В чем измеряется молярный объем в химии. Объем одного моля газа при нормальных условиях. Моль. Закон Авогадро. Молярный объем газа

Газы являются наиболее простым объектом для исследования, поэтому их свойства и реакции между газообразными веществами изучены наиболее полно. Для того, чтобы нам было легче разобрать правила решения расчетных задач, исходя из уравнений химических реакций, целесообразно рассмотреть эти законы в самом начале систематического изучения общей химии

Французский ученый Ж.Л. Гей-Люссак установил законобъемный отношений:

Например, 1 л хлора соединяется с 1 л водорода , образуя 2 л хлороводорода ; 2 л оксида серы (IV) соединяются с 1 л кислорода, образуя 1 л оксида серы (VI).

Этот закон позволил итальянскому ученому предположить, что молекулы простых газов (водорода, кислорода, азота, хлора и др. ) состоят из двух одинаковых атомов . При соединении водорода с хлором их молекулы распадаются на атомы, а последние образуют молекулы хлороводорода. Но поскольку из одной молекулы водорода и одной молекулы хлора образуются две молекулы хлороводорода, объем последнего должен быть равен сумме объемов исходных газов.
Таким образом, объемные отношения легко объясняются, если исходить из представления о двухатомности молекул простых газов (Н2, Сl2, O2, N2 и др. )- Это служит, в свою очередь, доказательством двухатомности молекул этих веществ.
Изучение свойств газов позволило А. Авогадро высказать гипотезу, которая впоследствии была подтверждена опытными данными, а потому стала называться законом Авогадро:

Из закона Авогадро вытекает важное следствие: при одинаковых условиях 1 моль любого газа занимает одинаковый объем.

Этот объем можно вычислить, если известна масса 1 л газа. При нормальных условиях, (н.у.) т. е. температуре 273К (О°С) и давлении 101 325 Па (760 мм рт. ст.) , масса 1 л водорода равна 0,09 г, молярная масса его равна 1,008 2 = 2,016 г/моль . Тогда объем, занимаемый 1 моль водорода при нормальных условиях, равен 22,4 л

При тех же условиях масса кислорода 1,492г ; молярная 32г/моль . Тогда объем кислорода при (н.у.), тоже равен 22,4 моль.

Следовательно:

Молярным объем газа - это отношение объема вещества к количеству этого вещества:

где V m - молярный объем газа (размерность л/моль ); V - объем вещества системы; n - количество вещества системы. Пример записи: V m газа (н.у.) =22,4 л/моль.

На основании закона Авогадро определяют молярные массы газообразных веществ. Чем больше масса молекул газа, тем больше масса одного и того же объема газа. В равных объемах газов при одинаковых условиях содержится одинаковое число молекул, а следовательно, и молей газов. Отношение масс равных объемов газов равно отношению их молярных масс:

где m 1 - масса определенного объема первого газа; m 2 — масса такого же объема второго газа; M 1 и M 2 - молярные массы первого и второго газов.

Обычно плотность газа определяют по отношению к самому легкому газу - водороду (обозначают D H2 ). Молярная масса водорода равна 2г/моль . Поэтому получаем.

Молекулярная масса вещества в газообразном состоянии равна его удвоенной плотности по водороду.

Часто плотность газа определяют по отношению к воздуху (D B ) . Хотя воздух является смесью газов, все же говорят о его средней молярной массе. Она равна 29г/моль. В этом случае молярная масс определяется выражением М = 29D B .

Определение молекулярных масс показало, что молекулы простых газов состоят из двух атомов (Н2, F2,Cl2, O2 N2) , а молекулы инертных газов - из одного атома(He, Ne, Ar, Kr, Xe, Rn). Для благородных газов «молекула» и «атом» равнозначны.

Закон Бойля - Мариотта: при постоянной температуре объем данного количества газа обратно пропорционален давлению, под которым он находится .Отсюда pV = const ,
где р — давление, V - объем газа.

Закон Гей-Люссака: при постоянном давлении и изменение объема газа прямо пропорционально температуре, т.е.
V/T = const,
где Т — температура по шкале К (кельвина)

Объединенный газовый закон Бойля - Мариотта и Гей-Люссака:
pV/T = const.
Эта формула обычно употребляется для вычисления объема газа при данных условиях, если известен его объем при других условиях. Если осуществляется переход от нормальных условий (или к нормальным условиям), то эту формулу записывают следующим образом:
pV/T = p 0 V 0 /T 0 ,
где р 0 ,V 0 ,T 0 -давление, объем газа и температура при нормальных условиях (р 0 = 101 325 Па , Т 0 = 273 К V 0 =22,4л/моль) .

Если известны масса и количество газа, а надо вычислить его объем, или наоборот, используют уравнение Менделеева-Клайперона:

где n - количество вещества газа, моль; m — масса, г; М - молярная масса газа, г/иоль ; R — универсальная газовая постоянная. R = 8,31 Дж/(моль*К)

Где m-масса,M-молярная масса, V- объем.

4. Закон Авогадро. Установлен итальянским физиком Авогадро в 1811 г. Одинаковые объемы любых газов, отобранные при одной температуре и одинаковом давлении, содержат одно и тоже число молекул.

Таким образом, можно сформулировать понятие количества вещества: 1 моль вещества содержит число частиц, равное 6,02*10 23 (называемое постоянной Авогадро)

Следствием этого закона является то, что 1 моль любого газа занимает при нормальных условиях (Р 0 =101,3кПа и Т 0 =298К) объём, равный 22,4л.

5. Закон Бойля-Мариотта

При постоянной температуре объем данного количества газа обратно пропорционален давлению, под которым он находится:

6. Закон Гей-Люссака

При постоянном давлении изменение объема газа прямо пропорционально температуре:

V/T = const.

7. Зависимость между объемом газа, давлением и температурой можно выразить объединенным законом Бойля-Мариотта и Гей-Люссака, которым пользуются для приведения объемов газа от одних условий к другим:

P 0 , V 0 ,T 0 -давление объема и температуры при нормальных условиях: P 0 =760 мм рт. ст. или 101,3 кПа; T 0 =273 К (0 0 С)

8. Независимая оценка значения молекулярноймассы М может быть выполнена с использованием так называемого уравнения состояния идеального газа или уравнения Клапейро­на-Менделеева :

pV=(m/M)*RT=vRT. (1.1)

где р - давление газа в замкнутой системе, V - объем си­стемы, т - масса газа, Т - абсолютная температура, R - универсальная газовая постоянная.

Отметим, что значение постоянной R может быть получе­но подстановкой величин, характеризующих один моль газа при н.у., в уравнение (1.1):

r = (р V)/(Т)=(101,325кПа 22.4 л)/(1 моль 273К)=8.31Дж/моль.К)

Примеры решения задач

Пример 1. Приведение объема газа к нормальным условиям.



Какой объем (н.у.) займут 0,4×10 -3 м 3 газа, находящиеся при 50 0 С и давлении 0,954×10 5 Па?

Решение. Для приведения объема газа к нормальным условиям пользуются общей формулой, объединяющей законы Бойля-Мариотта и Гей-Люссака:

pV/T = p 0 V 0 /T 0 .

Объем газа (н.у.) равен , где Т 0 = 273 К; р 0 = 1,013×10 5 Па; Т = 273 + 50 = 323 К;

М 3 = 0,32×10 -3 м 3 .

При (н.у.) газ занимает объем, равный 0,32×10 -3 м 3 .

Пример 2. Вычисление относительной плотности газа по его молекулярной массе.

Вычислите плотность этана С 2 Н 6 по водороду и воздуху.

Решение. Из закона Авогадро вытекает, что относительная плотность одного газа по другому равна отношению молекулярных масс (М ч ) этих газов, т.е. D=М 1 /М 2 . Если М 1 С2Н6 = 30, М 2 Н2 = 2, средняя молекулярная масса воздуха равна 29, то относительная плотность этана по водороду равна D Н2 = 30/2 =15.

Относительная плотность этана по воздуху: D возд = 30/29 = 1,03, т.е. этан в 15 раз тяжелее водорода и в 1,03 раза тяжелее воздуха.

Пример 3. Определение средней молекулярной массы смеси газов по относительной плотности.

Вычислите среднюю молекулярную массу смеси газов, состоящей из 80 % метана и 20 % кислорода (по объему), используя значения относительной плотности этих газов по водороду.

Решение. Часто вычисления производят по правилу смешения, которое заключается в том, что отношение объемов газов в двухкомпонентной газовой смеси обратно пропорционально разностям между плотностью смеси и плотностями газов, составляющих эту смесь. Обозначим относительную плотность газовой смеси по водороду через D Н2 . она будет больше плотности метана, но меньше плотности кислорода:

80D Н2 – 640 = 320 – 20D Н2 ; D Н2 = 9,6.

Плотность этой смеси газов по водороду равна 9,6. средняя молекулярная масса газовой смеси М Н2 = 2D Н2 = 9,6×2 = 19,2.

Пример 4. Вычисление молярной массы газа.

Масса0,327×10 -3 м 3 газа при 13 0 С и давлении 1,040×10 5 Па равна 0,828×10 -3 кг. Вычислите молярную массу газа.

Решение. Вычислить молярную массу газа можно, используя уравнение Менделеева-Клапейрона:

где m – масса газа; М – молярная масса газа; R – молярная (универсальная) газовая постоянная, значение которой определяется принятыми единицами измерения.

Если давление измерять в Па, а объем в м 3 , то R =8,3144×10 3 Дж/(кмоль×К).

Где m-масса,M-молярная масса, V- объем.

4. Закон Авогадро. Установлен итальянским физиком Авогадро в 1811 г. Одинаковые объемы любых газов, отобранные при одной температуре и одинаковом давлении, содержат одно и тоже число молекул.

Таким образом, можно сформулировать понятие количества вещества: 1 моль вещества содержит число частиц, равное 6,02*10 23 (называемое постоянной Авогадро)

Следствием этого закона является то, что 1 моль любого газа занимает при нормальных условиях (Р 0 =101,3кПа и Т 0 =298К) объём, равный 22,4л.

5. Закон Бойля-Мариотта

При постоянной температуре объем данного количества газа обратно пропорционален давлению, под которым он находится:

6. Закон Гей-Люссака

При постоянном давлении изменение объема газа прямо пропорционально температуре:

V/T = const.

7. Зависимость между объемом газа, давлением и температурой можно выразить объединенным законом Бойля-Мариотта и Гей-Люссака, которым пользуются для приведения объемов газа от одних условий к другим:

P 0 , V 0 ,T 0 -давление объема и температуры при нормальных условиях: P 0 =760 мм рт. ст. или 101,3 кПа; T 0 =273 К (0 0 С)

8. Независимая оценка значения молекулярноймассы М может быть выполнена с использованием так называемого уравнения состояния идеального газа или уравнения Клапейро­на-Менделеева :

pV=(m/M)*RT=vRT. (1.1)

где р - давление газа в замкнутой системе, V - объем си­стемы, т - масса газа, Т - абсолютная температура, R - универсальная газовая постоянная.

Отметим, что значение постоянной R может быть получе­но подстановкой величин, характеризующих один моль газа при н.у., в уравнение (1.1):

r = (р V)/(Т)=(101,325кПа 22.4 л)/(1 моль 273К)=8.31Дж/моль.К)

Примеры решения задач

Пример 1. Приведение объема газа к нормальным условиям.

Какой объем (н.у.) займут 0,4×10 -3 м 3 газа, находящиеся при 50 0 С и давлении 0,954×10 5 Па?

Решение. Для приведения объема газа к нормальным условиям пользуются общей формулой, объединяющей законы Бойля-Мариотта и Гей-Люссака:

pV/T = p 0 V 0 /T 0 .

Объем газа (н.у.) равен, где Т 0 = 273 К; р 0 = 1,013×10 5 Па; Т = 273 + 50 = 323 К;

М 3 = 0,32×10 -3 м 3 .

При (н.у.) газ занимает объем, равный 0,32×10 -3 м 3 .

Пример 2. Вычисление относительной плотности газа по его молекулярной массе.

Вычислите плотность этана С 2 Н 6 по водороду и воздуху.

Решение. Из закона Авогадро вытекает, что относительная плотность одного газа по другому равна отношению молекулярных масс (М ч ) этих газов, т.е. D=М 1 /М 2 . Если М 1 С2Н6 = 30, М 2 Н2 = 2, средняя молекулярная масса воздуха равна 29, то относительная плотность этана по водороду равна D Н2 = 30/2 =15.

Относительная плотность этана по воздуху: D возд = 30/29 = 1,03, т.е. этан в 15 раз тяжелее водорода и в 1,03 раза тяжелее воздуха.

Пример 3. Определение средней молекулярной массы смеси газов по относительной плотности.

Вычислите среднюю молекулярную массу смеси газов, состоящей из 80 % метана и 20 % кислорода (по объему), используя значения относительной плотности этих газов по водороду.

Решение. Часто вычисления производят по правилу смешения, которое заключается в том, что отношение объемов газов в двухкомпонентной газовой смеси обратно пропорционально разностям между плотностью смеси и плотностями газов, составляющих эту смесь. Обозначим относительную плотность газовой смеси по водороду через D Н2 . она будет больше плотности метана, но меньше плотности кислорода:

80D Н2 – 640 = 320 – 20D Н2 ; D Н2 = 9,6.

Плотность этой смеси газов по водороду равна 9,6. средняя молекулярная масса газовой смеси М Н2 = 2D Н2 = 9,6×2 = 19,2.

Пример 4. Вычисление молярной массы газа.

Масса0,327×10 -3 м 3 газа при 13 0 С и давлении 1,040×10 5 Па равна 0,828×10 -3 кг. Вычислите молярную массу газа.

Решение. Вычислить молярную массу газа можно, используя уравнение Менделеева-Клапейрона:

где m – масса газа; М – молярная масса газа; R – молярная (универсальная) газовая постоянная, значение которой определяется принятыми единицами измерения.

Если давление измерять в Па, а объем в м 3 , то R =8,3144×10 3 Дж/(кмоль×К).

3.1. При выполнении измерений атмосферного воздуха, воздуха рабочей зоны а также промышленных выбросов и углеводородов в газовых магистралях существует проблема приведения объемов измеряемого воздуха к нормальным (стандартным) условиям. Часто на практике при проведении измерений качества воздуха не используется пересчет измеренных концентраций к нормальным условиям, в результате чего получаются недостоверные результаты.

Приведем выдержку из Стандарта:

«Измерения приводят к стандартным условиям, используя следующую формулу:

С 0 = C 1 * Р 0 Т 1 / Р 1 Т 0

где: С 0 - результат, выраженный в единицах массы на единицу объема воздуха, кг /куб. м, или количества вещества на единицу объема воздуха, моль/куб. м, при стандартных температуре и давлении;

С 1 - результат, выраженный в единицах массы на единицу объема воздуха, кг /куб. м, или количества вещества на единицу объема

воздуха, моль/куб. м, при температуре Т 1 , К, и давлении Р 1 , кПа.»

Формула приведения к нормальным условиям в упрощенном виде имеет вид (2)

С 1 = С 0 * f , где f = Р 1 Т 0 / Р 0 Т 1

стандартный пересчетный коэффициент приведения к нормальным условиям. Параметры воздуха и примесей измеряют при разных значениях температуры, давления и влажности. Результаты приводят к стандартным условиям для сравнения измеренных параметров качества воздуха в различных местах и различных климатических условиях.

3.2.Отраслевые нормальные условия

Нормальные условия это стандартные физические условия, с которыми обычно соотносят свойства веществ (Standard temperature and pressure, STP). Нормальные условия определены IUPAC (Международным союзом практической и прикладной химии) следующим образом: Атмосферное давление 101325 Па = 760 мм рт.ст.. Температура воздуха 273,15 K = 0° C.

Стандартные условия (Standard Ambient Temperature and Pressure, SATP) это нормальные окружающие температура и давление: давление 1 Бар = 10 5 Па = 750,06 мм Т. ст.; температура 298,15 К = 25 °С.

Другие области.

Измерения качества воздуха.

Результаты измерений концентраций вредных веществ в воздухе рабочей зоны приводят к условиям: температуре 293 К (20°С) и давлению 101,3 кПа (760 мм рт. ст.).

Аэродинамические параметры выбросов загрязняющих веществ должны измеряться в соответствии с действующими государственными стандартами. Объемы отходящих газов, полученные по результатам инструментальных измерений, должны быть приведены к нормальным условиям (н.у.): 0°С, 101,3 кПа..

Авиация.

Международная организация гражданской авиации (ICAO) определяет международную стандартную атмосферу (International Standard Atmosphere,ISA) на уровне моря с температурой 15 °C, атмосферным давлением 101325 Па и относительной влажностью 0 %. Эти параметры используется при расчётах движения летательных аппаратов.

Газовое хозяйство.

Газовая отрасль Российской Федерации при расчётах с потребителями использует атмосферные условия по ГОСТ 2939-63:температура 20°С (293,15К); давление 760 мм рт. ст. (101325 Н/м²); влажность равна 0. Таким образом, масса кубометра газа по ГОСТ 2939-63 несколько меньше, чем при «химических» нормальных условиях.

Испытания

Для проведения испытаний машин, приборов и других технических изделий за нормальные значения климатических факторов при испытаниях изделий (нормальные климатические условия испытаний) принимают следующие:

Температура - плюс 25°±10°С; Относительная влажность – 45-80%

Атмосферное давление 84-106 кПа (630-800 мм. рт. ст.)

Поверка измерительных приборов

Номинальные значения наиболее распространенных нормальных влияющих величин выбираются следующие: Температура – 293 К (20°С), атмосферное давление - 101,3 кПа (760 мм рт. ст.).

Нормирование

В методических указаниях, касающихся установления норм качества воздуха, указывается, что ПДК в атмосферном воздухе устанавливаются при нормальных условиях в помещении, т.е. 20 С и 760 мм. рт. ст.

Массу 1 моль вещества называют молярной. А как называют объём 1 моль вещества? Очевидно, что и его называют молярным объёмом.

Чему равен молярный объём воды? Когда мы отмеривали 1 моль воды, мы не взвешивали на весах 18 г воды - это неудобно. Мы пользовались мерной посудой: цилиндром или мензуркой, так как знали, что плотность воды равна 1 г/мл. Поэтому молярный объём воды равен 18 мл/моль. У жидкостей и твёрдых веществ молярный объём зависит от их плотности (рис. 52, а). Другое дело у газов (рис. 52, б).

Рис. 52.
Молярные объёмы (н. у.):
а - жидкостей и твёрдых веществ; б - газообразных веществ

Если взять 1 моль водорода Н 2 (2 г), 1 моль кислорода O 2 (32 г), 1 моль озона O 3 (48 г), 1 моль углекислого газа СO 2 (44 г) и даже 1 моль водяных паров Н 2 O (18 г) при одинаковых условиях, например нормальных (в химии принято называть нормальными условиями (н. у.) температуру 0 °С и давление 760 мм рт. ст., или 101,3 кПа), то окажется, что 1 моль любого из газов займёт один и тот же объём, равный 22,4 л, и содержит одинаковое число молекул - 6 × 10 23 .

А если взять 44,8 л газа, то какое количество вещества его будет взято? Конечно же 2 моль, так как заданный объём вдвое больше молярного. Следовательно:

где V - объём газа. Отсюда

Молярный объём - это физическая величина, равная отношению объёма вещества к количеству вещества.

Молярный объём газообразных веществ выражается в л/моль. Vm - 22,4 л/моль. Объём одного киломоля называют киломолярным и измеряют в м 3 /кмоль (Vm = 22,4 м 3 /кмоль). Соответственно миллимолярныи объём равен 22,4 мл/ммоль.

Задача 1. Найдите массу 33,6 м 3 аммиака NH 3 (н. у.).

Задача 2. Найдите массу и объём (н. у.), который имеют 18 × 10 20 молекул сероводорода H 2 S.

При решении задачи обратим внимание на число молекул 18 × 10 20 . Так как 10 20 в 1000 раз меньше 10 23 , очевидно, расчёты следует вести с использованием ммоль, мл/ммоль и мг/ммоль.

Ключевые слова и словосочетания

  1. Молярный, миллимолярный и киломолярный объёмы газов.
  2. Молярный объём газов (при нормальных условиях) равен 22,4 л/моль.
  3. Нормальные условия.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

  1. Найдите массу и число молекул при н. у. для: а) 11,2 л кислорода; б) 5,6 м 3 азота; в) 22,4 мл хлора.
  2. Найдите объём, который при н. у. займут: а) 3 г водорода; б) 96 кг озона; в) 12 × 10 20 молекул азота.
  3. Найдите плотности (массу 1 л) аргона, хлора, кислорода и озона при н. у. Сколько молекул каждого вещества будет содержаться в 1 л при тех же условиях?
  4. Рассчитайте массу 5 л (н. у.): а) кислорода; б) озона; в) углекислого газа СO 2 .
  5. Укажите, что тяжелее: а) 5 л сернистого газа (SO 2) или 5 л углекислого газа (СO 2); б) 2 л углекислого газа (СO 2) или 3 л угарного газа (СО).

Одной из основных единиц в Международной системе единиц (СИ) является единица количества вещества – моль.

Моль это такое количество вещества, которое содержит столько структурных единиц данного вещества (молекул, атомов, ионов и др.), сколько атомов углерода содержится в 0,012 кг (12 г) изотопа углерода 12 С .

Учитывая, что значение абсолютной атомной массы для углерода равно m (C) = 1,99 · 10  26 кг, можно рассчитать число атомов углерода N А , содержащееся в 0,012 кг углерода.

Моль любого вещества содержит одно и то же число частиц этого вещества (структурных единиц). Число структурных единиц, содержащихся в веществе количеством один моль равно 6,02·10 23 и называется числом Авогадро (N А ).

Например, один моль меди содержит 6,02·10 23 атомов меди (Cu), а один моль водорода (H 2) – 6,02·10 23 молекул водорода.

Молярной массой (M) называется масса вещества, взятого в количестве 1 моль.

Молярная масса обозначается буквой М и имеет размерность [г/моль]. В физике пользуются размерностью [кг/кмоль].

В общем случае численное значение молярной массы вещества численно совпадает со значением его относительной молекулярной (относительной атомной) массы.

Например, относительная молекулярная масса воды равна:

Мr(Н 2 О) = 2Аr (Н) + Аr (O) = 2∙1 + 16 = 18 а.е.м.

Молярная масса воды имеет ту же величину, но выражена в г/моль:

М (Н 2 О) = 18 г/моль.

Таким образом, моль воды, содержащий 6,02·10 23 молекул воды (соответственно 2·6,02·10 23 атомов водорода и 6,02·10 23 атомов кислорода), имеет массу 18 граммов. В воде, количеством вещества 1 моль, содержится 2 моль атомов водорода и один моль атомов кислорода.

1.3.4. Связь между массой вещества и его количеством

Зная массу вещества и его химическую формулу, а значит и значение его молярной массы, можно определить количество вещества и, наоборот, зная количество вещества, можно определить его массу. Для подобных расчетов следует пользоваться формулами:

где ν – количество вещества, [моль]; m – масса вещества, [г] или [кг]; М – молярная масса вещества, [г/моль] или [кг/кмоль].

Например, для нахождения массы сульфата натрия (Na 2 SO 4) количеством 5 моль найдем:

1) значение относительной молекулярной массы Na 2 SO 4 , представляющую собой сумму округленных значений относительных атомных масс:

Мr(Na 2 SO 4) = 2Аr(Na) + Аr(S) + 4Аr(O) = 142,

2) численно равное ей значение молярной массы вещества:

М(Na 2 SO 4) = 142 г/моль,

3) и, наконец, массу 5 моль сульфата натрия:

m = ν · M = 5 моль · 142 г/моль = 710 г.

Ответ: 710.

1.3.5. Связь между объемом вещества и его количеством

При нормальных условиях (н.у.), т.е. при давлении р , равном 101325 Па (760 мм. рт. ст.), и температуре Т, равной 273,15 К (0 С), один моль различных газов и паров занимает один и тот же объем, равный 22,4 л.

Объем, занимаемый 1 моль газа или пара при н.у., называется молярным объемом газа и имеет размерность литр на моль.

V мол = 22,4 л/моль.

Зная количество газообразного вещества (ν) и значение молярного объема (V мол) можно рассчитать его объем (V) при нормальных условиях:

V = ν · V мол,

где ν – количество вещества [моль]; V – объем газообразного вещества [л]; V мол = 22,4 л/моль.

И, наоборот, зная объем (V ) газообразного вещества при нормальных условиях, можно рассчитать его количество (ν):



Случайные статьи

Вверх