции за счет увеличения потока полезной информации, которую хирург будет получать в ходе операции. Другие потенциальные преимущества включают возможность повышения уровня возможностей бригад парамедиков ("скорой помощи") при проведении с помощью роботов стандартных клинических экстренных процедур в полевых условиях, а также проведение теле-хирургических операций на удаленных объектах, где есть только соответствующий робот и нет квалифицированного хирурга.

Можно выделить следующие возможности:

Новые совместимые инструменты, обеспечивающие повышение уровня безопасности, при сохранении всех возможностей манипулции ими, включая негнущиеся инструменты. За счет использования новых методов управления или специальных решений (которые, например, могут встраиваться в инструмент или являться внешними по отношениюк к нему) функционирование инструметов может подстраиваться в реальном времени так, чтобы обеспечить совместимость или стабильность, когда что важнее;

Введение усовершенствованных ассистивных технологий, которые ведут и предупреждают хирурга во время операции, что позволяет говорить об упрощении решения задач хирургии и снижении числа ошибок медиков. Такая "обучающая поддержка" должна повысить "совместимость" оборудования и хирурга, что обеспечит интуитивность и отсутствие сомнений при использовании системы.

Применение подходящих уровней автономии роботов в хирургической практике вплоть до полной автономности конкретных хорошо детерминированных процедур, например: автономная аутопсия; взятие образцов крови (Veebot); биопсия; автоматизация части хирургических действий (затягивание узлов, поддержка камеры...). Повышение автономности обладает потенциалом повышения эффективности.

- "Умные" хирургические инструменты по-сути условно управляются хирургами. Эти инструменты находятся в прямом контакте с тканью и повышают уровень мастерства хирурга. Миниатюризация и упрощение хирургических инструментов в будущем, также как и доступности хирургических процедур внутри и снаружи "операционного театра" - основной путь развития таких технологий.

Обучение : Обеспечение физически точных моделей, что достигается за счет использования инструментов с тактильной обратной связью обеспечивают потенциал улучшения обучения, как на ранних стадиях обучения, так и при достижении уверенных навыков работы. Возможность симулирования широкого разнообразия условий и сложностей также могут повышать эффективность данного типа обучения. Сейчас качество тактильной обратной связи еще содержит ряд ограничений, что создает сложности в демонстрировании превосходства данного типа обучения.

Клинические образцы : Есть много областей для применения автономных систем для взятия образцов - от систем для взятия анализов крови и образцов ткани для биопсии до менее инвазивных методов аутопсии.

2.3.2.2 Робототехника для реабилитации и протезирования

Робототехника для реабилитации покрывает широкий диапазон различных форм реабилитации и может быть разделена на подсегменты. В Европе существует достаточно сильная промышленность в данном секторе и активное взаимодействие с ней ускорит технологическое развитие.

Средства реабилитации

Это средства, которые могут использоваться после травмы или после операции для тренировки и поддержки восстановления. Роль этих средств - поддержка выздоровления и ускорение восстановления, при одновременной защите пользователя и его поддержке. Такие системы могут использоваться в больничных условиях под надзором врачебного персонала или выступать самостоятельным упражнением, когда устройство управляет движениями или ограничивает движения - в зависимости от того, что требуется в данном конкретном случае. Такие системы также могут обеспечивать ценную данные о процессе восстановления и мониторить состояние более непосредственно чем даже при наблюдении за пациентом в условиях больницы.

Средства функциональной замены

Назначение такой робототехнической системы - это замена утраченной функциональности. Это может быть результатом старения или травматического ранения. Такие устройства разрабатывают с целью повышения мобильности и моторных навыков пациента. Они могут выполняться, как протезы, экзоскелеты или ортопедические устройства.

В развитых реабилитационных системах критически важно, чтобы существующие европейские производители были вовлечены в процесс в качестве известных участников рынка, а релевантные клиники и партнеры клиник были вовлечены в процесс разработки. Европа в настоящее время лидирует в мире в этой области.

Нейро-реабилитация

(Сеть COST TD1006, Европейская сеть Робототехники для Нейро-реабилитации обеспечивает платформу для обмена стандартизации определений и примеров разработок по всей Европе).

В настоящее время используется немного роботизованных устройств для нейро-реабилитации, поскольку еще не удалось обеспечить их широкого распространения. Робототехника используется для после-инсультной реабилитации в после-острой фазе и других нейро-моторных патологий, таких, как болезнь Паркинсона, множественный склероз и атаксия. Позитивные результаты с использованием роботов (не хуже или лучше, чем при использовании традиционной терапии) в реабилитационных целях начинают подтверждаться результатами исследований. В последнее время позитивные результаты также подтвержадются исследованиями в области нейро-визуализации. Было доказано, что интеграция с FES показала усиление позитивного результата (как для мышечной системы, так и периферийной и для центральной моторной). Упражнения с биологической обратной связью и игровыми интерфейсами начинают рассматриваться как решения, которые можно реализовать, но такие системы все еще находятся на ранней стадии разработки.

Для того, чтобы разрабатывать работоспособные системы необходимо решить несколько проблем. Это низкая стоимость устройств, проверенные результаты клинических испытаний, хорошо определенный процесс оценки состояния пациента. Возможности систем по корректной идентификации намерений пользователя и тем самым предотвращение травм, в настоящее время ограничивает эффективность таких систем. Управление и мехатроника, интегрированные для того, чтобы отвечать возможностям человеческого тела, включая когнитивную нагрузку, находятся на ранних стадиях развития. Должны быть достигнуты улучшения в надежности и в продолжительности рабочего времени до того, как могут быть разработаны пригодные к коммерческому использованию системы. Также целями разработки должны быть быстрое время развертывания и востребованность терапевтами.

Протезирование

Существенный прогресс может быть получен в области производства умных протезов, которые способны адаптироваться к особенностям движений пользователя и к условиям окружающей среды. Робототехника обладает потенциалом для комбинирования улучшенных способностей самообучения и повышенной гибкости и управления, особенно по части протезов верхних конечностей и кистевых протезов. Частные области исследований включают возможности адаптации к персональному, полу-автономному управлению, обеспечение искуственной чувствительности за счет обратной связи, улучшенная проверка, улучшенная энергоэффективность, self power recovery, улучшенный процессинг миоэлектрических сигналов. Смарт протезы и ортезы, управляемые активностью мышц пациента, позволят воспользоваться преимуществами таких систем обширным группам пользователей.

Системы поддержки мобильности

Пациенты с сокращением физических возможностей, временным или постоянным, могут воспользоваться преимуществами, связанными с повышением мобильности. Роботизированные системы могут обеспечивать поддержку и упражнения, необходимые для увеличения мобильности. Уже есть примеры разработок таких систем, но они находятся на ранней стадии развития.

В будущем возможно что такие системы смогут компенсировать даже когнитивные расстройства, предотвращая падения и несчастные случаи. Ограничения таких систем связаны с их стоимостью, а также с возможностью длительно носить на себе такие системы.

В ряде реабилитационных приложений, есть возможность использования натуральных интерфейсов, таких как миоэлектрика, снятие сигналов с головного мозга, а также интерфейсов, основанных на речи и жестах.

2.3.2.3 Поддержка специалистов и ассистивные роботы.

Поддержка со стороны специалистов и ассистивная робототехника могут быть разделены на ряд областей применения.

Системы поддержки заботящегося о пациенте : Поддерживающие системы, используемые лицами, заботящимися о пациентах, которые взаимодействуют с пациентами или системы, используемые пациентами. Они могут включать роботизированные системы, которые обеспечивают использование лекарственных средств, берут образцы, улучшают гигиену или процессы восстановления.

Подъем и перемещение пациента : Системы подъема и позиционирования пациента могут обладать различными возможностями от точного позиционирования во время хирургических вмешательств или сеансов лучевой терапии до содействия младшему медицинскому персоналу или лицам, заботящимся о пациенте, в подъеме человека с кровати или укладывании на нее, а также в транспортировке пациентов по больнице. Такие системы могут быть разработаны так, чтобы их можно было конфигурировать в зависимости от состояния пациента и использовать их так, чтобы у пациента была определенная степень управления их положением. Ограничения здесь могут быть связаны с необходимостью получения сертификатов безопасности и безопасного управления силами, достаточными для перемещения пациентов так, чтобы исключить возможные травмы пациентов. Энергоэффективные структуры и дизайн, выполненный с учетом необходимости экономии пространства, будут критичны для эффективных внедрений.

При разработке ассистивных робототехнических решений, важно придерживаться набора базовых принципов. Разработка должна фокусироваться на поддержке дефицита функциональности, а не на создании специфических условий. Решения должны быть практичными с точки зрения их использования и обеспечивать заметные преимущества для пользователя. Это может включать использование технологий для мотивирования пациентов делать для себя как можно больше, при одновременном сохранении безопасности. Внедрение таких систем не будет жизнеспособным и востребованным, если они не обеспечат воможности снижения нагрузки на персонал, создавая экономический кейс для внедрения, при одновременной надежности и безопасности использования.

Роботы для биомедицинских лабораторий для медицинских исследований

Роботы уже находят примнение в биомедицинских лабораториях, где они сортируют образцы и манипулируют ими в процессе проведения исследований. Приложения для создания сложных роботизированных систем расширяют возможности еще более, например, в область усовершенствованного скрининга клеток и манипуляций, связанных с клеточной терапией и избирательной сортировкой клеток.

2.3.2.4 Требования в среднесрочном периоде

Следующий список представляет "точки роста" в области медицинской робототехники

Экзоскелеты для нижней части туловища, которые подстраивают свое функционирование к индивидуальным особенностям поведения пациента и/или особенностям его анатомии, оптимизируя поддержку в зависимости от пользователя или условий окружающей среды. Системы могут адаптироваться пользователем к различным условиям и выполнению различных задач. Области применение: нейро-реабилитация и поддержка работников.

Роботы, предназначенные для автономной реабилитации (например, реабилитация в "игровом" режиме, реабилитация верхних конечностей после инсульта) должны воспринимать нужды пациента и его реакции, а также подстраивать под них терапевтическое воздействие.

Роботы, предназначенные для поддержки мобильности и возможностей пациента к манипуляции, должны поддерживать натуральные интерфейсы, гарантируя безопасность и работоспособность в условиях окружающей среды, близкой к "натуральной".

Реабилитационные роботы, разработанные для того, чтобы обеспечивать интеграцию сенсоров и двигателей, за счет обеспечения двунаправленной связи, включая мультирежимный ввод команд (миоэлектрика + инерциальная сенсорика) и мультирежимной обратной связи (электро-тактильной, вибро-тактильной и/или визуальной).

Протезы рук, запяться, кисти, которые автоматически адаптируются к пациенту, позволяя ему управлять по-отдельности любым пальцем, вращением большого пальца, кистевыми DOF-ами. Это должно сопровождаться применением множественных сенсоров и алгоритмов распознавания паттернов, чтобы обеспечить естественность управления (постоянное управление силой) за счет возможных DOFs. Области применения: восстановление функциональности руки для ампутантов.

Протезы и реабилитационные роботы, оснащенные системами полу-автоматического управления для улучшения качества функционирования и/или сокращения когнитивной нагрузки на пользователя. Системы должны позволять восприятие и интерпретацию окружения вплоть до определенного уровня, чтобы сделать возможным автономное принятие решений.

Протезы и реабилитационные роботы способные задействовать разнообразные онлайн-ресурсы (хранилища информации, процессинг) за счет использования облачных вычислений, чтобы внедрить усовершенствованную функциональность, которая находится существенно за пределами возможностей "бортовой" электроники и/или возможностей прямого управления со стороны пользователя.

Недорогие протезы и робототехнические решения, созданные с использованием аддитивных технологий или массовых производств (3D-печать и т.п)

Надомная терапия, снижающая интенсивность невропатической боли или фантомной боли верхних конечностей за счет усовершенствованной интерпретации сигналов, снимаемых с мышц, благодаря использованию роботизированных конечностей (с меньшей гибкостью, чем в предыдущих примерах) и/или "виртуальной реальности".

Биомиметрическое управление взаимодействием с роботом-хирургом.

Адекватные технологии механической актуации и сенсорики для разработки гибких миниатюрных роботов с силовой обратной связью, а также инструментов для усовершенствованной и расширенной хирургии с минимальной инвазивностью.

Системы подзарядки от окружающей среды для имплантируемых микро-роботов.

Для получения биомиметрического управления процессами реабилитации: интеграция волевых "импульсов" при движении субъекта, при поддержке FES для улучшенного повторного обучения моторике, при управлении роботом.

Разработка применимых в условиях больницы методов для восстановления двигательной активности, которая выходит за пределы парадигмы обычно используемых статичных механизмов с ручной настройкой.

На низком TRL

Автоматизированное когнитивное понимание необходимых задач в действующем окружении. Бесшовное физическое объединение человек-робот для условий "обычной" окружающей среды на базе дополнительного управляющего интерфейса. Полноценная, не требующая настроек адаптивность к пациенту. Надежность выявления намерений.



Случайные статьи

Вверх