Транспорт веществ в организме рабочая тетрадь. Транспорт веществ в организме позвоночных животных. Клетки сообщаются между собой цитоплазматическими каналами

Тест по биологии Транспорт веществ в организме для учащихся 6 класса с ответами. Тест состоит из 2 вариантов в каждом по 10 заданий.

1 вариант

1. Перемещение питательных веществ по клетке обеспечивает

1) ядро
2) хлоропласт
3) цитоплазма
4) хромосома

2. Вода и растворённые в ней минеральные вещества передви­гаются в растении по

1) сосудам древесины
2) клеткам луба
3) сердцевине
4) кожице

3. Транспорт веществ и газов по организму дождевого червя осуществляет

1) скелетная мускулатура
2) кровеносная система
3) нервная система
4) лёгкие

4. Уничтожают попавшие в организм млекопитающего жи­вотного болезнетворные микробы

1) сосуды
2) сердце
3) красные кровяные клетки
4) белые кровяные клетки

5. Все ткани и органы крысы пронизывают

1) кровеносные капилляры
2) механические волокна
3) сосуды луба
4) клетки проводящей ткани

6. Кровеносная система достигает наибольшего развития у

1) червеобразных организмов
2) членистоногих животных
3) моллюсков
4) птиц и зверей

7. В организме растения одностороннее движение воды от корней к побегам обеспечивает

1) фотосинтез
2) газообмен
3) дыхание
4) корневое давление

8. На рисунке изображено серд­це земноводного животного. Ка­кой отдел сердца обозначен циф­рой 1?

1) желудочек
2) предсердие
3) артерия
4) вена

9.

А. Кровеносная система рыбы не имеет сердца и состоит только из сосудов.
В. Транспорт питательных веществ в организме животных обеспечивает кровь и гемолимфа.

1) верно только А
2) верно только В
3) верны оба суждения
4) неверны оба суждения

10. Установите верную последовательность движения крови по сосудам, начиная от сердца.

1) сердце
2) капилляры
3) вены
4) артерии

2 вариант

1. У одноклеточных организмов передвижение веществ и ор­ганоидов внутри клетки достигается движением

1) ядра
2) пластид
3) вакуолей
4) цитоплазмы

2. В цветковом растении органические вещества передвига­ются по

1) сосудам древесины
2) клеткам луба
3) сердцевине
4) кожице

3. Транспорт кислорода по организму крысы осуществляет

1) дыхательная система
2) красные кровяные клетки
3) белые кровяные клетки
4) плазма крови

4. В теле насекомых в кровеносной системе циркулирует

1) вода с растворёнными в ней минеральными веществами
2) плазма крови
3) гемолимфа
4) пищеварительный сок

5. Кровь от сердца к органам и тканям по телу собаки транс­портируют

1) вены
2) капилляры
3) артерии
4) механические волокна

6. Движение крови по сосудам животного обеспечивается со­кращением

1) отделов сердца
2) стенок желудка
3) капиллярной сети
4) органов дыхания

7. Восходящий ток воды по растению обеспечивает

1) фотосинтез
2) испарение воды
3) дыхание
4) деление клеток

8. На рисунке изображено сердце земноводного животного. Какой отдел сердца обозначен цифрой 2?

1) желудочек
2) предсердие
3) артерия
4) вена

9. Верны ли следующие утверждения?

А. Кровь состоит из плазмы и клеток.
Б. Позвоночные животные обладают кровеносной системой замкнутого типа.

1) верно только А
2) верно только Б
3) верны оба суждения
4) неверны оба суждения

10. Установите верную последовательность движения крови в сердце крысы, начиная с вен.

1) вены
2) артерии
3) желудочки
4) предсердия

Ответ на тест по биологии Транспорт веществ в организме
1 вариант
1-3
2-1
3-2
4-4
5-1
6-4
7-4
8-2
9-2
10-1423
2 вариант
1-4
2-2
3-2
4-3
5-3
6-1
7-2
8-1
9-3
10-1432

1. Транспорт сквозь липидный бислой мембраны (простая диффузия) и транспорт при участии мембранных белков

2. Активный и пассивный транспорт

3. Симпорт, антипорт и унипорт

Легче всего проходят через липидный бислой неполярные молекулы с малой молекулярной массой (например, кислород, азот, бензол). Достаточно быстро проникают сквозь липидный бислой такие мелкие полярные молекулы, как углекислый газ, оксид азота, вода, мочевина. С заметной скоростью проходят через липидный бислой этанол и глицерин, а также стероидные и тиреоидные гормоны. Для более крупных полярных молекул (глюкоза, аминокислоты), а также для ионов липидный бислой практически непроницаем, так как его внутренняя часть гидрофобна.

Перенос крупных полярных молекул и ионов происходит благодаря белкам-каналам или белкам-переносчикам. Так, в мембранах клеток существуют каналы для ионов натрия, калия и хлора, а также белки-переносчики для глюкозы, аминокислот и других молекул. Есть даже специальные водные каналы – аквапорины.

Пассивный транспорт - транспорт веществ по градиенту концентрации , не требующий затрат энергии. Пассивно происходит транспорт гидрофобных веществ сквозь липидный бислой мембраны (∆G<0). Пассивно пропускают через себя вещества все белки-каналы и некоторые белки-переносчики. Пассивный транспорт с участием мембранных белков называют облегченной диффузией . Другие белки-переносчики (их иногда называют белки-«насосы») переносят через мембрану вещества с затратами энергии, которая выделяется при гидролизе АТФ. Этот вид транспорта осуществляется против градиента концентрации переносимого вещества и называется активным транспортом .

Мембранный транспорт веществ различается также по направлению их перемещения и количеству переносимых данным белком-переносчиком веществ:

1) Унипорт - транспорт одного вещества в одном направлении в зависимости от градиента концентрации.

2) Симпорт - транспорт двух веществ в одном направлении с помощью одного переносчика.

3) Антипорт - перемещение двух веществ в разных направлениях посредством одного переносчика.

Основные механизмы перемещения веществ через мембрану изображены на следующей схеме:

Унипорт осуществляет потенциал-зависимый натриевый канал, через который в клетку во время генерации потенциала действия перемещаются катионы натрия.

Симпорт осуществляет переносчик глюкозы, расположенный на внешней (обращенной в просвет кишечника) стороне клеток кишечного эпителия. Этот белок захватывает одновременно молекулу глюкозы и катион натрия и, меняя свою конформацию, переносит оба вещества внутрь клетки. При этом используется энергия электрохимического градиента, который, в свою очередь, создается за счет гидролиза АТФ ферментом - натрий-калиевой АТФ-азой.



Антипорт осуществляет натрий-калиевая АТФаза. Она переносит в клетку 2 катиона калия, а из клетки выводит 3 катиона натрия.

Работа натрий-калиевой АТФазы - пример активного транспорта посредством антипорта.

Механизмы транспорта крупных фрагментов (биомолекул)

Эндоцитоз - захват клеткой крупного фрагмента. Сначала мембрана окружает этот фрагмент, образуя пузырек – первичную фагосому, затем этот пузырек сливается с органеллой клетки - лизосомой, где фрагмент вещества расщепляется ферментами лизосомы.

Захват жидкости называется пиноцитозом , захват твердого вещества - фагоцитозом .

Процесс выделения из клетки крупных фрагментов называется экзоцитозом , он происходит через аппарат Гольджи.

Пример лекарственного противоопухолевого препарата, блокирующего транспорт через мембраны.

Трансплантированные в организм лабораторной мыши человеческие эстроген-позитивные раковые клетки молочной железы гибли под действием лекарства, которое блокирует транспорт питательных веществ. Это единственный транспорт, с помощью которого могут поступать все незаменимые аминокислоты, необходимые клетке для выживания, в т.ч. опухолевой. Другой вид раковых клеток (эстроген-негативные) не подвержен действию лекарства. Препарат разработан на основе аминокислоты - альфа-метил-(D,L)-триптофана. Вещество способно лишать питания только клетки, которые используют этот вид транспорта. Открытие позволит победить рак молочной железы, который не поддается лечению традиционными средствами такими, как тамоксифен* или кломид*.

*Кломид (кломифен) и тамоксифен (нолвадекс) являются антиэстрогенами, принадлежащими к одной группе химических веществ - трифенилэтиленов.

ЛЕКЦИЯ № 4
Буферные растворы. Буферные системы организма человека

Неорганические буферные системы.

Уравнение Гассельбаха-Гендерсона для буферов I и II типа.

Органические буферные системы.

Буферные системы организма человека.

Цель: изучить общие свойства буферных систем, ознакомить с буферными системами организма и их функционированием.

Литература : Березов Т. Т., Коровкин Б. Ф. Биологическая химия: Учебник под. ред. акад. АМН СССР С.С. Дебова.- 2-е изд., перераб. и доп.- М.: Медицина, 1990. 528 с.

Актуальность. Буферные системы широко представлены в живых организмах, в т.ч. у человека. Буферы используют для лабораторных исследований, а также как среду при хранении клеток тканей. Буферные растворы с правильно подобранным составом применяют для коррекции электролитного состава и рН крови у больных (ацидоз, алкалоз ). Для этих целей буферные растворы специально готовят, предварительно рассчитывая их состав так, чтобы электролитный состав и рН системы соответствовал целям использования.

Буферными (buffer , buff - смягчать удар) называют растворы с устойчивой концентрацией ионов Н + , т.е. рН которых не изменяется при разбавлении и добавлении небольших количеств сильной кислоты или сильного основания. Любой буфер содержит минимум 2 вещества, одно из которых способно связывать протоны Н + , а второе связывает гидроксильные группы ОН - в малодиссоциируемые соединения .

71. Выясним, зачем нужен транспорт веществ для многоклеточных организмов.
Благодаря транспорту веществ все минеральные вещества и различные белки, углеводы, жиры доходят до своего «пункта назначения» и начинают бурно синтезировать с другими молекулами.

72. Нарисуем растение и подпишем его органы.

73. Напишем, какие вещества передвигаются:
а) по сосудам древесины: минеральные вещества
б) по ситовидным трубкам луба: органические вещества.

74.
Соединительная ткань. Благодаря белкам, содержащимся в крови, она выполняет множество функций, в том числе транспортную и защитную.

75. Определим понятие крови и ее функции в организме.
В замкнутой к.с. кровь движется по кругу, а в незамкнутой – кровеносные сосуды открываются в полость тела.

76. Подпишем отделы кровеносной системы, изображенные на рисунках. Определим их тип.


77. Дополним предложения.


78. Дадим определения.
Артерия – это сосуд, по которому перемещается кровь, насыщенная кислородом, к органам.
Вена – это сосуд, по которому перемещается кровь, насыщенная углекислым газом, от органов.
Капилляр – это мельчайший сосуд, пронизывающий всё тело животного.

79. Подпишем части сердца, обозначенные на рисунках цифрами. Впишем животных, которым принадлежат изображенные сердца.


Лабораторная работа.
«Передвижение воды и минеральных веществ по стеблю».

Вопрос 1.
Для поддержания нормальной жизнедеятельности организму необходимы питательные вещества (минеральные вещества, вода, органические соединения) и кислород. Обычно эти вещества передвигаются по сосудам (по сосудам древесины и луба у растений и по кровеносным сосудам у животных). В клетках вещества передвигаются от органоида к органоиду. Транспортируются вещества в клетку из межклеточного вещества. Отработанные и ненужные вещества выводятся из клеток и, затем, через органы выделения из организма. Таким образом, транспорт веществ в организме необходим для нормального обмена веществ и энергии.

Вопрос 2.
У одноклеточных организмов вещества переносятся движением цитоплазмы. Так, у амёбы цитоплазма перетекает из одной части тела в другую. Содержащиеся в ней питательные вещества передвигаются и разносятся по всему организму. У инфузории туфельки – одноклеточного организма, имеющего постоянную форму тела – передвижение пищеварительного пузырька и распределение питательных веществ по всей клетке достигается непрерывным круговым движением цитоплазмы.

Вопрос 3.
Сердечно-сосудистая система обеспечивает непрерывное движение крови, которое необходимо для всех органов и тканей. По этой системе органы и ткани получают кислород, питательные вещества, воду, минеральные соли, с кровью к органам поступают гормоны, регулирующие работу организма. Из органов в кровь поступает углекислый газ, продукты распада. Кроме того, система кровообращения поддерживает постоянство температуры тела, обеспечивает постоянство внутренней среды организма (гомеостаз ), взаимосвязь органов, обеспечивает газообмен в тканях и органах. Система кровообращения выполняет также защитную функцию, так как в крови содержатся антитела и антитоксины.

Вопрос 4.
Кровь - это жидкая соединительная ткань. Она состоит из плазмы и форменных элементов. Плазма - это жидкое межклеточное вещество, форменные элементы - это клетки крови. Плазма составляет 50-60 % объема крови и на 90 % состоит из воды. Остальное - это органические (около 9,1 %) и неорганические (около 0,9 %) вещества плазмы. К органическим веществам относятся белки (альбумин, гамма-глобулин, фибриноген и др.), жиры, глюкоза, мочевина. Благодаря наличию в плазме фибриногена кровь способна к свертыванию - важной защитной реакции, спасающей организм от кровопотери.

Вопрос 5 .
Кровь состоит из плазмы и форменных элементов. Плазма - это жидкое межклеточное вещество, форменные элементы - это клетки крови. Плазма составляет 50-60 % объема крови и на 90 % состоит из воды. Остальное - это органические (около 9,1 %) и неорганические
(около 0,9 %) вещества плазмы. К органическим веществам относятся белки (альбумин, гамма-глобулин, фибриноген и др.), жиры, глюкоза, мочевина. Благодаря наличию в плазме фибриногена кровь способна к свертыванию - важной защитной реакции, спасающей организм от кровопотери.
Форменными элементами крови являются эритроциты – красные кровяные тельца, лейкоциты – белые кровяные тельца и тромбоциты – кровяные пластинки.

Вопрос 6.
Устьица представляют собой щель, которая расположена между двумя бобовидными (замыкающими) клетками. Замыкающие клетки находятся над большим межклетником в рыхлой ткани листа. Устьица обычно располагаются с нижней стороны листовой пластинки, а у водных растений (кувшинка, кубышка) - только на верхней. У ряда растений (злаки, капуста) устьица есть на обеих сторонах листа.

Вопрос 7.
Для поддержания нормальной жизнедеятельности растение поглощает СО 2 (углекислый газ) из атмосферы листьями и воду с растворенными в ней минеральными солями из почвы корнями.
Корни растений покрыты, как пушком, корневыми волосками, которые поглощают почвенный раствор. Благодаря им поверхность всасывания увеличивается в десятки и даже сотни раз.
Передвижение воды и минеральных веществ в растениях осуществляется за счет двух сил: корневого давления и испарения воды листьями. Корневое давление - сила, вызывающая одностороннюю подачу влаги от корней к побегам. Испарение воды листьями - процесс, который происходит через устьица листьев и поддерживает непрерывный ток воды с растворёнными в ней минеральными веществами по растению в восходящем направлении.

Вопрос 8.
Органические вещества, синтезирующиеся в листьях, оттекают во все органы растения но ситовидным трубкам луба и образуют нисходящий ток. У древесных растений передвижение питательных веществ в горизонтальной плоскости происходит при участии сердцевинных лучей.

Вопрос 9.
При помощи корневых волосков происходит всасывание из почвенных растворов воды и минеральных веществ. Оболочка клеток корневых волосков тонкая - это облегчает всасывание.
Корневое давление - сила, вызывающая одностороннюю подачу влаги от корней к побегам. Корневое давление развивается при превышении осмотического давления в сосудах корня над осмотическим давлением почвенного раствора. Корневое давление наряду с испарением участвует в движении воды в теле растения.

Вопрос 10.
Испарение воды растением называется транспирацией . Вода испаряется через всю поверхность тела растения, но особенно интенсивно через устьица в листьях. Значение испарения: оно принимает участие в передвижении воды и растворенных веществ по телу растения; способствует углеводному питанию растений; защищает растения от перегрева.

Транспорт веществ:

Перенос веществ через биол. мембраны сопряжен с такими важнейшими биологическими явлениями, как внутриклеточный гомеостаз ионов, биоэлектрические потенциалы, возбуждение и проведение нервного импульса, запасание и трансформация энергии.

Различают несколько видов транспорта:

1 . Юнипорт – этотранспорт вещества через мембрану независимо от наличия и переноса других соединений.

2. Контранспорт – это перенос одного вещества сопряженного с транспортом другого: симпорт и антипорт

а) причем однонаправленный перенос называется симпортом – всасывание аминокислот через мембрану тонкого кишечника,

б) противоположно направленный - антипортом (натрий – калиевый насос).

Транспорт веществ может быть - пассивный и активный транспорт (перенос)

Пассивный транспорт не связан с затратами энергии, он осуществляется путем диффузии (направленного движения) по концентрационным (из maс в сторону min), электрическим или гидростатическим градиентам. Вода перемещается по градиенту водного потенциала. Осмос - это перемещение воды через полупроницаемую мембрану.

Активный транспорт осуществляется против градиентов (из min в сторону maс), связан с затратой энергии (преимущественно энергии гидролиза АТФ) и сопряжен с работой специализированных мембранных белков переносчиков (АТФ - синтетазы).

Пассивный перенос может осуществляться:

а. Путем простой диффузии через липидный бислои мембраны, а также через специализированные образования - каналы. Путем диффузии через мембрану проникают в клетку:

    незаряженные молекулы , хорошо растворимые в липидах, в т.ч. многие яды и лекарственные средства,

    газы - кислород и углекислый газ.

    ионы – они поступают через пронизывающие каналы мембраны, представляющие собой липопротеиновые структуры, Они служат для переноса определенных ионов (например, катионов – Na, K, Ca, анионов Cl, P,) и могут находиться в открытом или закрытом состоянии. Проводимость канала зависит от мембранного потенциала, что играет важную роль в механизме генерации и проведения нервного импульса.

б. Облегчённой диффузии . В ряде случаев перенос вещества совпадает с направлением градиента, но существенно превосходит по скорости простую диффузию. Этот процесс называют облегченной диффузией; он происходит с участием белков-переносчиков. Процесс облегченной диффузии не нуждается в энергии. Этим способом транспортируются сахара, аминокислоты, азотистые основания. Такой процесс происходит, например, при всасывании сахаров из просвета кишечника клетками эпителия.

в. Осмоса – перемещения растворителя через мембрану

Активный транспорт

Перенос молекул и ионов против электрохимического градиента (активный транспорт) связан со значительными затратами энергии. Часто градиенты достигают больших величин, например, концентрационный градиент водородных ионов на плазматической мембране клеток слизистой оболочки желудка составляет 106, градиент концентрации ионов кальция на мембране саркоплазматического ретикулума - 104, при этом потоки ионов против градиента значительны. В результате затраты энергии на транспортные процессы достигают, например, у человека, более 1/3 всей энергии метаболизма.

В плазматических мембранах клеток различных органов обнаружены системы активного транспорта ионов например:

    натрия и калия - натриевый насос. Эта система перекачивает натрий из клетки и калий в клетку (антипорт) против их электрохимических градиентов. Перенос ионов осуществляется основным компонентом натриевого насоса - Na+, К+-зависимой АТФ-азой за счет гидролиза АТФ. На каждую гидролизующуюся молекулу АТФ транспортируется три иона натрия и два иона калия .

    Существуют два типа Са 2 +-АТФ-аз. Одна из них обеспечивает выброс ионов кальция из клетки в межклеточную среду, другая - аккумуляцию кальция из клеточного содержимого во внутриклеточное депо. Обе системы способны создавать значительный градиент иона кальция.

    К+, Н+-АТФ-аза обнаружена в слизистой оболочке желудка и кишечника. Она способна транспортировать Н+ через мембрану везикул слизистой оболочки при гидролизе АТФ.

    В микросомах слизистой оболочки желудка лягушки найдена аниончувствительная АТФ-аза, способная при гидролизе АТФ осуществлять антипорт бикарбоната и хлорида.

    Протонный насос в митохондриях и пластидах

    секреция HCI в желудке,

    поглощение ионов клетками корней растений

Нарушение транспортных функций мембран, в частности увеличение проницаемости мембран, - общеизвестный универсальный признак повреждения клетки. Нарушением транспортных функций (например, у человека) обусловлено более 20 так называемых транспортных болезней, среди которых:

    почечная гликозурия,

    цистинурия,

    нарушение всасывания глюкозы, галактозы и витамина В12,

    наследственный сфероцитоз (гемолитическая анемия, эритроциты имеют форму шара, при этом уменьшается поверхность мембраны, падает содержание липидов, увеличивается проницаемость мембраны для натрия. Сфероциты удаляются из кровяного русла быстрее, чем нормальные эритроциты).

В особую группу активного транспорта выделяют перенос веществ (крупных частиц) путем - и эндо- и экзоцитоза .

Эндоцитоз (от греч. эндо - внутри) поступление веществ в клетку, включает фагоцитоз и пиноцитоз.

Фагоцитоз (от греч. Phagos - пожирающий) – процесс захватывания твёрдых частиц, инородных живых объектов(бактерий, фрагменты клеток) одноклеточными организмами или клетками многоклеточных, последние называются фагоцитами , или клетками-пожирателями. Фагоцитоз открыт И. И. Мечниковым. Обычно при фагоцитозе клетка образует выпя­чивания, цитоплазмы - псевдоподии, которые обтекают захватываемые частицы.

Но о6разование псевдоподий не обязательно.

Фагоцитоз играет важную роль в питании одноклеточных и низших мно­гоклеточных животных, которым свойственно внутриклеточное пищева­рение, а также характерен для клеток, играющих важную роль в явлениях иммунитета и метаморфоза. Такая форма поглощения свойственна клеткам соединительной ткани – фагоцитам, выполняющим защитную функцию, активно фагоцитируют клетки плаценты, клетки выстилающие полость тела, пигментный эпителий глаз.

В процессе фагоцитоза можно выделить четыре последовательные фазы. В первой (факультативной) фазе фагоцит сближается с объектом погло­щения. Здесь существенное значение имеет положительная реакция фагоцита на химическое раздражение хемотаксис. Во второй фазе наблюдается адсорбция поглощаемой частицы на поверхности фаго­цита. В третьей фазе плазматическая мембрана в виде мешочка обвола­кивает частицу, края мешочка смыкаются и отрываются от остальной мембраны, а образовавшаяся вакуоль оказывается внутри клетки. В чет­вертой фазе заглоченные объекты разрушаются и перевариваются внутри фагоцита. Разумеется, эти стадии не отграничены, а незаметно переходят одна в другую.

Клетки могут аналогичным способом поглощать также жидкости и крупномолекулярные соединения. Это явление получило название п и н о ц и т о з а (греч. рупо - пить и суtоз - клетка). Пиноцитоз сопровожда­ется энергичным движением цитоплазмы в поверхностном слое, приводящим к образованию впячивания клеточной мембраны, идущей от поверхности в виде канальца внутрь клетки. На конце канальца образуются вакуоли, которые отрываются и переходят в цитоплазму. Пиноцитоз наиболее акти­вен в клетках с интенсивным обменом веществ, в частности в клетках лимфа­тической системы, злокачественных опухолей.

Путем пиноцитоза в клетки проникают высокомолекулярные соедине­ния: питательные вещества из кровяного русла, гормоны, ферменты и дру­гие вещества, в том числе лекарственные. Электронно-микроскопические исследования показали, что путем пиноцитоза происходит всасывание жира эпителиальными клетками кишечника, фагоцитируют клетки почечных канальцев и растущие ооциты.

Инородные тела, попавшие в клетку путем фагоцитоза или пиноцитоза, подвергаются воздействию лизирующих ферментов внутри пищеваритель­ных вакуолей либо непосредственно в цитоплазме. Внутриклеточными ре­зервуарами этих ферментов являются лизосомы.

Функции эндоцитоза

    Осуществляются, питание (яй­цеклетки поглощают таким способом желточные белки: фагосомами являются пищеварительные вакуоли простейших)

    Защитные и иммунные реакции (лейкоциты поглощают чужеродные частицы и иммуноглобули­ны)

    Транспорт (почечные канальцы всасывают бел­ки из первичной мочи).

    Избирательный эндоцитоз определен­ных веществ (желточных белков, иммуноглобулинов и т. п.) происходит при контакте этих веществ с субстрат-специфически­ми рецепторными участками на плазматической мембране.

Материалы, попадающие в клетку путем эндоцитоза, рас­щепляются («перевариваются»), накапливаются (напри­мер, желточные белки) или снова выводятся с противоположной стороны клетки путем экзоцитоза («цитопемпсис»).

Экзоцитоз (от греч. экзо – вне, снаружи)- процесс, противоположный эндоцитозу: например, из эндоплазматического ретикулума, аппарата Гольджи, различные эндоцитозные пузырьки, лизосомы сливаются с плазматической мембраной, освобождая своё содержимоё наружу.



Случайные статьи

Вверх