Тройная точка. Поверка измерительных каналов расходометрии информационно-измерительных систем

Точка соответствует самому низкому давлению, при котором еще возможно превращение вещества из твердого состояния в жидкое и обратно, т. е. равновесное состояние между твердой и жидкой фазами; при меньших давлениях жидкое состояние не существует. На этом же чертеже нанесена кривая зависимости давления насыщенного пара от температуры, о которой упоминалось в § 13 ч. II (см. рис. 11.25) и в § 17 (см. формулу (3.32)). Слева от этой кривой вещество находится при температурах, которые меньше температуры кипения, т. е. в жидком состоянии; точки, расположенные справа от этой кривой, соответствуют более высоким температурам и, следовательно, состояниям ненасыщенного пара. Вдоль самой кривой жидкость и насыщенный пар существуют одновременно, т. е. каждая точка этой кривой соответствует равновесному состоянию между кипящей жидкостью и ее насыщенным паром. Точка этой кривой соответствует самой низкой температуре и дамому низкому давлению, при которых еще может существовать жидкость в равновесии со своим насыщенным паром. Точка называется тройной точкой данного вещества. В этой точке одновременно существуют в равновесии друг с другом все три фазы или агрегатные состояния вещества: твердое, жйдкое и газообразное (насыщенный пар). Для каждого вещества имеются определенные

значения давления и температуры тройной точки. При меньших давлениях могут существовать только твердое и газообразное состояния. Кривая показывает зависимость между давлением и температурой насыщенного пара, находящегося в равновесии с твердой фазой.

Непосредственное испарение твердых тел (называемое «возгонкой», или сублимацией) происходит при температурах, меньших, чем температура тройной точки.

Для многих веществ (металлы и др.) нормальная температура (15° С) значительно ниже температуры их тройных точек. Согласно кривой эти вещества при нормальной температуре имеют очень маленькое давление насыщенных паров. Очевидно, чем больше давление насыщенного пара над поверхностью твердого тела, тем интенсивнее может протекать процесс испарения этих тел. Например, легко испаряется йод, который в своей тройной точке (114° С) имеет давление насыщенных паров, равное 90 мм рт. ст. Высыхание мокрого белья на морозе объясняется тем, что находящаяся в нем вода сначала замерзает, а образующийся лед затем испаряется, так как на морозе температура льда меньше, чем температура тройной точки воды а давление насыщенных водяных паров достигает нескольких миллиметров ртутного столба (при -10° С это давление равно

Заметим, что удельная теплота возгонки, т. е. теплота, необходимая для превращения вещества из твердого состояния непосредственно в газообразное, оказывается равной сумме удельных теплот плавления и парообразования.

Температура тройной точки воды используется как реперная температура термодинамической шкалы Кельвина. Допустим, что идеальное рабочее тело, совершая идеальный цикл Карно, получает теплоту при температуре и отдает теплоту при температуре Измеряя можно, согласно § найти отношение температур Для того чтобы построить температурную шкалу, необходимо придать определенные («реперные») значения. В качестве таких реперных температур можно взять температуры кипения воды и таяния льда при нормальных условиях, приняв их разность за 100° С. Тогда по измеренному отношению и выбранной разности можно определить всю температурную шкалу. Очевидно, реперные точки должны воспроизводиться с очень большой точностью, так как они определяют величину градуса. Поэтому В. Томсон (Кельвин) и независимо от него Д. И. Менделеев предложили создать шкалу с одной реперной температурой, в качестве которой выбрана очень точно воспроизводимая (с ошибкой, не превышающей градуса) тройная точка воды. В Международной системе единиц физических величин дано следующее определение градуса: кельвин - единица температуры по термодинамической температурной шкале, в которой для температуры тройной точки воды установлено значение 273,16° (точно).

Метод сравнения, то-есть измерения ряда величин расходов, которые воспроизводятся в образцовых установках расходометрии, находящихся в ЛО ВНИИМ (Ломоносовское отд. ВНИИ Метрологии им. Д.И. Менделеева), Наибольшая разность между результатами измерения и известными значениями расхода, является основной погрешностью измерительного канала.

Метод сличения поверяемого измерительного канала и образцового прибора расходометрии при измерении одних и тех же величин расхода. Разность их показаний при измерении расходов определяет погрешность поверяемого канала.

1. Термопары, характеристики пар материалов, пленочные термопары, в том числе, в исполнении микрокремниевой технологии.

2. Термометры сопротивления, материалы, типы исполнения, номиналы, электрические схемы включения.

3. Термисторы, материалы, параметры, номиналы, конструктивные исполнения.

4. Калибровка (аттестация) и поверка температурных СИ.

5. Другие преобразователи температуры:

- Оптоволоконные ПТ,

Пирометры,

Тепловизоры.

2. СРЕДСТВА ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ:

1. МПТШ – 90. Шкала Кельвина и шкала Цельсия. Ноль по С соответствует – тройной точке воды 00 С → 273,160 К.

Кроме того, имеются реперные точки температуры:

Галлий с температурой плавления Олово с температурой плавления -

Точки затвердевания индия (156,5985 °С), цинка (419,527 °С), алюминия (660,323 °С), серебра (961,78 °С)

Реперная точка.

Реперные точки - точки, на которых основывается шкала измерений.

На реперных точках построена Международная практическая температурная шкала. Реперные точки на шкале Цельсия - температура замерзания (0°С) и кипения воды (100°С) на уровне моря.

Тройная точка воды.

Тройнаея т чкаое вод -ыестрого определенные значения температуры и давления, при которых вода может одновременно и равновесно существовать в виде трёх фаз - в твердом, жидком и газообразном состояниях. Тройная точка воды - температура 273,16 К и давление 611,657 Па.

Тройная точка воды – самая простая в реализации реперная точка. Для ее хранения и воспроизведения может использоваться термостат или сосуд Дьюара, наполненный смесью дробленого льда и воды. Разработаны также специальные термостаты для хранения сосудов тройных точек воды и поддержания их в рабочем состоянии длительное время.

Особенности реализации с наивысшей точностью: Начинать измерения рекомендуется через сутки после приготовления ледяной

мантии. Необходимо устранить попадание света от внешних источников на сосуд и термометр (во избежании подвода тепла излучением). Для этого рекомендуется закрыть термометр плотной тканью. Глубина погружения зависит от типа термометра. Для эталонных платиновых термометров диаметром 5-7 мм она составляет не менее 15 см.

Тройная точка воды.

Как видно из параметров тройной точки воды, при нормальных условиях равновесное сосуществование льда, водяного пара и жидкой воды невозможно. Это обстоятельство вроде бы противоречит обыденным наблюдениям - лёд, вода и пар часто наблюдаются одновременно. Но противоречия нет - наблюдаемые состояния далеки от термодинамически равновесных и реализуются на практике только из-за кинетических ограничений фазовых переходов. Тройная точка воды характеризуется определенным набором параметров давления и температуры, поэтому может иногда использоваться как «реперная» - то есть опорная, например, для калибровки приборов.

U (ТТ) ,

термо1 2

α – коэффициент Зеебека или удельная термоэдс.

Материал

(мкВ/ 0 С)

Материал

(мкВ/ 0 С)

мкВ 0

Молибден

Палладий

Вольфрам

Cтраница 1


Температура тройной точки воды используется как реперная температура термодинамической шкалы Кельвина.  

Температура тройной точки воды по этой шкале принимается равной 0 01 С. Так как численные значения температуры по обеим шкалам (термодинамической и практической) в пределах обычной точности измерения совпадают, то обозначения применяемой шкалы рекомендуется указывать лишь в тех случаях, когда это существенно. В экспериментальных работах все определения температуры производят обычно, пользуясь практической (стоградусной) шкалой.  

Температура тройной точки воды по этой шкале принимается равной 0 01 С. Так так численные значения температуры по обеим шкалам (термодинамической и практической), в пределах обычной точности измерения совпадают, то обозначения применяемой шкалы рекомендуется указывать лишь в тех случаях, когда это существенно. В экспериментальных работах все определения температуры производят обычно, пользуясь практической (стоградусной) шкалой.  

Температура тройной точки воды по этой шкале принимается равной 4 - 0 01 С. Так как численные значения температуры по обеим шкалам (термодинамической и практической) в пределах обычной точности измерения совпадают, то обозначения применяемой шкалы рекомендуется указывать лишь в тех случаях, когда это существенно. В экспериментальных работах псе определения температуры производят обычно, пользуясь практической (стоградусной) шкалой.  

Температура тройной точки воды используется как репер пая температура термодинамической шкалы Кельвина. Допустим, что идеальное рабочее тело, совершая идеальный цикл Карно, получает теплоту (1 при температуре 7 и отдает теплоту 22 при температуре Тг. С / Фз - Для того чтобы построить температурную шкалу, необходимо придать 7 и Г2 определенные (реперные) значения. В качестве таких реперных температур можно взять температуры кипения воды и таяния льда при нормальных условиях, приняв их разность за 100 С.  

Температура тройной точки воды по этой шкале принимается равной 0 01 С. Так так численные значения температуры по обеим шкалам (термодинамической и практической) в пределах обычной точности измерения совпадают, го обозначения применяемой шкалы рекомендуется указывать лишь в тех случаях, когда это существенно. В экспериментальных работах все определения температуры производят обычно, пользуясь практической (стоградусной) шкалой.  

Температура тройной точки воды по шкале Цельсия равна 0 01 С.  

Температура тройной точки воды (точки равновесия трех фаз воды - твердой, жидкой и парообразной) равна 0 01 С, или 273 16 К.  

Температуру тройной точки воды удается поддерживать со стандартным отклонением 0 2 мК, чем и определяется стандартное отклонение воспроизведения кельвина, составляющее примерно 10 3 К. Трудности возникают тогда, когда появляется необходимость измерить температуру, отличающуюся от 273 16 К.  

Температуру тройной точки воды удается поддерживать со стандартным отклонением 0 2 мК, чем и определяется стандартное отклонение воспроизведения кельвина, составляющее примерно 1 (Г3 К. Трудности возникают тогда, когда появляется необходимость измерить температуру, отличающуюся от 273 16 К.  

Температуру тройной точки воды нетрудно вычислить, если предположить, что давление и растворенный в воде воздух влияют на нее независимо друг от друга.  

Температуре тройной точки воды 273 16 К соответствует 0 01 G; следовательно, 273 15 К - это температурный промежуток, на который смещено начало отсчета.  

Температурой тройной точки воды называют температуру сосуществования жидкой воды, льда и насыщенного водяного пара при отсутствии других газов.  

Поскольку температура тройной точки воды, равная 273 16 К, соответствует температуре 0 01 С, смещение начала отсчета составляет 273 15 град.  

Значение температуры тройной точки воды выбрано таким, чтобы интервал между точками таяния льда и кипения воды по термодинамической шкале был равен 100 град, как и по Международной практической шкале; иными словами, чтобы единица для измерений температурных промежутков-градус (град ] была для обеих шкал одинакова.  

Вопрос о методиках реализации реперных точек постоянно обсуждается на международных конференциях и рассматривается в документах ККТ, в частности наиболее полно методики были представлены в обзоре, подготовленном РГ1/ККТ и опубликованном в журнале «Метрология»: B. W. Mangum, P. Bloembergen, M. V. Chattle, B. Fellmuth, P. Marcarino. Metrologia 36 (1999) . В данном разделе рекоммендации по реализации фазовых переходов, которые могут быть полезны поверителям при работе с ампулами реперных точек.

Тройная точка воды (273,16 К)

Тройная точка воды - самая простая в реализации реперная точка. Для ее хранения и воспроизведения может использоваться термостат или сосуд Дьюара, наполненный смесью дробленого льда и воды. Разработаны также специальные термостаты для хранения сосудов тройных точек воды и поддержания их в рабочем состоянии длительное время.

Особенности реализации с наивысшей точностью: Начинать измерения рекомендуется через сутки после приготовления ледяной мантии. Необходимо устранить попадание света от внешних источников на сосуд и термометр (во избежании подвода тепла излучением). Для этого рекомендуется закрыть термометр плотной тканью. Глубина погружения зависит от типа термометра. Для эталонных платиновых термометров диаметром 5-7 мм она составляет не менее 15 см.

Приготовление ледяной мантии может осуществляться несколькими способами. Наиболее распространенный и быстрый способ - с использованием жидкого азота и металлических стержней. Стержень погружается в жидкий азот, затем в канал тройной точки воды, заполненный чистым спиртом. Процедура повторяется, пока на стенках канала не образуется ледяная мантия толщиной не менее 1 см. Другой способ - заполнение канала мелкодробленым сухим льдом. Ледяная мантия может также формироваться путем переохлаждения воды. Сосуд тройной точки погружается в смесь льда и поваренной соли, имеющую температуру около -10 °С. Через 20 мин. сосуд извлекается из смеси и встряхивается. При этом можно наблюдать впечатляющую картину быстрого образования ячеистого льда по всему объему воды, который в последствии формирует нормальную ледяную мантию вокруг канала. Этот способ сейчас реализуется в некоторых специальных термостатах для реализации реперных точек. Перед началом измерений в точке необходимо убедиться, что ледяная мантия может свободно вращаться вокруг канала. Если этого не происходит, то рекомендуется на несколько секунд ввести в канал алюминиевый или стеклянный стержень, имеющий комнатную температуру, затем повторно проверить вращение мантии. Канал, как правило заполняется чистой водой. Если образуется большой зазор между стенками канала и термометром, то рекомендуется использовать заполняющие металлические втулки длиной, равной длине чувствительного элемента термометра.

Реализация реперных точек металлов

Наиболее подробно принципы реализации температур плавления и затвердевания металлов изложены в разделе

Два условия получения качественных площадок плавления и затвердевания металлов: 1. Использовать металл высокой чистоты и не допускать загрязнения металла во время заплавки в тигель; 2. Обеспечить равномерность температурного поля в печи на длине тигля.

Для градуировки ПТС с максимальной точностью необходимо использовать металлы чистотой не менее 99,9999%. В этом случае температура, реализуемая точкой (до 420 °С) будет отличаться от температуры идеально чистого металла не более, чем на 0,1-0,2 мК. Отклонение температуры реперной точки от значения МТШ-90 зависит от вида примеси и ее взаимодействия с конкретным металлом. Оценка показывает, что если используется металл чистотой 99,999%, то для точек Al, Ag, Au, Cu отклонение составит несколько мК. (из документа «Дополнительная информация к шкале МТШ-90»). Подробно влияние примесей на температуру реперных точек исследуется в работе: B. Fellmuth and K. D. Hill, Metrologia 43 (2006). (сайт www.bipm.org)

Рекоммендация ККТ - перепад температуры по длине тигля для эталонных ампул затвердевания металлов при температуре, близкой к реперной точке не должен превышать 10 мК. Чем выше температура, тем сложнее обеспечить равномерность температурного поля в печи. Для точек выше Al в большинстве лабораторий-хранителей первичных эталонов используются тепловые трубы.

Тройная точка ртути

Наиболее надежными и удобными в обращении считаются герметичные ячейки из нержавеющей стали. Для реализации температуры тройной точки рекомендуется использовать жидкостный термостат с хорошим перемешиванием и высокой воспроизводимостью заданной температуры. Наиболее простой способ получения температурной площадки - метод плавления затвердевшей ртути. Затвердевание достигается либо охлаждением ячейки в термостате до температуры примерно -42°С, либо погружением в канал специального охлаждающего стержня (immersion cooler). Выход на плавление осуществляется плавным повышением температуры в термостате и регулированием на уровне значения, близкого к реперной точке. Для улучшения качества площадки и формирования слоя жидкого металла вокруг канала рекомендуется погрузить в канал перед началом измерений теплый стержень. Хороший жидкостный термостат, заполненный спиртом, позволит без труда получить длительность фазового перехода 10 ч и более.

Точка плавления галлия (29,7646 °С)

Точка плавления галлия является одной из самых стабильных и хорошо воспроизводимых температурных точек МТШ-90. Воспроизводимость температуры плавления галлия в хороших термостатах достигает ±0,2 мК и лучше. Иногда в научных публикациях появляются предложения использовать эту точку вместо тройной точки воды для расчета относительных сопротивлений эталонных платиновых термометров сопротивления. Температура плавления галлия может быть реализована в жидкостных или твердотельных термостатах с равномерным температурным полем. Температура термостата устанавливается на значение на 1,5 -2 °С превышающее температуру реперной точки. В момент, когда контрольный термометр в канале зафиксирует начало плавления, в канал вводится стержень, нагретый примерно до 40 °С или специальный тонкий нагреватель мощностью примерно 10 Вт и выдерживается в канале около 20 мин. Это позволяет создать тонкий расплавленный слой металла вокруг канала и получить более плоскую площадку плавления.

Точка затвердевания олова (231,928 °С)

Особенностью точки затвердевания олова является глубокое переохлаждение олова перед началом затвердевания. Поэтому специальные меры должны быть предприняты для реализации переохлаждения и вывода металла из переохлажденного состояния. Наиболее распространенная методика следующая: олово плавится и перегревается до температуры на 5 °С выше реперной точки, выдерживается при этой температуре в течение 10-15 ч, после чего задание регулятора меняется на значение температуры на 0,5 -1 °С ниже реперной точки и начинается охлаждение металла; после того, как температура, регистрируемая контрольным термометров в канале ячейки достигнет температуры затвердевания, ячейка выводится из печи на воздух и по контрольному термометру отслеживается процесс переохлаждения и спонтанного подъема температуры металла (рекалесценция); ячейка погружается обратно в печь; в канал вводятся последовательно на две минуты два стержня, имеющие комнатную температуру. После этого можно начинать измерения. Для уровня рабочих эталонов и образцовых термометров можно применять упрощенные методики затвердевания. Чтобы получить площадку затвердевания в течение одного рабочего дня можно перегревать олово на 10-15 °С выше температуры точки и выдерживать при этой температуре 1 ч. Если требования к расширенной неопределенности градуировки ПТС не выше 2 мК, и печь имеет равномерное температурное поле, то можно также с успехом работать на площадке плавления. В некоторых ячейках переохлаждение достигает лишь 2-3 °С, в этом случае можно для получения площадки затвердевания не выводить ячейку из печи, а снизить температуру печи на 5-7 °С, и после рекалесценции поднять температуру до значения, близкого к температуре реперной точки. Важнейшее, и как правило самое трудное в исполнении, условие качественной реализации точки олова (как и других точек затвердевания металлов) - равномерность температурного поля по длине тигля с металлом.

Подробно поцесс затвердевания олова описан в следующей монографии: G. F. Strouse and N. P. Moiseeva, NIST Special Publication 260-138 (1999) .

Точки затвердевания индия (156,5985 °С), цинка (419,527 °С), алюминия (660,323 °С), серебра (961,78 °С)

Методика реализации данных точек практически идентична, т.к. переохлаждение металлов не велико. Основной принцип получения качественных площадок затвердевания заключается в обеспечении высокой равномерности температурного поля в тигле. (Необходимо отметить, что перепад температуры в тигле в несколько градусов очень опасен, т.к. может привести к разрушению ампулы, поскольку слой расплавленного металла внизу тигля не имеет возможности расшириться вверх, если верхний слой еще находится в твердом состоянии. В результате металл просачивается сквозь графит.) Методика, предлагаемая ККТ следующая: металл медленно расплавляется, перегревается после плавления на 5 К и выдерживается в печи 10 -15 ч.; температура печи устанавливается на значение на 2-3 °С ниже точки затвердевания, и когда по контрольному термометру наблюдается переохлаждение и рекалесценция, термометр выводится из тигля и в канал вставляются поочередно два кварцевых (или керамических) стержня, имеющие первоначально комнатную температуру. Каждый стержень выдерживается в канале 2 мин. Это способствует образованию тонкого слоя затвердевшего металла, т.е. второй границы раздела фаз, что "термостатирует" термометр, стабилизирует ход затвердевания и в какой-то мере "исправляет" неравномерность температурного поля по длине чувствительного элемента термометра. Для получения максимальной длительности процесса затвердевания температура в печи повышается до значения на 0,5 -1 К ниже реперной точки. После этого можно проводить последовательную градуировку эталонных термометров, причем для увеличения длительности площадки термометры рекомендуется подогревать перед вводом в ампулу.

Изложенные выше рекомендации касаются в основном измерений на эталонном уровне точности, там где требуется расширенная неопределенность не хуже 1-2 мК. Ячейки реперных точек в эталонных установках выполнены из кварца, причем, для первичных государственных эталонов - это ячейки "открытого" типа с регулируемым давлением, для рабочих эталонов, это, как правило ячейки "закрытого" типа (герметичные кварцевые ампулы). В настоящее время появляется все больше установок для реализации реперных точек МТШ-90, используемых для градуировки вторичных эталонов и образцовых термометров. В таких установках могут использоваться ячейки наиболее надежной конструкции: графитовый тигель с металлом помещается в герметичный металлический корпус. Стоит отметить также, что для получения расширенной неопределенности на уровне 3-5 мК, для металлов высокой чистоты в печах с равномерным температурным полем можно использовать площадки плавления.

Более подробная информация о реализации реперных точек МТШ-90 изложена в разделе

Тройная точка воды – что это такое, и что происходит с водой в этот момент …

Очевидно, что многие из нас слышали про тройную точку воды, однако далеко не все знают и понимают, что это такое.

Для начала, для лучшего и более объемного понимания этого термина, приведем несколько определений из различных источников.

Тройная точка воды, это …

Большой Энциклопедический словарь

ТРОЙНАЯ точка — состояние равновесного сосуществования. Тройная точка воды трех фаз вещества, обычно твердой, жидкой и газообразной. Температура тройной точки воды (точки сосуществования льда, воды и пара, рис.) равна 0,01 .С (273,16 К) при давлении 6,1 гПа (4,58 мм рт. ст.).

Большой Энциклопедический словарь. 2000

Энциклопедический словарь по металлургии

Тройная точка — точка на термодинамической диаграмме состояния , соответствующая равновесию трех фаз рассматриваемой термодинамической системы. Например, тройная точка воды соответствует равновесию системы, состоящей из льда, воды и водяного пара. Температура тройной точки воды 0°С или 273,16 К.

Энциклопедический словарь по металлургии. - М.: Интермет Инжиниринг. Главный редактор Н.П. Лякишев. 2000

Физическая энциклопедия

Тройная точка – в термодинамике, точка на диаграмме состояния, соответствующая равновесному сосуществованию трёх фаз в-ва. Из Гиббса правила фаз следует, что химически индивидуальное в-во (однокомпонентная система) в равновесии не может иметь больше трёх фаз. Эти три фазы (напр., твёрдая, жидкая и газообразная или, как у серы, жидкая и две аллотропные разновидности кристаллической) могут совместно сосуществовать только при значениях темп-ры Тт и давления рт, определяющих на диаграмме р - Т координаты Т. т. (рис.). Для СО2, напр., Tт=216,6К, рт=5,16 105 Н/м2, для Т. т. воды - осн. реперной точки абс. термодинамич. температурной шкалы - Тт=273,16К (точно), рт=4,58 мм рт. ст. (609 Н/м2).

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988

Научно-технический энциклопедический словарь

ТРОЙНАЯ ТОЧКА, температура и давление, при которых все три состояния вещества (твердое, жидкое, газообразное) могут существовать одновременно. Для воды тройная точка находится при температуре 273,16 К и давлении 610 Ра.

Научно-технический энциклопедический словарь

Подводя итог, можем сказать, что в природе существует некоторое соотношение температуры, и давления при котором вещество может существовать одновременно в трех состояниях.

Для воды тройная точка соответствует таким показаниям температуры и давления:

  • Температура — 273,16 К;
  • Давление — 610 Ра.

Тройная точка воды – видео

Предлагаем посмотреть вам видео, которое прекрасно визуализирует поведение воды в тройной точке.

Как мы видим, вода находится в непрерывной циклической трансформации своих состояний … весьма интересное зрелище – вечное движение.

Тройная точка – это вещество в трех «ипостасях» одновременно …



Случайные статьи

Вверх