Радиационная опасность в воздухе - радон. Реферат: Радон, его влияние на человека

Радиоактивные элементы естественного и техногенного происхождения окружают человека повсюду.

Попадая в организм они оказывают губительное воздействие на клетки.

Из природных наиболее опасных в этом плане считается радиоактивный газ радон, который образуется повсеместно при распаде радиоактивных элементов радия и урана, тория и актиния, а также и других.

Допустимая доза радона для человека в 10 раз меньше допустимой дозы бета и гамма- излучений.

Всего через 1 час после внутривенного введения даже небольшой дозы радона в 10 микрокюри в кровь экспериментального кролика, у него резко сокращается количество лейкоцитов в крови и затем начинают поражаться лимфатические узлы и кроветворные органы, селезенка, костный мозг.


Радон в природе

Радон - это газ, не имеющий цвета и запаха, ядовит и радиоактивен. Радон легко растворяется в жидкости (воде) и жировых тканях живых организмов.

Радон довольно тяжел, он в 7,5 раз тяжелее веса воздуха, поэтому он "обитает" в толще земных пород и понемногу выделяется в атмосферный воздух в смеси с увлекающими его на поверхность потоками других, более легких газов, таких как водород, углекислый газ, метан, азот и др.

Из-за своей химической инертности радон может длительно мигрировать по трещинам, порам почвы и трещинам пород на большие расстояния, пока не попадёт в наш дом .

Концентрация радона в воздухе во многом зависит от геологической обстановки местности, например, граниты, содержащие много урана, являются активными источниками радона, а в то же время над поверхностью морей и океанов концентрация радона мало.

Концентрация зависит также от погоды и времени года - во время дождя микротрещины, по которым радон поступает из почвы, заполняются водой, снежный покров также препятствует доступу радона в воздух). Замечено, что перед землетрясениями концентрация радона в воздухе повышается, вероятно, из-за более активного обмена воздуха в грунте при росте микросейсмической активности.

В природе радона очень мало, это один из наименее распространенных на планете химических элементов. Наука содержание радона в атмосфере оценивает в 7 10–17% по весу. Но и в земной коре его очень мало – он образуется в основном из уникального сверхредкого радия. Тем не менее эти немногочисленные атомы радона очень заметны с помощью специальных измерительных приборов.


Радон в жилом доме

Основные составляющие радиационного фона жилого помещения в большой степени зависят от человека. В наш дом радон попадает из почвы участка, на котором стоит дом, через стены, фундамент здания, с водопроводной водой, а затем оседает и концентрируется на нижних этажах, подвальных помещениях и поднимается с воздушными потоками на верхние этажи здания.


Большое значение при защите зданий от радона имеют, как конструктивных решения зданий, так и качество строительных материалов, применённые системы вентиляции, используемый зимний кладочный раствор . Строительные материалы в разной степени, в зависимости от их качества, так же содержат дозу радиоактивных элементов.

Большую опасность может представлять поступление газа радона с водными парами при пользовании саун, душей, ванн, парных. Радон содержится также и в природном газе, поэтому при использовании газовых плит на кухне рекомендуется установить вытяжку для защиты от накопления и концентрирования радона.

Согласно Федерального Закон РФ "О радиационной безопасности населения" и норм радиационной безопасности, при проектировании любых здания среднегодовая активность изотопов радона в воздухе помещений не должна превышать норм в противном случае возникает вопрос о разработке и проведении защитных мероприятий, а иногда и о сносе или перепрофилировании здания.

Чтобы самостоятельно обезопасить свой дом от этого вредного радиоактивного газа, необходимо тщательно заделать щели и трещины в стенах и полах, поклеить обои, герметизировать подвальные помещения, а так же чаще проветривать помещение - концентрация газа радона в не проветренном помещении может быть в 8 раз больше.

В настоящее время многие страны проводят экологический мониторинг концентрации газа радона в зданиях. Установлено, что в районах геологических разломов коры концентрации радона в помещениях могут быть огромные и существенно превышать средние показатели по остальным регионам.


Влияние на живые организмы

Ученые установили, что газ радон даёт наибольший вклад в радиоактивное облучение человека - более 50% общей дозы радиации, получаемой человеком от природных и техногенных радионуклидов.

Основная часть облучения человека происходит от продуктов распада газа радона - изотопов свинца, висмута и полония. Продукты этого распада попадая в легкие человека вместе с воздухом, задерживаются в них, а распадаясь, выделяют альфа-частицы, которые поражают клетки эпителия.

Такой распад ядер радона в легочной ткани вызывает "микроожоги", а повышенная концентрация радона в воздухе может привести к раку лёгких. Дополнительно альфа-частицы вызывают необратимые повреждения в хромосомах клеток костного мозга человека, а это увеличивает риск вероятности развития лейкозов. Наиболее уязвимыми для газа радона являются половые, кроветворные и иммунные клетки.

Все частицы ионизирующей радиации способны повреждать наследственный код человека, никак себя не проявляя до тех пор, пока клетка не начнёт делиться. Тогда речь уже может идти и о мутациях клеток, приводящих к сбоям в жизнедеятельности организма человека.

Очень опасно сочетание воздействия двух ядов - радона и курения. Установлено, что радон является вторым по частоте после курения фактором, вызывающим рак лёгких . В свою очередь рак лёгких, который вызван радоновым облучением, в мире является шестой по частоте из причиной смерти от рака.

Не столько сам газ радон задерживается в организме, а сколько радиоактивные продукты его распада. Исследователи, работавшие с твердым радоном, подчеркивают непрозрачность этого вещества. А причина непрозрачности одна: моментальное оседание твердых продуктов распада.

Эти продукты "выдают" весь комплекс излучений:

Альфа-лучи – малопроникающие, но очень энергичные;

Бета-лучи;

Жесткое гамма-излучение.


Польза радона

Радон используют в медицинской практике для приготовления радоновых ванн, издавна занимающих заметное место в арсенале курортов и физиотерапии. Известно, что растворенный в ультрадозах в воде радон оказывает положительное воздействие, как на центральную нервную систему, так и на многие другие функции организма.

Однако роль самого радона-222 здесь минимальна, т.к. он испускает лишь альфа-частицы, основная масса которых задерживается водой и не попадает на кожу. Но вот активный налет продуктов распада газа радона продолжает действовать на организм и после прекращения процедуры. Считается, что радоновые ванны - это эффективное средство лечения многих заболеваний (сердечно-сосудистых, кожных, заболеваний нервной системы).

Радоновую воду также прописывают внутрь для воздействия на органы пищеварения. Эффективными считаются и радоновые грязи, вдыхание обогащенного радоном воздуха.

Но нужно учитывать , что как всякое сильнодействующее средство, радоновые процедуры требуют постоянного контроля врача и очень точной дозировки. Нужно знать, что при некоторых заболеваниях человека радонотерапия абсолютно противопоказана.

Медицина использует для процедур как природные родоновые воды, так и искусственно приготовленные. В медицине радон получают из радия, которого клинике вполне достаточно всего несколько миллиграммов, чтобы в течение очень длительного периода ежедневно подготавливать десятки радоновых ванн.

Зоологами радон используется в сельскохозяйственном производстве для активации кормов домашних животных.

В металлургической промышленности радон применяется в качестве индикатора при определении скорости газовых потоков в доменных печах, газопроводах.

Геологам радон помогает найти залежи урана и тория, гидрологам - помогает исследовать взаимодействия между грунтовыми и поверхностными водами. Изменение концентрации газа радона в подземных водах применяется для прогноза землетрясений и извержений вулканов сейсмологами .

Про радон можно справедливо сказать: самый тяжелый, самый дорогой, самый редкий, но и самый опасный для человека газ из всех существующих газов на Земле. Поэтому при эффективных и своевременных мерах защиты жилого здания от его непрошенного проникновения, радон можно заставить с пользой служить людям.


Обсуждение (комментариев 0) :

Срубами на Руси назывались деревянные сооружения, стены которых собирались из обработанных брёвен. Так строились избы, храмы, башни деревянных кремлей и другие сооружения деревянного зодчества. Строится дом-сруб и различные ограждения из дерева для террасы из брёвен хвойных и лиственных пород. Такая древесина должна быть сухой, без гнили, трещин, грибка и не заражёна жуком-древоедом.

Прошли времена, когда в СССР гражданам выделялись участки земли от 4 до 6 соток под огороды, на которых разрешалось строить одноэтажный домик размером не более 3 на 5 метров - своеобразный хозблок дачный для хранения садового инвентаря и другой дачной утвари круглогодично. Зато ещё тогда ко многим огородным участкам подводилось электричество, а водоснабжение на огородах обеспечивалось подведением труб с водой или рытьём колодцев.

В свете стремительного развития науки и техники специалисты выражают озабоченность отсутствием пропаганды радиационной гигиены среди населения. Эксперты прогнозируют, что в ближайшее десятилетие "радиологическое невежество" может стать причиной реальной угрозы безопасности общества и планеты.

Невидимый убийца

В XVΙ веке европейских медиков ставила в тупик аномально высокая смертность от легочных заболеваний среди работников рудников, добывающих железо, полиметаллы и серебро. Загадочный недуг, получивший название "горной болезни", поражал шахтеров в пятьдесят раз чаще, чем среднего обывателя. Только в начале XX века, после открытия радона, именно его признали причиной стимулирования развития рака легких горняков Германии и Чехии.

Что такое радон? Только ли отрицательное влияние оказывает он на организм человека? Чтобы ответить на эти вопросы, следует вспомнить историю открытия и изучения этого таинственного элемента.

Эманация - значит "истечение"

Первооткрывателем радона принято считать английского физика Э. Резерфорда. Именно он в 1899 году заметил, что препараты на основе тория кроме тяжелых α-частиц излучают бесцветный газ, приводящий к повышению уровня радиоактивности окружающей среды. Исследователь назвал предполагаемое вещество эманацией тория (от emanation (лат.) - истечение) и присвоил ему буквенное обозначение Em. Похожие эманации присущи также препаратам радия. В первом случае испускающийся газ получил название торон, во втором - радон.

В дальнейшем удалось доказать, что газы являются радионуклидами нового элемента. Выделить его в чистом виде впервые удалось шотландскому химику, Нобелевскому лауреату (1904 г.) Уильяму Рамзаю (совместно с Витлоу Греем) в 1908 году. Спустя пять лет за элементом окончательно закрепилось название радон и символьное обозначение Rn.

В химических элементов Д. И. Менделеева радон находится в 18-й группе. Имеет атомный номер z=86.

Все существующие изотопы радона (более 35, с массовыми числами от 195 до 230) радиоактивны и представляют определенную опасность для человека. В природе встречаются четыре разновидности атомов элемента. Все они входят в состав естественных радиоактивных рядов актиноурана, тория и урана - радия. Некоторые изотопы имеют собственные названия и их, по исторически сложившейся традиции, называют эманациями:

  • актиния - актинон 219 Rn;
  • тория - торон 220 Rn;
  • радия - радон 222 Rn.

Последний отличается наибольшей стабильностью. радона 222 Rn - 91,2 часа (3,82 суток). Время устойчивого состояния остальных изотопов исчисляется секундами и миллисекундами. При распаде с излучением α-частиц происходит образование изотопов полония. Кстати, именно при исследовании радона ученые впервые столкнулись с многочисленными разновидностями атомов одного и того же элемента, которые впоследствии и назвали изотопами (от греческого "равный", "одинаковый").

Физические и химические свойства

В нормальных условиях радон - газ без цвета и запаха, присутствие которого можно определить только специальными приборами. Плотность - 9,81 г/л. Является самым тяжелым (воздух легче в 7,5 раз), самым редким и самым дорогим из всех известных на нашей планете газов.

Хорошо растворим в воде (460 мл/л), но в органических соединениях растворимость радона на порядок выше. Обладает эффектом флюоресценции, вызванным высокой собственной радиоактивностью. Для газообразного и жидкого состояния (при температуре ниже -62˚С) характерно голубое свечение, для кристаллического (ниже -71˚С) - желтое или оранжево-красное.

Химическая характеристика радона обусловлена его принадлежностью к группе инертных ("благородных") газов. Ему свойственны химические реакции с кислородом, фтором и некоторыми другими галогенами.

С другой стороны, неустойчивое ядро элемента является источником частиц высоких энергий, влияющих на многие вещества. Воздействие радона приводит к окрашиванию стекла и фарфора, разлагает воду на кислород, водород и озон, разрушает парафин и вазелин и т. д.

Получение радона

Для выделения изотопов радона достаточно пропустить над веществом, содержащим радий в том или ином виде, струю воздуха. Концентрация газа в струе будет зависеть от многих физических факторов (влажности, температуры), от кристаллической структуры вещества, его состава, пористости, однородности и может колебаться от малых долей до 100%. Обычно используют растворы бромистого или хлористого радия в соляной кислоте. Твердые пористые вещества применяют гораздо реже, хотя радон при этом выделяется более чистым.

Полученную газовую смесь очищают от паров воды, кислорода и водорода, пропуская ее через раскаленную медную сетку. Остаток (1/25000 от первоначального объема) конденсируют и из конденсата удаляют примеси азота, гелия и инертных газов.

Для заметки: во всем мире за год производится всего лишь несколько десятков кубических сантиметров химического элемента радона.

Распространение в природе

Ядра радия, продуктом деления которых является радон, в свою очередь образуются при распаде урана. Таким образом, основной источник радона - грунты и минералы, содержащие уран и торий. Наиболее высока концентрация этих элементов в магматических, осадочных, метаморфических породах, темноцветных сланцах. Газ радон вследствие своей инертности легко покидает кристаллические решетки минералов и по пустотам и трещинам в земной коре легко распространяется на большие расстояния, выделяясь в атмосферу.

Кроме того, грунтовые межпластовые воды, омывая такие породы, легко насыщаются радоном. Радоновая вода и ее определенные свойства использовались человеком задолго до открытия самого элемента.

Друг или враг?

Несмотря на тысячи научных и научно-популярных статей, написанных об этом радиоактивном газе, однозначно ответить на вопрос: "Что такое радон и каково его значение для человечества?" представляется затруднительным. Перед современными исследователями стоят, как минимум, две проблемы. Первая заключается в том, что в сфере воздействия излучения радона на живую материю он является одновременно вредным и полезным элементом. Вторая - в отсутствии достоверных средств регистрации и мониторинга. Существующие на сегодняшний день детекторы радона в атмосфере, даже самые современные и чувствительные, при повторении измерений могут выдавать результаты, различающиеся в несколько раз.

Осторожно, радон!

Основную дозу радиации (более 70%) в процессе жизнедеятельности человек получает благодаря природным радионуклидам, среди которых лидирующие позиции принадлежат бесцветному газу радону. В зависимости от географического расположения жилого строения, его "вклад" может составлять от 30 до 60%. Постоянное количество нестабильных изотопов опасного элемента в атмосфере поддерживается непрерывным поступлением из земных пород. Радон имеет неприятное свойство накапливаться внутри жилых и общественных помещений, где его концентрация может увеличиваться в десятки и сотни раз. Для здоровья человека опасность представляет не столько сам радиоактивный газ, сколько химически активные изотопы полония 214 Po и 218 Po, образующиеся в результате его распада. Они прочно удерживаются в организме, губительно воздействуя внутренним α-излучением на живую ткань.

Кроме астматических приступов удушья и депрессивного состояния, головокружения и мигрени, это чревато развитием рака легких. В группу риска входят работники урановых шахт и горно-обогатительных комбинатов, вулканологи, радонотерапевты, население неблагоприятных районов с высоким содержанием радоновых производных в земной коре и артезианских водах, радоновых курортов. Для выявления таких территорий составляют карты радоноопасности, применяя геологические и радиационно-гигиенические методы.

Для заметки: считается, что именно облучение радоном спровоцировало гибель от рака легких в 1916 году шотландского исследователя этого элемента Уильяма Рамзая.

Способы защиты

В последнее десятилетие, по примеру западных соседей, необходимые противорадоновые мероприятия стали распространяться и в странах бывшего СНГ. Появились нормативные документы (СанПин 2.6.1., СП 2.6.1.) с четкими требованиями по обеспечению радиационной безопасности населения.

К основным мерам по защите от почвенных газов и природных источников излучения относятся:

  • Обустройство на земляном подполье деревянных полов монолитной бетонной плиты с щебеночным основанием и надежной гидроизоляцией.
  • Обеспечение усиленной вентиляции цокольного и подвального пространства, проветривание жилых зданий.
  • Вода, поступающая в кухни и ванные комнаты, должна подвергаться специальной фильтрации, а сами помещения оборудуются принудительными вытяжными устройствами.

Радиомедицина

Что такое радон, наши предки не знали, но еще славные всадники Чингисхана врачевали свои раны водами источников Белокурихи (Алтай), насыщенными этим газом. Дело в том, что в микродозах радон оказывает положительное влияние на жизненно важные органы человека и центральную нервную систему. Воздействие радоновых вод ускоряет обменные процессы, благодаря чему поврежденные ткани восстанавливаются гораздо быстрее, нормализуется работа сердца и системы кровообращения, укрепляются стенки сосудов.

Курорты горных районов Кавказа (Ессентуки, Пятигорск, Кисловодск), Австрии (Гаштейн), Чехии (Яхимов, Карловы Вары), Германии (Баден-Баден), Японии (Мисаса) издавна пользуются заслуженной славой и популярностью. Современная медицина кроме радоновых ванн предлагает лечение в форме орошения, ингаляции под строгим контролем соответствующего специалиста.

На службе человечества

Область применения газа радона не ограничивается одной лишь медициной. Способность изотопов элемента к адсорбции активно используется в материаловедении для измерения степени неоднородности металлических поверхностей и декорирования. В производстве стали и стекла радон служит для контроля протекания технологических процессов. С его помощью проводят проверку противогазов и средств химзащиты на герметичность.

В геофизике и геологии многие методы поиска и обнаружения залежей полезных ископаемых и радиоактивных руд основаны на применении радоновой съемки. По концентрации изотопов радона в почве можно судить о газопроницаемости и плотности горных образований. Мониторинг радоновой обстановки выглядит перспективным в плане прогнозирования предстоящих землетрясений.

Остается надеяться, что с негативными воздействиями радона человечество все-таки справиться и радиоактивный элемент будет приносить населению планеты только пользу.

Исследователям в области геологии известно, что температура в земляных шахтах или скважинах на глубине 1 километра составляет плюс 20–30 градусов по Цельсию, хотя на поверхности в это время может быть суровая зима. По мере углубления в недра температура возрастает примерно на 20–50 градусов на каждый километр. Откуда берется это тепло? Что является его источником? Не вдаваясь в детали строения глубинных слоев, отметим, что геотермальное тепло в земной коре во многом обусловлено природными процессами, происходящими внутри Земли. Считается, что этому способствует естественный радиоактивный распад изотопов урана, тория, калия, рубидия. Эти и другие радиоактивные элементы имеются в достаточном количестве в подземных слоях в виде руд, а также в виде вкраплений в геологические образования. Во время распада урана-238, урана-235, тория-232 выделяется значительная тепловая энергия и сопутствующий радиоактивный газ радон, который, постепенно поднимаясь сквозь поры и трещины в породе, достигает земной поверхности. Подсчитано, что массовая доля радона в земной коре составляет около 10 процентов.

История открытия радона

Примерно до 1900 года о радоне никому из ученых того времени ничего не было известно. Но именно в этом году крупный английский физик, основоположник ядерной физики, Эрнест Резерфорд сказал свое слово о радоне. Это тот самый человек, который обнаружил альфа- и бета-лучи и который предложил миру планетарную модель атома. Он же и сообщил коллегам об открытии некого нового газа, химического элемента с определенными свойствами, о существовании которого ранее никто не подозревал.

Рис.1. Фрагмент таблицы периодической системы элементов Д.И. Менделеева.

Хотя многими считается, что первооткрывателем радона был Резерфорд, свою долю участия в открытии радиоактивного газа вложили и другие ученые. Дело в том, что Резерфорд экспериментировал с изотопом радона-220 (историческое название – торон), у которого период полураспада 55,6 секунд. Немецкий ученый-химик Фредерик Эрнст Дорн, открыл изотоп радона-222 (период полураспада 3,82 суток). Наконец, французский ученый в области химии и физики Андре-Луи Дебьерн описал свойства еще одной разновидности радона-219 (историческое название – актинон) с периодом полураспада 3,96 секунд. Такие деятели науки как американец Роберт Боуи Оуэнс, англичане Рэмзи Уильям Рамзай и Фредерик Содди также имели отношение к исследованию радона, и предать их труды забвению было бы несправедливо.

Современные ученые-атомщики утверждают, что радиоактивный газ радон имеет 35 известных на сегодня изотопов с атомной массой от 195 до 229. Три из них, указанные выше, рождаются естественным образом, остальные получены искусственным путем в лабораторных условиях. Те изотопы радона, которые выделяются из геологических пород, как раз и представляют собой варианты существования природного радона (атомные массы 222, 220, 219). Как выяснилось, основную долю радиации несет в себе радон-222. На втором месте по значимости стоит радон-220, но его вклад в радиацию составляет лишь 5 процентов.

Физические и химические свойства радона

Свойства радона удивительны, его относят к благородным инертным газам, вроде неона или аргона, которые не спешат вступать в реакцию с какими-нибудь веществами. Это тяжелый газ, в сравнении его с воздухом окажется, что он в 7,5 раз тяжелее. Поэтому радон под действием гравитационных сил стремится опуститься ниже воздушной массы. Тот радон, что выделяется из земли, будет скапливаться преимущественно в подвальных помещениях. Газ, выделяемый из строительного материала потолков и стен, будет располагаться на полу этажей зданий. Радон, выделяемый из воды в душевой комнате, сначала будет наполнять весь объем помещения и существовать в виде аэрозоли, затем опустится к нижней поверхности. В кухонных помещениях радон, выделяемый горючим природным газом, в конечном итоге также будет стремиться вниз, оседать на полу и окружающих предметах.

Рис.2. Концентрация радона в воздухе в разных помещениях дома.

Так как радон не имеет запаха, не имеет цвета и никак не определяется на вкус, то обычный человек, не вооруженный специальными приборами, не сможет его обнаружить. Однако высокая радиоактивность очищенного от примесей газа под действием энергии альфа-частиц инициирует у него эффект флюоресценции. В газообразном состоянии при комнатных температурах, а также в жидком виде (условия образования – минус 62 градуса Цельсия) радон испускает голубое свечение. В твердой кристаллической форме при температурах ниже 71 градуса цвет флюоресценции меняется от желтого до оранжево-красного.

В чем заключается особая опасность альфа-частиц?

Альфа-частицы, испускаемые радоном, это невидимые, но коварные враги. Они несут в себе огромную энергию. И хотя обычная одежда вполне защищает человека от такого типа радиации, опасность кроется в попадании радона в дыхательные пути, а также в желудочно-кишечный тракт. Альфа-частицы – это тяжелая крупнокалиберная артиллерия, наносящая наибольший вред организму. Физиками установлено, что при распаде изотопов радона и дочерних продуктов каждая альфа-частица имеет начальную энергию от 5,41 до 8,96 МэВ. Масса таких частиц в 7500 раз больше, чем масса электронов, представляющих собой поток бета-частиц, который можно сравнить по той же аналогии с пулеметной очередью. Тогда гамма-облучение будет выглядеть всего лишь массовой стрельбой из легкого стрелкового оружия.

Рис.3. Опасность разного вида радиоактивного излучения.

Невидимый газ радон, порождающий альфа-частицы, действительно представляет собой ощутимую угрозу для здоровья человека. Как подсчитали специалисты научного комитета при ООН по действию атомной радиации (НКДАР ООН), вклад радиоактивного радона в годовую дозу облучения человека составляет 75 процентов от всех природных радиоактивных процессов земного происхождения и половину дозы от всех возможных естественных источников радиации (включая земную и космическую). Кроме того, дочерние продукты распада радона – свинец, полоний и висмут – являются весьма опасными для человеческого организма и могут вызывать рак.

Более того, установлено, что активность именно дочерних продуктов радона составляет 90 процентов всей радиации, исходящей от родоначальника. Например, радон-222 в цепи ядерных преобразований порождает полоний-218 (период полураспада 3,1 минуты), полоний-214 (0,16 миллисекунд) и полоний-210 (138,4 суток). Эти элементы также испускают разрушительные альфа-частицы с энергией 6,12 МэВ, 7,88 МэВ и 5,41 МэВ соответственно. Аналогичные процессы наблюдаются и с родительскими изотопами радон-220 и радон-219. Эти факты говорят о том, что действие радона не следует оставлять без внимания, и необходимо принимать всяческие меры по уменьшению его влияния.

Опасность радона с точки зрения медицины

Медики подсчитали, что биологическое воздействие альфа-частиц на клеточные ткани организма оказывает в 20 раз большее разрушительное воздействие, чем бета-частицы или гамма-излучение. По данным исследователей из США попадание в легкие человека изотопов радона и его дочерних продуктов распада приводит к возникновению рака легких. Как считают ученые, вдыхаемый человеком радон инициирует локальные ожоги в легочной ткани и стоит шестым в списке причин заболевания раком, вызывающих смертельный исход. Исследователи отмечают, что воздействие радона на организм особенно опасно в сочетании с привычкой курения. Отмечено, что курение и радон – это два наиболее значимых фактора в возникновении рака легких, а когда они действуют совместно, то опасность резко усиливается. Недавно были опубликованы результаты наблюдений, и сделан вывод, что по причине воздействия внутреннего альфа-облучения на организм человека в США от рака легких умирает ежегодно около 20 тысяч человек. Международное агентство по исследованию раковых заболеваний причислило радон к канцерогенам первого класса опасности.

Рис.4. Источники радиации, воздействующие на человека.

Важные понятия и единицы измерения

Для правильного понимания процессов радиоактивного распада радона и опасности, которую он несет для организма человека, важно знать основную терминологию и единицы измерения. Рассмотрим эти понятия.

  1. Активность (А) радионуклида измеряется в беккерелях (Бк), 1 Бк соответствует 1 распаду в секунду. Для обозначения большой активности применяют также внесистемную единицу – кюри (Ки), 1 кюри равен 37 миллиардам беккерелей.
  2. Объемная (удельная) активность (ОА) – это количество распадов на единицу объема вещества, например, Бк/м3, Бк/л или Бк/кг (беккерель на кубометр, беккерель на литр, беккерель на килограмм соответственно). Часто удельную активность относят к площади: Ки/км2 – кюри на квадратный километр.
  3. Равновесная объемная активность (РОА) – то же, что и ОА, но учитывающая фактор времени, за которое начальная активность дочерних продуктов распада придет в равновесное состояние со своим родителем по причине постепенного угасания жизни короткоживущих радионуклидов. Измеряется в единицах ОА
  4. Эквивалентная равновесная объемная активность (ЭРОА) используется для оценки активности смеси короткоживущих дочерних продуктов распада, еще не пришедших в равновесное состояние. Практически это величина, скорректированная весовыми коэффициентами для каждого типа значимого изотопа и эквивалентная РОА по скрытой энергии. Для определения ЭРОА используется математическая формула. Есть и более простой способ вычисления ЭРОА: путем перемножения текущего значения ОА и коэффициента, характеризующего смещение радиоактивного равновесия радона и его дочерних продуктов в воздушной массе. Как правило, коэффициент выбирается равным 0,5. Обычно ЭРОА вычисляется и задается как среднегодовая активность и измеряется в Бк/м3.

Актуальные нормы радиационной безопасности

Предельные величины концентрации радона в воздухе помещений можно найти в таких нормативных документах, как НРБ-99 или СП 2.6.1.758-99 (Нормы радиационной безопасности), ОСПОРБ-99 (Основные санитарные правила), СП 2.6.1.1292-2003 (Санитарные правила), а также в методических указаниях МУ 2.6.1.715-98. Как указывают нормативы, в жилых и общественных (непроизводственных) помещениях, где предполагается долговременное нахождение людей, ЭРОА в среднем за год не должна превышать 200 Бк/м3 (для эксплуатируемых зданий) и 100 Бк/м3 (для новых строений, вводимых в эксплуатацию). Если эти значения не будут выдержаны, то радиационная безопасность проживания в таких сооружениях не гарантируется.

Методы анализа и мониторинга радоновой обстановки

Методов анализа активности радона и торона великое множество, и каждый из них имеет свои преимущества и недостатки. Практическое применение нашли те из них, которые отвечают следующим требованиям: простота методики, небольшое время процесса измерения при приемлемой точности анализа, минимальная стоимость оборудования и расходных материалов, наименьшие затраты на обучение персонала. На сегодняшний день в практике дозиметрического контроля радона и его продуктов распада используются следующие методы:

  • Сорбция (поглощение) радона из окружающей среды активированным углем. Бывает пассивная (самопроизвольная) и активная, путем прокачки с определенной скоростью исследуемого воздуха через колонку с углем. По окончании процесса измерения начальные свойства активированного угля могут быть восстановлены путем прокаливания.
  • Вместо колонки с активированным углем могут применяться специальные одноразовые фильтры, используемые как расходный материал. Изотопы радона и продукты его распада оседают на фильтрах подобно тому, как бытовой пылесос задерживает пыль и мелкий мусор в фильтрующем воздух тканевом мешке.
  • Также существует метод электростатического осаждения дочерних продуктов радона на детекторе, чувствительном к альфа-излучению. В данном случае используется эффект электростатической силы, которая притягивает пылинки и микрокапли воздушной аэрозоли, концентрируя их на детекторе.

После сбора образцов их исследуют средствами дозиметрического контроля, используя, например, спектрометрический анализ, пластиковый сцинтилляционный детектор, торцевой счетчик Гейгера и тому подобное. В некоторых приборах операция забора воздуха с радоном и оценка радиоактивного излучения происходит одновременно.

Профессиональные и бытовые средства обнаружения радона.

Радон и опасные для человека продукты его распада считаются альфа-излучателями, поэтому большинство бытовых и профессиональных дозиметров, которые имеют гамма- и бета-режимы измерения, не смогут его обнаружить. Приборы, имеющие возможность оценивать альфа-излучение, также окажутся малополезными, так как не смогут вычислить концентрацию радона в исследуемых пробах воздуха. Ведь для этого нужно следовать положениям определенной методики измерения. Поэтому для такого анализа используются профессиональные приборы, измерители концентрации радона. Многие из них устроены примерно одинаково, они содержат устройства для забора проб исследуемого воздуха и дозиметрические средства контроля ЭРОА. Воздух, содержащий радионуклиды, прокачивается через собирающий фильтр в течение длительного времени (от нескольких часов до нескольких суток), затем определяется объемная альфа-активность накопленной порции. К профессиональным приборам такого типа относятся РГА-04 (Интегральный радиометр радона), РРА-01М-01 (Радиометр радона), РАА-10 (Радиометр аэрозолей), КАМЕРА (Комплекс измерительный для мониторинга радона) и другие. Эти приборы довольно громоздки, вес достигает 6 кг и более. Некоторые из них имеют широкие функциональные возможности. Основная относительная погрешность измерения ЭРОА составляет 15–30 процентов, в зависимости от диапазона и режима работы.

Рис.5. Профессиональные и индивидуальные радиометры радона.

Для бытовых целей задачу определения концентрации радона в воздухе конструкторы решили с помощью современной элементной базы, используя управляющий микропроцессор и специально разработанные программные алгоритмы. Весь ход измерения, который соответствует стандартизованным методическим указаниям, удалось полностью автоматизировать. Речь идет о детекторе-индикаторе радона СИРАД МР-106. Устройство работает по принципу электростатического осаждения дочерних продуктов распада радона-222 на детекторе, чувствительном к альфа-частицам и может оценивать ЭРОА собранных радионуклидов. Вес прибора около 350 г без элементов питания (двух источников типоразмера АА), а его габариты – карманные, в буквальном смысле слова. При включении прибора и вхождении в текущий режим, он начинает функционировать и накапливать информационные данные. Первый результат появляется спустя 4 часа работы, затем устройство переходит в состояние мониторинга с периодической коррекцией результата измерения (усредненный режим). Также имеется пороговый режим со звуковой сигнализацией превышения порога (100 Бк/м3 и 200 Бк/м3). Прибор предназначен для заинтересованных неспециалистов и его эксплуатация не требует обучения.

Рекомендованное специалистами время обследования одного помещения площадью не более 50 квадратных метров – не менее 72 часов. Продолжительный анализ радона обусловлен тем фактором, что в течение времени результаты измерения могут отличаться между собой в 10 раз. Более длительные измерения позволят накопить достаточную информацию для получения достоверного усредненного результата с наименьшей погрешностью.

Как уменьшить опасность воздействия радона?

Радиоактивный газ радон по территориям проживания населения распределен неравномерно. В силу геологических особенностей природных условий в группу радоноопасных можно включить отдельные районы Урала и Карелии, Ставропольского, Алтайского и Красноярского края, Читинской, Томской и других областей, а также во многих регионах Украины. Сегодня составляются географические карты активности радона на территории всей страны, которые отражают общую радоновую картину. Однако в каждом конкретном месте активность радиоактивного газа может отличаться в несколько раз в ту или другую сторону и многократно превышать предельно-допустимые нормы. Встречаются аномальные места с величинами ЭРОА 2000–10000 Бк/м3. Кроме того, результаты замеров концентрации радона могут значительно изменяться с течением времени. Поэтому надежному решению вопроса радиационной безопасности может способствовать только периодический мониторинг.

Рис.6. Фрагмент карты риска радоновой опасности.

Отметим основные источники поступления радона и его дочерних продуктов:

  • земной грунт
  • строительные материалы
  • вода, особенно из глубоководных артезианских скважин
  • природный горючий газ

Зная источники поступления радона в окружающую среду и в жилище человека, можно выработать средства противодействия и борьбы с этим нежелательным явлением. Они заключаются в выполнении следующих правил:

  1. Тщательно выбирать площадку под строительство жилого дома, с минимальной концентрацией радона в земном грунте.
  2. В малоэтажных зданиях желательно обустраивать подвальные помещения.
  3. Жилые комнаты лучше располагать в верхних этажах строений.
  4. Не использовать для возведения дома опасные строительные материалы (керамзит, пемза, гранит, фосфогипс, глинозем, шлакобетон), предпочтение следует отдавать дереву, а также материалам, прошедшим радоновый радиационный контроль.
  5. Уделить достаточное внимание герметизации междуэтажных перекрытий, пола и напольного покрытия.
  6. Для заделки щелей, пор и трещин - стены и потолок нужно обработать мастиками, герметиками, затем красками на основе эпоксидной смолы и другим облицовочным материалом.
  7. Не находиться долгое время в непроветриваемых помещениях дома, в подвале или погребе.
  8. Организовать регулярное естественное проветривание жилых комнат и подвальных помещений.
  9. Обустроить эффективную принудительную вентиляцию дома или квартиры.
  10. Не стремиться устроить чрезмерную герметизацию окон и дверей в помещениях, чтобы дать возможность естественному обороту воздуха.
  11. Воду из глубоководных источников следует кипятить, а не пить сырую.
  12. Использовать для очистки воды угольные фильтры, позволяющие задерживать радон на 90 процентов.
  13. Исключать вдыхание влажного воздуха, сокращать время пребывания в душевой комнате, принимать душ реже, устраивать вентиляцию и обязательное проветривание перед использованием душа другими членами семьи.
  14. Над газовой плитой необходимо обустроить вытяжную систему вентиляции.

Кроме этого, необходимо проводить систематический мониторинг концентрации радона в различных помещениях дома с целью выявления опасных мест. Имея под руками индивидуальный прибор, можно оценивать эффективность противодействующих мероприятий, проведенных в домах, где проживают люди. Оценку количества скопившегося радона в помещении производят непосредственно до мероприятия и после его осуществления. Полученные величины сравнивают между собой. Такие измерения нужно производить в одинаковых условиях, учитывая естественное движение воздуха в результате сквозняка, закрытые или открытые двери и окна, а также функционирование вентиляционной системы.

Вот еще одна полезная возможность использования детектора-индикатора радиоактивного газа. Известен научный факт, что перед землетрясениями концентрация радона в земной поверхности скачкообразно увеличивается, ввиду смещения тектонических плит и возрастания механического напряжения между ними с сопутствующей вибрацией в земной коре (микросейсмическая активность). Это дает шанс предсказывать катастрофу. Если вести ежедневный мониторинг концентрации радона в воздухе, то вполне возможно зафиксировать скачкообразное увеличение значения ЭРОА, успеть предупредить об этом окружающих и принять необходимые меры безопасности.

Какой индикатор радона выбрать?

Радомн -- элемент 18-й группы периодической системы химических элементов Д.И. Менделеева (по старой классификации -- главной подгруппы 8-й группы, 6-го периода), с атомным номером 86. Обозначается символом Rn. Химические свойства радона обусловлены его нахождением в группе благородных инертных газов. Он не вступает в реакции с кислородом. Для него характерны химическая инертность и валентность, равная 0. Однако радон может образовывать клатратные соединения с водой, фенолом, толуолом и др.

Изотопы радона растворимы в воде и других жидкостях. Их растворимость падает при повышении температуры. Значительно выше растворимость радона в органических жидкостях. Хорошая растворимость радона в жирах обусловливает его концентрирование жировой тканью человека, что необходимо учитывать при оценке радиационной опасности.

Наиболее стабильный изотоп (???Rn) имеет период полураспада 3,8 суток.

Нахождение в природе

Входит в состав радиоактивных рядов 238U, 235U и 232Th. Ядра радона постоянно возникают в природе при радиоактивном распаде материнских ядер. Равновесное содержание в земной коре 7·10?16% по массе. Ввиду химической инертности радон относительно легко покидает кристаллическую решётку «родительского» минерала и попадает в подземные воды, природные газы и воздух. Поскольку наиболее долгоживущим из четырёх природных изотопов радона является 222Rn, именно его содержание в этих средах максимально. Концентрация радона в воздухе зависит, в первую очередь, от геологической обстановки (так, граниты, в которых много урана, являются активными источниками радона, в то же время над поверхностью морей радона мало), а также от погоды (во время дождя микротрещины, по которым радон поступает из почвы, заполняются водой; снежный покров также препятствует доступу радона в воздух). Перед землетрясениями наблюдалось повышение концентрации радона в воздухе, вероятно, благодаря более активному обмену воздуха в грунте ввиду роста микросейсмической активности.

Геология радона

Горные породы являются первоисточником радона. В первую очередь содержание радона в окружающей среде зависит от концентрации материнских элементов в породах и почвах.

Несмотря на то, что радиоактивные элементы встречаются в тех или иных количествах повсеместно, распределение их в земной коре очень неравномерно. Наиболее высокие концентрации урана свойственны изверженным (магматическим) породам, в особенности гранитам. Высокие концентрации урана также могут быть приурочены к темноцветным сланцам, осадочным породам, содержащим фосфаты, а также метаморфическим породам, образовавшимся из этих отложений. Естественно, что и почвы, и обломочные отложения, образовавшиеся в результате переработки вышеназванных пород, также будут обогащены ураном.

Кроме этого основными источниками - содержателями радона являются горные и осадочные породы, содержащие уран (радий.):

* бокситы и углистые сланцы тульского горизонта нижнего карбона, залегающие на глубинах от 0 до 50 м и с содержаниями урана более 0,002%;

* углеродисто-глинистые диктионемовые сланцы, глауконитовых и оболовых песков и песчаников пакерортского, цератопигиевого и латоринского горизонтов нижнего ордовика, залегающие на глубинах от 0 до50 м с содержанием урана более 0,005%.

* граниты рапакиви верхнего протерозоя, залегающие приповерхностно и имеющие содержание урана более 0,0035 %;

* калиевые, микроклиновые и плагиомикроклиновые граниты протерозойско-архейского возраста с содержанием урана более 0.005 %;

* - гранитизированные и мигматизированные архейские гнейсы, залегающие приповерхностно, в которых урана более 3,5 г/т.

В результате радиоактивного распада атомы радона попадают в кристаллическую решетку минералов. Процесс выделения радона из минералов и пород в паровое или трещинное пространство получил название эманирования. Не все атомы радона могут выделиться в поровое пространство, поэтому для характеристики степени высвобождения радона используется коэффициент эманирования. Его величина зависит от характера породы, ее структуры и степени ее раздробленности. Чем меньше зерна породы, чем больше внешняя поверхность зерен, тем активнее идет процесс эманирования.

Дальнейшая судьба радона связана с характером заполнения порового пространства породы. В зоне аэрации, то есть выше уровня грунтовых вод, поры и трещины пород и почв заполнены, как правило, воздухом. Ниже уровня грунтовых вод все пустотное пространство пород заполнено. В первом случае радон как всякий газ распространяется по законам диффузии. Во втором - может также мигрировать вместе с водой. Дальность миграции радона определяется его периодом полураспада. Поскольку этот период не очень велик, дальность миграции радона не может быть большой. Для сухой породы она больше, однако, как правило, радон мигрирует в водной среде. Именно поэтому наибольший интерес представляет изучение поведение радона в воде.

Основной вклад в распространение радона вносят так называемые диктионемовые сланцы нижнего ордовика, места, распространения которых являются наиболее радоноопасными территориями России. Диктионемовые сланцы протягиваются полосой шириной от 3 до 30 км. от г. Кингисепп на западе до р. Сясь на востоке, занимая площадь порядка 3000 кв. км. На всем протяжении сланцы обогащены ураном, содержание которого варьирует в пределах от 0.01% до 0.17%, а суммарное количество урана составляет сотни тысяч тонн. В области Балтийско-Ладожского уступа сланцы выходят на дневную поверхность, а к югу погружаются на глубину до первых десятков метров.

Проводниками радона под землей являются региональные разломы, заложенные в допалеозойское время, и разломы, активизированные в мезо-кайонозойское время, с помощью которых радон появляется на поверхности земли и частично концентрируется в рыхлых слоях пород земли.

Из регионов России потенциально опасных в этом смысле выделяют Западную Сибирь, Забайкалье, Северный Кавказ и Северо-западные регионы России.

Основным источником поступления радона в воздух помещений является геологическое пространство под зданием. Радон легко проникает в помещения по проницаемым зонам земной коры. Здание с газопроницаемым полом, построенное на земной поверхности, может увеличивать поток радона, выходящего из земли, до 10 раз за счет перепада давления воздуха в помещениях здания и атмосфере. На рисунке 2 представлена схема попадания радона в дома. Этот перепад оценивается в среднем величиной около 5 Па и обусловлен двумя причинами: ветровой нагрузкой на здание (разрежение, возникающее на границе газовой струи) и перепадом температур между комнатным воздухом и атмосферой (эффект дымовой трубы).

Рис. 2.

Влияние радона на организм человека

Радон вносит весьма существенный вклад в среднюю ежегодную дозу облучения людей. На долю радона и радиоактивных продуктов его распада приходится 50 % индивидуальной эффективной дозы облучения человека. При этом большую часть дозы человек получает от радионуклидов, попадающих в его организм вместе с вдыхаемым воздухом.

Во многих странах радон является второй по значимости причиной развития рака легких после курения. Доля случаев рака легких, вызванных радоном, оценивается от 3% до 14%. Значительные последствия для здоровья наблюдаются среди работников урановых рудников, подвергающихся воздействию радона в высоких концентрациях. Однако исследования, проведенные в Европе, Северной Америке и Китае, подтвердили, что низкие уровни концентрации радона, такие как уровни в домах, также представляют риски для здоровья и в значительной мере способствуют заболеваемости раком легких во всем мире.

При возрастании концентрации радона на 100 Бк/м3 риск развития рака легких увеличивается на 16%. Соотношение доза-ответ является линейным, то есть риск развития рака легких возрастает прямо пропорционально возрастанию воздействия радона. Вероятность того, что радон приведет к развитию рака легких у курильщиков, гораздо выше.

Имеются данные о том, что радоновое облучение увеличивает риск рака желудка, мочевого пузыря, прямой кишки, кожи, а также данные о негативном влиянии этого облучения на костный мозг, сердечнососудистую систему, печень, щитовидную железу, гонады. Не исключается возможность отдаленных генетических последствий радонового облучения. Однако все эффекты радона, по крайней мере, на порядок менее вероятны, чем рак легкого.

географический геологический радон опасность

Любой дом может иметь проблему радона Радон является радиоактивным газом. Оно происходит от естественного распада урана, который находится почти во всех почвах. Он обычно движется вверх из земли в воздух над ней, и попадает в ваш дом через трещины и другие отверстия в фундаменте.

Радон прозрачный газ, без запаха и без вкуса. Но он может быть проблемой вашего дома. По мировым оценкам радон является причиной многих тысяч смертей каждый год. Поэтому вдыхая воздух с высоким содержанием радона, вы можете получить рак легких. Врачи предупреждают, что радон на сегодня является второй ведущей причиной развития рака легких во многих странах. Только курение вызывает больше смертей от рака легких.

Пути поступления газа радона в дом:
Присутствие радона в воздухе помещения может быть обусловлено его поступлениями из следующих источников:

  • залегающих под зданием грунтов;
  • ограждающих конструкций, изготовленных с применением строительных материалов из горных пород, в т.ч. тяжелого, легкого и ячеистого бетона не более 10% от всего радона, поступающего в дом);
  • наружного воздуха (особенно в радоноопасных территориях и на территориях нефте- и газодобычи);
  • воды из системы водоснабжения здания (преимущественно при водоснабжении из глубоких скважин);
  • сжигаемого в здании топлива (природный газ, уголь, дизельное топливо).

Радон выделяется из почвы практически по всей поверхности земли. Хотя радон в 7,5 раз тяжелее воздуха, он выталкивается на поверхность избыточным давлением из недр. Средние мировые значения объемной активности радона в наружном воздухе на высоте 1 м от поверхности земли составляют от 7 до 12 Бк/м3 фоновое значение). На территориях с насыщенными радоном грунтами эта величина может достигать 50 Бк/м3. Известны территории, где активность радона в наружном воздухе достигает 150-200 Бк/м3 и более.

При возведении здания выделяющий радон участок поверхности земли изолируется цоколем или фундаментом здания от окружающего пространства. Поэтому радон, выделяющийся из залегающих под зданием грунтов, не может свободно рассредоточиваться в атмосфере, и проникает в здание, где его концентрация в воздухе помещений становится выше, чем в наружном воздухе.

Исследования показали, что концентрация радона в жилых домах мало зависит от материала стен и особенностей архитектурного решения. Концентрация радона в верхних этажах многоэтажных домов, как правило, ниже, чем на первом этаже. Исследования, проведенные в Норвегии, показали, что концентрация радона в деревянных домах даже выше, чем в кирпичных, хотя дерево выделяет совершенно ничтожное количество радона по сравнению с другими материалами. Это объясняется тем, что деревянные дома, как правило, имеют меньше этажей, чем кирпичные, и, следовательно, помещения, в которых проводились измерения, находились ближе к земле - основному источнику радона.

По данным Агентства по охране окружающей среды США (EPA), в каждом пятнадцатом доме по всей стране уровень концентрации радона находится на уровне или превышает рекомендуемую безопасную концентрацию радона 4 пКи/л (пикокюри на литр воздуха).

Максимальная концентрация радона наблюдается в подвалах, подполах и на первых этажах зданий. При измерениях уровня радона в городах Республики Беларусь установлено, что в отдельных подвальных помещениях концентрация радона превышает санитарно-гигиеническую норму в 7 раз, в полуподвальных - в 2,5 раза и на первых этажах - в 1,5-2,5 раза.

Концентрация радона выше всего в зданиях на замкнутых ленточных фундаментах со свободным подпольным пространством, не имеющих изоляции от грунта пространства под домом, и не имеющих вентиляции подпольного пространства. Люки в подвалы и подполы, щели в полах являются отличными входными воротами для проникновения радона в дом. Радонозащитная способность хорошо изолированной ограждающей конструкции может быть практически сведена к нулю при наличии в ней неуплотненных швов, стыков и технологических проемов.

Поступления почвенного радона в помещения обуславливаются его конвективным (вместе с воздухом) переносом через трещины, щели, полости и проемы в ограждающих конструкциях здания, а также диффузионным переносом через поры ограждающих конструкций. Бетонные, кирпичные и другие «каменные» конструкции не являются препятствием для проникновения радона в дом.

Вследствие разности температур (следовательно, разности плотностей) воздуха внутри и вне помещений, в направлении движения радона из грунта в здание возникает отрицательный градиент давления. Уже при разности давлений равной 1 - 3 Па начинает действовать механизм "подсоса" радона в здание. Причиной неблагоприятного распределения давлений могут служить также ветровое воздействие на здание и работа вытяжной вентиляционной системы, создающей разрежение во внутренней атмосфере здания.

На радоноопасных территориях вытяжная вентиляция допускается только в подпольях или при депрессии грунтового основания. Вентиляция дома на радоноопасных территориях должна осуществляться за счет приточной вентиляции, создающей избыточное давление во внутренних помещениях здания, которое препятствует проникновению радона в дом.

Выделения радона из поверхностных водных источников, а также из сжигаемых в котлах дизельного топлива или природного газа, обычно пренебрежимо малы. Радон хорошо растворяется в воде. Поэтому высокое содержание радона может быть в воде, подаваемой в здания непосредственно из скважин глубокого заложения. Эксперты Международного агентства по исследованию рака считают, что из воды в здания поступает до 20% радона.

Схема. Пути проникновения радона в жилой дом.


Поэтому в отношении радоновой безопасности колодцы предпочтительнее скважин в радоноопасных территориях. Хотя обычно концентрация радона в воде очень невелика, он "капля за каплей" выделятся из воды в доме из струй воды из-под кранов, при принятии душа, при стирке белья в стиральной машине и накапливается в помещении. Больше всего радона с водой поступает в ванную комнату, оборудованную душем.

При обследовании жилых домов в Финляндии оказалось, что в среднем концентрация радона в ванной комнате примерно в три раза выше, чем на кухне, и приблизительно в 40 раз выше, чем в жилых помещениях. Высокая концентрация радона в ванной комнате держится в течение 1,5 часов после приема душа. В том числе из-за радона санузлы в доме должны иметь хорошую систему вытяжной вентиляции. В радоноопасных районах может потребоваться дополнительный вытяжной вентилятор в санузле на уровне пола (радон тяжелее воздуха).

Еще один менее значительный источник радона – строительные материалы (в том числе дерево и кирпич). Особенно опасен домененый шлак, который используется при производстве шлакобетона многим самостройщиками. Опасны глинозем, зольная пыль, фософогипс и знакомый всем алюмосиликатный кирпич. Однако строительные материалы составляют не более 10% в структуре источников облучения людей, проживающих в частных домах.

Если вы думаете, что радона в почве под вашим домом нет, потому что никто об этом раньше не говорил, просто разыщите в МЧС или в администрации своего населенного пункта карты радоноопасных районов. В г. Новгороде радон, например, является основным фактром естественной радиации. опубликовано Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .



Случайные статьи

Вверх