Второе начало термодинамики. Энтропия. Второй закон термодинамики

Выше мы познакомились с термодинамическим методом решения различных физических задач. Все рассуждения при этом основывались на использовании одного из основных законов природы: закона сохранения и превращения энергии, или первого начала термодинамики.

Как показал человеческий опыт, при всей важности этого закона, его, однако, недостаточно для того, чтобы объяснить своеобразие протекания различных явлений в природе. Для того чтобы убедиться в этом, рассмотрим первое начало термодинамики и следствия, вытекающие из него, с несколько иной точки зрения, чем это делалось выше. Математически первое начало термодинамики выражается уравнением:

физический смысл которого сводится к утверждению, что изменение внутренней энергии системы возможно или в результате

совершения работы, или в результате передачи некоторого количества теплоты. Чрезвычайно важно то, что написанное уравнение исчерпывает все возможные способы изменения внутренней энергии системы: внутренняя энергия системы может изменяться только в результате совершения работы или передачи некоторого количества теплоты.

Обратим теперь внимание на то обстоятельство, что оба указанных способа изменения внутренней энергии системы подразумевают взаимодействие ее с какими-то телами, не входящими в рассматриваемую систему. Работа совершается или внешними силами, т. е. силами, действующими на систему со стороны каких-либо не входящих в нее тел, или, наоборот, системой, преодолевающей действие этих внешних сил.

Точно так же количество теплоты, необходимое для изменения внутренней энергии системы, передается последней или от каких-либо тел, не входящих в нее, или от самой системы этим телам.

Необходимость для изменения внутренней энергии системы взаимодействия ее с телами, не входящими в нее, приводит к тому, что в изолированной системе, т. е. в системе, включающей все взаимодействующие тела, внутренняя энергия остается неизменной. Учитывая сказанное, первое начало термодинамики иногда так и формулируют, утверждая, что внутренняя энергия изолированной системы постоянна, или, что то же самое, в изолированной системе

В различных термодинамических системах можно представить себе мысленно самые разнообразные процессы. Первое начало термодинамики позволяет выбрать из этого многообразия процессы, протекание которых с точки зрения энергетических соотношений принципиально возможно.

Предположим, например, что рассматриваемая система состоит из двух порций одной и той же жидкости, имеющих соответственно температуры При сливании этих порций жидкости в условиях изоляции от взаимодействия с какими-либо другими телами для всей смеси устанавливается некоторая общая температура Опираясь на первое начало термодинамики, можно утверждать, что конечная температура всей смеси не может быть больше температуры более теплой из смешиваемых порций жидкости. Процесс, приводящий к подобному результату, не допускается первым началом термодинамики. Более того, на том же основании можно утверждать, что в случае действительно изолированной системы возможны только такие процессы, при которых выполняется следующее равенство:

Огромное значение первого начала термодинамики заключается именно в том, что оно указывает, каким образом выбрать из бесконечного количества процессов, которые человек может себе

представить, те процессы, протекание которых, вообще говоря, возможно.

Однако, помогая выделить возможные процессы, первое начало термодинамики не дает основания для дальнейшего различия между ними: с точки зрения первого начала термодинамики все отобранные процессы одинаково возможны.

Для того чтобы уяснить эту особенность, возвратимся к приведенному выше примеру. При смешении двух порций жидкости с разной температурой с точки зрения первого начала термодинамики возможен любой процесс, в результате которого температура смеси примет значение соответствующее уравнению (21).

Однако с точки зрения первого начала термодинамики вполне возможен и процесс, обратный рассмотренному: первое начало термодинамики допускает возможность того, что жидкость, масса которой имеющая повсюду одинаковую температуру самопроизвольно разделится на две части с различными температурами если только эти температуры удовлетворяют уравнению (21). Первое начало термодинамики не допускает лишь изменения внутренней энергии изолированной системы, но никак не ограничивает перераспределение внутренней энергии внутри данной изолированной системы.

В то же время опыт учит человека тому, что в природе наблюдается иное положение.

Хорошо известно, что при смешении нескольких порций жид кости с разными температурами смесь всегда приобретает некоторую температуру, общую для всей жидкости. Также хорошо известно из опыта, что без воздействия извне в жидкости, имевшей повсюду одинаковую температуру, никогда не возникает разность температур, обусловленная самопроизвольным переходом некоторого количества теплоты от одной части жидкости к Другой.

Точно так же, при смешении водного раствора какой-либо соли с чистой водой всегда наблюдается диффузия растворенного вещества, приводящая к выравниванию концентрации раствора во всей жидкости, и никогда не наблюдается, чтобы растворенное в какой-либо жидкости вещество самопроизвольно собралось бы в одной ее части, в то время как во второй оказался бы чистый растворитель, хотя этот процесс и не противоречит первому началу термодинамики.

Наконец, можно постоянно наблюдать самопроизвольное превращение механической работы в теплоту. Так, например, можно заставить скользить тяжелый брусок по наклонной плоскости, (рис. 101), причем вся работа, совершаемая силой тяжести, будет благодаря трению превращаться в теплоту. В результате трения температура бруска и наклонной плоскости слегка возрастет, а внутренняя энергия системы останется постоянной.

В то же время, сколько бы ни ожидать, не удается наблюдать самопроизвольного охлаждения бруска и наклонной плоскости, в результате которого брусок сам начал бы двигаться вверх по наклонной плоскости, хотя этот процесс может также протекать при неизменной внутренней энергии системы.

Таким образом, возможные с точки зрения первого начала термодинамики процессы оказываются неравноценными в отношении их протекания в том смысле, что, как показывает опыт, в изолированной системе одни из этих процессов протекают, а другие не протекают.

На различие таких процессов и указывается вторым основным законом, или вторым началом, термодинамики.

Второе начало термодинамики утверждает, что существует функция состояния, называемая энтропией, которая обладает тем свойством, что при всех реальных процессах, протекающих в изолированной системе, она возрастает.

Таким образом, второму началу термодинамики можно придать следующую формулировку: в изолированной системе возможны только такие процессы, при которых энтропия системы возрастает.

Часто второе начало термодинамики формулируют несколько иначе, например Кельвин формулировал этот закон в форме утверждения, что невозможен процесс, единственным результатом которого было бы получение от какого-либо тела теплоты и превращение ее в эквивалентное количество работы.

Клаузиус предложил записать второе начало термодинамики как утверждение невозможности самопроизвольного перехода теплоты от более холодного тела к телу более теплому. Эти формулировки второго начала, так же как и еще несколько формулировок, встречающихся в литературе, приводят в конечном счете к одним и тем же выводам, и в этом отношении равноценны.

Формулировка, приведенная в качестве первой, отличается тем, что в ней более ясно выступает общность второго начала термодинамики.

Согласно второму началу термодинамики, для того чтобы ответить на вопрос, возможно ли в изолированной системе то или иное превращение, необходимо рассчитать приращение энтропии при этом превращении, и если это приращение окажется положительным, то рассматриваемое превращение возможно, так как в результате его энтропия изолированной системы возрастает. Те же

процессы, при которых приращение энтропии оказывается отрицательным, в изолированной системе невозможны, поскольку при подобных процессах энтропия изолированной системы должна убывать.

Количественно в термодинамике определяется не энтропия, а разность энтропии, соответствующая какому-либо изменению состояния системы. Новая функция состояния - энтропия - обозначается буквой и согласно определению

Дифференциальное изменение энтропии определяется, таким образом, отношением дифференциально малого количества теплоты, полученного или отданного системой, к температуре, при которой происходит процесс. Для гого чтобы пояснить, как используются формулы (22) и (23), рассмотрим некоторые примеры.

1. Подсчитаем изменение энтропии при плавлении 1 кмоля льда. Удельная теплота плавления льда Плавление льда происходит при постоянной температуре 273° К, и поэтому в уравнении (23) выносится за знак интеграла который в данном случае будет равен количеству теплоты, необходимому для плавления одного киломоля льда.

Таким образом:

2. Один киломоль идеального газа занимает при давлении и температуре объем Определим изменение энтропии при равновесном переходе газа в состояние, характеризуемое параметрами состояния

Запишем первое начало термодинамики:

В случае идеального газа Подставив эти значения в уравнение первого начала, запишем его в виде:

Разделив это уравнение на и приняв во внимание определение энтропии (уравнение 22), получим:

Интегрируя уравнение в пределах от до найдем искомое решение:

Будем считать, что куски настолько велики, что при получении или потере изменением температуры можно пренебречь. Когда теплота переходит от тела более теплого к телу более холодному, общее изменение энтропии в системе составит:

Знак минус ставится в том случае, когда теплота отдается телом, и плюс, когда тело получает некоторое количество теплоты.

В случае, когда теплота переходит от тела более холодного к телу более теплому, общее изменение энтропии системы составит:

Таким образом, переход теплоты от тела более нагретого к телу более холодному сопровождается положительным приращением энтропии, и, следовательно, этот процесс в изолированной системе возможен. Наоборот, переход теплоты от более холодного тела к телу более теплому сопровождается отрицательным приращением энтропии, и, следовательно, в изолированной системе такой процесс невозможен.

В качестве второго примера рассмотрим изменение энтропии при изменении объема идеального газа. Изменение энтропии в этом случае выражается формулой:

Если изменение объема происходит изотермически:

т. е. изменение энтропии будет всегда положительно, когда конечный объем больше начального. Другими словами, идеальный газ, представляющий собой изолированную систему, будет самопроизвольно расширяться, стремясь занять весь предоставленный ему объем.

Выше были рассмотрены наиболее элементарные примеры применения второго начала для определения направления возможного процесса. Однако этот закон позволяет определить направление и более сложных процессов. Кроме того, он дает возможность предопределить, при каких именно условиях данный процесс будет протекать в желательном направлении.

Как известно, первое начало термодинамики отображает закон сохранения энергии в термодинамических процессах, однако оно не дает представление о направлении протекания процессов. Помимо этого можно придумать множество термодинамических процессов, которые не будут противоречить первому началу, но в реальной действительности таких процессов не существует. Существование второго закона (начала) термодинамики вызвано необходимостью установить возможность того или иного процесса. Этот закон определяет направление течения термодинамических процессов. При формулировке второго начала термодинамики используют понятия энтропии и неравенство Клаузиуса. В таком случае второй закон термодинамики формулируется как закон роста энтропии замкнутой системы, если процесс является необратимым.

Формулировки второго закона термодинамики

Если в замкнутой системе происходит процесс, то энтропия этой системы не убывает. В виде формулы второй закон термодинамики записывают как:

где S - энтропия; L - путь по которому система переходит из одного состояния в другое.

В данной формулировке второго начала термодинамики следует обратить внимание на то, что рассматриваемая система должна быть замкнутой. В незамкнутой системе энтропия может вести себя как угодно (и убывать, и возрастать, и оставаться постоянной). Заметим, что энтропия не изменяется в замкнутой системе при обратимых процессах.

Рост энтропии в замкнутой системе при необратимых процессах — это переход термодинамической системы из состояний с меньшей вероятностью в состояния с большей вероятностью. Известная формула Больцмана дает статистическое толкование второго закона термодинамики:

где k - постоянная Больцмана; w - термодинамическая вероятность (количество способов при помощи которых, может реализовываться рассматриваемое макросостояние системы). Так, второй закон термодинамики является статистическим законом, который связан с описанием закономерностей теплового (хаотического) движения молекул, которые составляют термодинамическую систему.

Другие формулировки второго закона термодинамики

Существует ряд других формулировок второго закона термодинамики:

1) Формулировка Кельвина: Невозможно создать круговой процесс, результатом которого станет исключительно превращение теплоты, которое получено от нагревателя, в работу. Из данной формулировки второго закона термодинамики делают вывод о невозможности создания вечного двигателя второго рода. Это означает, что периодически действующая тепловая машина должна иметь нагреватель, рабочее тело и холодильник. При этом КПД идеальной тепловой машины не может быть больше, чем КПД цикла Карно:

где - температура нагревателя; — температура холодильника; ( title="Rendered by QuickLaTeX.com" height="15" width="65" style="vertical-align: -3px;">).

2) Формулировка Клаузиуса: Невозможно создать круговой процесс в результате которого будет происходить исключительно передача тепла от тела с меньшей температурой к телу с большей температурой.

Второй закон термодинамики отмечает существенное различие между двумя формами передачи энергии (работой и теплотой). Из этого закона следует, переход упорядоченного перемещение тела, как единого целого в хаотическое движение молекул тела и внешней среды - является необратимым процессом. При этом упорядоченное движение может переходить в хаотическое без дополнительных (компенсационных) процессов. Тогда как переход неупорядоченного движения в упорядоченное должен сопровождаться компенсирующим процессом.

Примеры решения задач

ПРИМЕР 1

Задание В чем состоит суть проблемы «Тепловой смерти Вселенной»? Почему эта проблема является несостоятельной?
Решение Данная проблема была сформулирована в XIX веке. Если считать Вселенную замкнутой системой и пытаться применить к ней второй закон термодинамики, то по гипотезе Клаузиуса энтропия Вселенной достигнет некоторого максимума. То есть через некоторое время все формы движения станут тепловым движением. Вся теплота от тел с более высокой температурой перейдет к телам, имеющим более низкую температуру, то есть температуры всех тел Вселенной станут равны. Вселенная придет в состояние теплового равновесия, все процессы прекратятся — это называют тепловой смертью Вселенной. Ошибка данного положения о тепловой смерти Вселенной заключена в том, что второй закон термодинамики неприменим к незамкнутым системам, а Вселенную считать замкнутой не следует. Так как она является безграничной и состоит в бесконечном развитии.

ПРИМЕР 2

Задание Чему равно КПД цикла, который представлен на рис.1? Считайте, что в процессе участвует идеальный газ (число степеней свободы равно i) и его объем изменяется в n раз.

Решение Коэффициент полезного действия цикла, который представлен на рис.1 найдем как:

где — количество теплоты, которое рабочее тело получает от нагревателя в представленном цикле. В адиабатных процессах подвода и отвода тепла нет, получается, что тепло подводится только в процессе 1-2. — количество теплоты, которое отводится от газа в процессе 3-4.

Используя первое начало термодинамики, найдем количество тепла, полученное газом в процессе 1-2, который является изохорным:

так как изменения объема в данном процессе нет. Изменение внутренней энергии газа определим как:

По аналогии для изохорного процесса, в котором теплота отводится, имеем:

Подставим полученный результат (2.2 - 2.5) в выражение (2.1):

Используем уравнение адиабаты для нахождения разностей температур, и рассматривая рис.1. Для процесса 2-3 запишем:

§6 Энтропия

Обычно всякий процесс, при котором система переходит из одного состояния в другое, протекает таким образом, что нельзя провести этот процесс в обратном направлении так, чтобы система проходила через те же промежуточные состояния, и при этом в окружающих телах не произошли какие-либо изменения. Это связано с тем, что в процессе часть энергии рассеивается, например, за счет трения, излучения и т. п. Т. о. практически все процессы в природе необратимы. В любом процессе часть энергии теряется. Для характеристики рассеяния энергии вводится понятие энтропии. (Величина энтропии характеризует тепловое состояние системы и определяет вероятность осуществления данного состояния тела. Чем более вероятно данное состояния, тем больше энтропия.) Все естественные процессы сопровождаются ростом энтропии. Энтропия остается постоянной только в случае идеализированного обратимого процесса, происходящего в замкнутой системе, то есть в системе, в которой не происходит обмен энергией с внешними по отношению к этой системе телами.

Энтропия и ее термодинамический смысл:

Энтропия - это такая функция состояния системы, бесконечно малое изменение которой в обратимом процессе равно отношению бесконечно малого количества теплоты, введенного в этом процессе, к температуре, при которой оно вводилось.

В конечном обратимом процессе изменения энтропии может быть подсчитано по формуле:

где интеграл берется от начального состояния 1 системы до конечного состояния 2.

Поскольку энтропия есть функция состояния, то свойством интеграла является его независимость от формы контура (пути), по которому он вычисляется, следовательно, интеграл определяется только начальным и конечным состояниям системы.

  • В любом обратимом процессе изменения энтропии равно 0

(1)

  • В термодинамике доказывается, что S системы совершающей необратимой цикл возрастает

Δ S > 0 (2)

Выражения (1) и (2) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то её S может вести себя любым образом.

Соотношения (1) и(2) можно представить в виде неравенства Клаузиуса

Δ S ≥ 0

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов) либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояния 2, то изменения энтропии

где dU и δA записывается для конкретного процесса. По этой формуле Δ S определяется с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий. Найдем изменение энтропии в процессах идеального газа.

т.е. изменения энтропии S Δ S 1→2 идеального газа при переходе его из состояния 1 в состояния 2 не зависит от вида процесса.

Т.к. для адиабатического процесса δ Q = 0, то Δ S = 0 => S = const , то есть адиабатический обратимый процесс протекает при постоянной энтропии. Поэтому его называют изоэнтропийным.

При изотермическом процессе (T = const ; T 1 = T 2 : )

При изохорном процессе (V = const ; V 1 = V 2 ; )

Энтропия обладает свойством аддитивности: энтропия системы равна сумме энтропий тел входящих в систему. S = S 1 + S 2 + S 3 + ... Качественным отличием теплового движения молекул от других форм движения является его хаотичность, беспорядочность. Поэтому для характеристики теплового движения необходимо ввести количественную меру степени молекулярного беспорядка. Если рассмотреть какое-либо данное макроскопическое состояния тела с определенными средними значениями параметров, то оно есть нечто иное, как непрерывная смена близких микросостояний, отличающихся друг от друга распределением молекул в разных частях объема и распределяемой энергией между молекулами. Число этих непрерывно сменяющих друг друга микросостояний характеризует степень беспорядочности макроскопического состояния всей системы, w называется термодинамической вероятностью данного микросостояния. Термодинамическая вероятность w состояния системы — это число способов, которыми может быть реализовано данное состояния макроскопической системы, или число микросостояний, осуществляющих данное микросостояния (w ≥ 1, а математическая вероятность ≤ 1 ).

За меру неожиданности события условились принимать логарифм его вероятности, взятый со знаком минус: неожиданность состояния равна = -

Согласно Больцману, энтропия S системы и термодинамическая вероятность связаны между собой следующим образом:

где - постоянная Больцмана (). Таким образом, энтропия определяется логарифмом числа состояния, с помощью которых может быть реализовано данное микросостояние. Энтропия может рассматриваться как мера вероятности состояния т/д системы. Формула Больцмана позволяет дать энтропии следующее статистическое толкования. Энтропия является мерой неупорядоченности системы. В самом деле, чем больше число микросостояний реализующих данное микросостояние, тем больше энтропия. В состоянии равновесия системы - наиболее вероятного состояния системы - число микросостояний максимально, при этом максимальна и энтропия.

Т.к. реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой системе ведут к увеличению ее энтропии - принцип возрастания энтропии. При статистическом толковании энтропии это означает, что процессы в замкнутой системе идут в направлении увеличения числа микросостояний, иными словами, от менее вероятных состояний к более вероятным, до тех пор, пока вероятность состояния не станет максимальной.

§7 Второе начало термодинамики

Первое начало термодинамики, выражая закон сохранения энергии и превращения энергии, не позволяет установить направление протекания т/д процессов. Кроме того, можно представить множество процессов, не противоречащих I началу т/д, в которых энергия сохраняется, а в природе они не осуществляются. Возможные формулировки второго начало т/д:

1) закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимой процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает Δ S ≥ 0 (необратимый процесс) 2) Δ S ≥ 0 (S = 0 при обратимом и Δ S ≥ 0 при необратимом процессе)

В процессах, происходящих в замкнутой системе, энтропия не убывает.

2) Из формулы Больцмана S = , следовательно, возрастание энтропии означает переход системы из менее вероятного состояния в более вероятное.

3) По Кельвину: не возможен круговой процесс, единственным результатом которого является превращения теплоты, полученной от нагревателя в эквивалентную ей работу.

4) По Клаузиусу: не возможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.

Для описания т/д систем при 0 К используют теорему Нернста-Планка (третье начало т/д): энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к 0 К

Из теоремы Нернста-Планка следует, что C p = C v = 0 при 0 К

§8 Тепловые и холодильные машины.

Цикл Карно и его к.п.д.

Из формулировки второго начала т/д по Кельвину следует, что вечный двигатель второго рода невозможен. (Вечный двигатель - это периодически действующий двигатель, совершающий работу за счет охлаждения одного источника теплоты.)

Термостат - это т/д система, которая может обмениваться теплотой с телами без изменения температуры.

Принцип действия теплового двигателя: от термостата с температурой Т 1 - нагревателя, за цикл отнимается количество теплоты Q 1 , а термостату с температурой Т 2 (Т 2 < Т 1) -холодильнику, за цикл передается количество теплоты Q 2 , при этом совершается работа А = Q 1 - Q 2

Круговым процессом или циклом называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное. На диаграмме состояний цикл изображается замкнутой кривой. Цикл, совершаемый идеальным газом, можно разбить на процессы расширения (1-2) и сжатия (2-1), работа расширения положительна А 1-2 > 0, т.к. V 2 > V 1 , работа сжатия отрицательна А 1-2 < 0, т.к. V 2 < V 1 . Следовательно, работа совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой 1-2-1. Если за цикл совершается положительная работа (цикл по часовой стрелке), то цикл называется прямым, если - обратный цикл (цикл происходит в направлении против часовой стрелки).

Прямой цикл используется в тепловых двигателях - периодически действующих двигателях, совершающих работу за счет полученной извне теплоты. Обратный цикл используется в холодильных машинах - периодически действующих установках, в которых за счет работы внешних сил теплота переносится к телу с более высокой температурой.

В результате кругового процесса система возвращается в исходное состояние и, следовательно, полное изменение внутренней энергии равно нулю. Тогда І начало т/д для кругового процесса

Q = Δ U + A = A ,

Т. е. работа, совершаемая за цикл равна количеству полученной извне теплоты, но

Q = Q 1 - Q 2

Q 1 - количество теплоты, полученное системой,

Q 2 - количество теплоты, отданное системой.

Термический к.п.д. для кругового процесса равен отношению работы, совершенной системой, к количеству теплоты, подведенному к системе:

Чтобы η = 1, должно выполняться условие Q 2 = 0, т.е. тепловой двигатель должен иметь один источник теплоты Q 1 , но это противоречит второму началу т/д.

Процесс обратный происходящему в тепловом двигателе, используется в холодильной машине.

От термостата с температурой Т 2 отнимается количество теплоты Q 2 и передается термостату с температурой T 1 , количество теплоты Q 1 .

Q = Q 2 - Q 1 < 0, следовательно A < 0.

Без совершения работы нельзя отбирать теплоту от менее нагретого тела и отдавать ее более нагретому.

Основываясь на втором начале т/д, Карно вывел теорему.

Теорема Карно: из всех периодически действующих тепловых машин, имеющих одинаковые температуры нагревателей (Т 1) и холодильников (Т 2), наибольшим к.п.д. обладают обратимые машины. К.П.Д. обратимых машин при равных Т 1 и Т 2 равны и не зависят от природы рабочего тела.

Рабочее тело - тело, совершающее круговой процесс и обменивающиеся энергией с другими телами.

Цикл Карно - обратимый наиболее экономичный цикл, состоящий из 2-х изотерм и 2-х адиабат.

1-2-изотермическое расширения при Т 1 нагревателя; к газу подводится теплота Q 1 и совершается работа

2-3 - адиабат. расширение, газ совершает работу A 2-3 >0 над внешними телами.

3-4-изотермическое сжатие при Т 2 холодильника; отбирается теплота Q 2 и совершается работа ;

4-1-адиабатическое сжатие, над газом совершается работа A 4-1 <0 внешними телами.

При изотермическом процессе U = const , поэтому Q 1 = A 12

1

При адиабатическом расширении Q 2-3 = 0, и работа газа A 23 совершается за счет внутренней энергии A 23 = - U

Количество теплоты Q 2 , отданное газом холодильнику при изотермическом сжатии равно работе сжатия А 3-4

2

Работа адиабатического сжатия

Работа, совершаемая в результате кругового процесса

A = A 12 + A 23 + A 34 + A 41 = Q 1 + A 23 - Q 2 - A 23 = Q 1 - Q 2

и равна площади кривой 1-2-3-4-1.

Термический к.п.д. цикла Карно

Из уравнения адиабаты для процессов 2-3 и 3-4 получим

Тогда

т.е. к.п.д. цикла Карно определяется только температурами нагревателя и холодильника. Для увеличения к.п.д. нужно увеличивать разность Т 1 - Т 2 .

******************************************************* ******************************************************

Формулировка второго начала. Приведем две наиболее известные формулировки:

1. Невозможен процесс, единственным результатом которого было бы совершение работы за счет теплоты, взятой у теплового резервуара при постоянной температуре (формулировка Томсона). Эта же формулировка, но выраженная другими словами, утверждает невозможность создания вечного двигателя второго рода (т.е. производящего работу за счет внутренней энергии теплового резервуара).

2. Невозможен процесс, единственным результатом которого была бы передача энергии от более холодного тела к более горячему (формулировка Клаузиуса).

Формулировки Томсона и Клаузиуса эквивалентны.

Теорема Карно. Циклом Карно называют цикл, в котором рабочее тело получает теплоту только от резервуара при постоянной температуре (нагревателя), а отдает - только резервуару при постоянной температуре (холодильнику). Теорема Карно утверждает, что КПД произвольного цикла Карно не может превышать КПД

обратимого цикла Карно, работающего при тех же Из этого немедленно следует, что КПД обратимого цикла Карно зависит только от и и не зависит от природы рабочего тела.

Покажем в общих чертах, как можно доказать теорему Карно. Предположим, что КПД обратимой машины меньше, чем необратимой. Подберем объем рабочего тела обратимой машины так, чтобы она совершала за цикл такую же работу, как необратимая. С учетом (15) неравенство для КПД приобретает вид откуда имеем Пустим обратимую машину в обратную сторону так, чтобы работа необратимой машины потреблялась обратимой. За цикл объединенной машины ее работа будет равна нулю, а нагреватель получит энергию целиком взятую у холодильника. Мы пришли к противоречию с формулировкой Клаузиуса.

Так как нам известен КПД одной из машин Карно - газовой (16), то теорему Карно можно записать так:

причем равенство соответствует обратимому циклу Карно.

Термодинамическая шкала температур. Теорема Карно позволяет определить шкалу температур, не зависящую от свойств конкретных тел. Отношение температур двух тел определяют, присоединив к ним обратимую машину Карно; так как отношение зависит только от их температур, то его можно принять равным отношению термодинамических температур: Как видно из (17), отношение термодинамических температур равно отношению газовых температур (в той области, где газовая шкала определена).

Второе начало: вычисление внутренней энергии. Второе начало термодинамики позволяет вывести важное соотношение для внутренней энергии простой системы, которое не может быть получено в рамках первого начала:

Покажем, как можно получить (18) из теоремы Карно. Рассмотрим (бесконечно) малый обратимый цикл Карно и изобразим его в координатах . Работа системы за цикл, равная площади маленького параллелограмма (рис. 14), не изменится при замене кусочков адиабат вертикальными отрезками, длина которых равна Умножив на высоту получим Теплота, полученная на верхней изотерме, равна где для приращения при постоянной температуре использовано (8). Из теоремы Карно и уравнения (17) имеем

откуда получим (18).

Приведем несколько применений формулы (18).

1) Внутренняя энергия идеального газа. Подставим в (18) уравнение состояния . В результате получим т.е. внутренняя энергия идеального газа не зависит от объема.

2) Внутренняя энергия газа Ван-дер-Ваальса. Выразив давление из уравнения состояния (3) и подставив в (18), приходим к формуле

Кроме того, имеем

т.е. не зависит от объема. В области температур, где слабо зависит от Т, можно записать

Второе начало термодинамики (второй закон термодинамики) устанавливает существование энтропии как функции состояния термодинамической системы и вводит понятие абсолютной термодинамической температуры , то есть «второе начало представляет собой закон об энтропии» и её свойствах . В изолированной системе энтропия остаётся либо неизменной, либо возрастает (в неравновесных процессах ), достигая максимума при достижении термодинамического равновесия (закон возрастания энтропии ) . Встречающиеся в литературе различные формулировки второго начала термодинамики представляют собой частные выражения общего закона возрастания энтропии .

Второе начало термодинамики позволяет построить рациональную температурную шкалу , не зависящую от произвола в выборе термометрического свойства и способа его измерения .

Вместе первое и второе начала составляют основу феноменологической термодинамики , которую можно рассматривать как развитую систему следствий этих двух начал. При этом из всех допускаемых первым началом процессов в термодинамической системе второе начало позволяет выделить фактически возможные и установить направление протекания самопроизвольных процессов, а также критерии равновесия в термодинамической системах

Энциклопедичный YouTube

    1 / 5

    ✪ Основы теплотехники. Второй закон термодинамики. Энтропия. Теорема Нернста.

    ✪ ПЕРВЫЙ И ВТОРОЙ ЗАКОНЫ ТЕРМОДИНАМИКИ

    ✪ Физика. Термодинамика: Первое начало термодинамики. Центр онлайн-обучения «Фоксфорд»

    ✪ Лекция 5. II закон термодинамики. Энтропия. Химическое равновесие

    ✪ Первый закон термодинамики. Внутренняя энергия

    Субтитры

История

Второе начало термодинамики возникло как рабочая теория тепловых двигателей, которая устанавливает условия, при которых превращение тепла в работу достигает максимального эффекта. Анализ второго начала термодинамики показывает, что малая величина этого эффекта ─ коэффициента полезного действия (КПД) ─ обуславливается не техническим несовершенством тепловых двигателей, а особенностью теплоты как способа передачи энергии, которая накладывает ограничения на его величину. Впервые теоретические исследования работы тепловых двигателей были проведены французским инженером Сади Карно. Он пришёл к выводу, что КПД тепловых машин не зависит от термодинамического цикла и природы рабочего тела, а целиком определяется в зависимости от внешних источников ─ нагревателя и холодильника. Работа Карно была написана до открытия принципа эквивалентности теплоты и работы и всеобщего признания закона сохранения энергии. Свои выводы Карно основывал на двух противоречивых основаниях: теплородной теории, которая была вскоре отброшена, и гидравлической аналогии. Несколько позднее Р. Клаузиус и В. Томсон- Кельвин согласовали теорему Карно с законом сохранения энергии и заложили основу того, что сейчас составляет содержание второго начала термодинамики.

Для обоснования теоремы Карно и дальнейшего построения второго начала необходимо было ввести новый постулат.

Наиболее распространённые формулировки постулата второго начала термодинамики

Постулат Клаузиуса (1850 г.):

Теплота не может переходить самопроизвольно от более холодного тела к более тёплому .

Постулат Томсона-Кельвина (1852 г.) в формулировке М. Планка:

Невозможно построить периодически действующую машину, вся деятельность которой сводится к поднятию тяжести и к охлаждению теплового резервуара .

Указание на периодичность действия машины является существенным, так как возможен некруговой процесс , единственным результатом которого было бы получение работы за счёт внутренней энергии, полученной от теплового резервуара. Этот процесс не противоречит постулату Томсона – Кельвина, так как процесс некруговой и, следовательно, машина не является периодически действующей. По существу постулат Томсона говорит о невозможности создания вечного двигателя второго рода, который способен непрерывно совершать работу, отбирая тепло от неисчерпаемого источника. Иными словами, невозможно осуществить тепловой двигатель, единственным результатом работы которого было бы превращение тепла в работу без компенсации, то есть без того, чтобы часть тепла была передана другим телам и, таким образом, безвозвратно утрачена для получения работы.

Несложно доказать, что постулаты Клаузиуса и Томсона эквивалентны. Доказательство идет от противного.

Допустим, что не выполняется постулат Клаузиуса. Рассмотрим тепловую машину , рабочее вещество которой за цикл получило от горячего источника количество тепла Q 1 {\displaystyle Q_{1}} , отдало холодному источнику количество тепла и произвело при этом работу . Поскольку, по допущению, постулат Клаузиуса не верен, то можно тепло Q 2 {\displaystyle Q_{2}} вернуть горячему источнику без изменений в окружающей среде. В результате состояние холодного источника не изменилось, горячий источник отдал рабочему веществу количество тепла Q 2 − Q 1 {\displaystyle Q_{2}-Q_{1}} и за счёт этого тепла машина совершила работу A = Q 1 − Q 2 {\displaystyle A=Q_{1}-Q_{2}} , что противоречит постулату Томсона.

Постулаты Клаузиуса и Томсона-Кельвина формулируются как отрицание возможности какого - либо явления, т.е. как постулаты запрещения. Постулаты запрещения совершенно не соответствуют содержанию и современным требованиям, предъявляемым к обоснованию принципа существования энтропии и не вполне удовлетворяют задаче обоснования принципа возрастания энтропии, так как должны содержать указание об определённой направленности наблюдаемых в природе необратимых явлений, а не отрицание возможности противоположного течения их.

  • Постулат Планка (1926 г.):

Образование тепла путем трения необратимо.

В постулате Планка, наряду с отрицанием возможности полного превращения тепла в работу, содержится утверждение о возможности полного превращения работы в тепло.

Современная формулировка второго начала классической термодинамики.

Второе начало термодинамики это утверждение о существовании у всякой равновесной системы некоторой функции состояния ─ энтропии и неубывании её при любых процессах в изолированных и адиабатно изолированных системах.

Иными словами, второе начало термодинамики представляет собой объединённый принцип существования и возрастания энтропии .

Принцип существования энтропии есть утверждение второго начала классической термодинамики о существовании некоторой функции состояния тел (термодинамических систем) ─ энтропии S {\displaystyle S} , дифференциал которой является полным дифференциалом d S {\displaystyle dS} , и определяется в обратимых процессах как отношение подведённого извне элементарного количества тепла δ Q обр ∗ {\displaystyle \delta Q_{\text{обр}}^{*}} к абсолютной температуре тела (системы) T {\displaystyle T} :

D S обр = δ Q обр ∗ T {\displaystyle dS_{\text{обр}}={\frac {\delta Q_{\text{обр}}^{*}}{T}}}

Принцип возрастания энтропии есть утверждение второго начала классической термодинамики о неизменном возрастании энтропии изолированных систем во всех реальных процессах изменения их состояния. (В обратимых процессах изменения состояния изолированных систем энтропия их не изменяется).

D S изолир ≥ 0 {\displaystyle dS_{\text{изолир}}\geq 0}

Математическое выражение второго начала классической термодинамики:

D S = δ Q ∗ T ≥ 0 {\displaystyle dS={\frac {\delta Q^{*}}{T}}\geq 0}

Статистическое определение энтропии

В статистической физике энтропия (S) {\displaystyle (S)} термодинамической системы рассматривается как функция вероятности (W) {\displaystyle (W)} её состояния («принцип Больцмана»).

S = k l n W , {\displaystyle S=klnW,}

Где k {\displaystyle k} ─ постоянная Больцмана, W {\displaystyle W} ─ термодинамическая вероятность состояния, которая определяется количеством микросостояний реализующих данное макросостояние.

Методы обоснования второго начала термодинамики.

Метод Р. Клаузиуса

В своём обосновании второго начала Клаузиус исследует круговые процессы двух механически сопряжённых обратимых тепловых машин, использующих в качестве рабочего тела идеальный газ, доказывает теорему Карно выражение КПД обратимого цикла Карно) для идеальных газов η = 1 − T 2 T 1 {\displaystyle \eta =1-{\frac {T_{2}}{T_{1}}}} , а затем формулирует теорему, называемую интегралом Клаузиуса:

∮ ⁡ δ Q T = 0 {\displaystyle \oint {\frac {\delta Q}{T}}=0}

Из равенства нулю кругового интеграла следует, что его подынтегральное выражение является полным дифференциалом некоторой функции состояния ─ S {\displaystyle S} , а нижеследующее равенство представляет собой математическое выражение принципа существования энтропии для обратимых процессов:

D S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}}

Далее Клаузиус доказывает неравенство КПД обратимых и необратимых машин и, в конечном счёте, приходит к выводу о неубывании энтропии изолированных систем: В отношении построения второго начала термодинамики по методу Клаузиуса было высказано немало возражений и замечаний. Вот некоторые из них:

1. Построение принципа существования энтропии Клаузиус начинает с выражения КПД обратимого цикла Карно для идеальных газов , а затем распространяет его на все обратимые циклы. Таким образом Клаузиус неявно постулирует возможность существования идеальных газов, подчиняющихся уравнению Клапейрона P v = R T {\displaystyle Pv=RT} и закону Джоуля u = u (t) {\displaystyle u=u(t)} .

2. Обоснование теоремы Карно является ошибочным, так как в схему доказательства внесено лишнее условие ─ более совершенной обратимой машине неизменно приписывается роль теплового двигателя. Однако, если принять, что более совершенной машиной является холодильная, а вместо постулата Клаузиуса принять противоположное утверждение, что тепло не может самопроизвольно переходить от более нагретого тела к более холодному, то теорема Карно тем же самым способом также будет доказана. Таким образом напрашивается вывод, что принцип существования энтропии не зависит от направления протекания самопроизвольных процессов, а постулат необратимости не может быть основанием для доказательства существования энтропии.

3. Постулат Клаузиуса как постулат запрещения не является явным утверждением, характеризующим направление протекания наблюдаемых в природе необратимых явлений, в частности, утверждением о самопроизвольном переходе тепла от более нагретого тела к более холодному, так как выражение ─ не может переходить неэквивалентно выражению переходит .

4. Выводы статфизики о вероятностном характере принципа необратимости и открытие в 1951г. необычных (квантовых) систем с отрицательными абсолютными температурами, в которых самопроизвольный теплообмен имеет противоположное направление, теплота может полностью превращается в работу, а работа не может полностью (без компенсации) перейти в тепло, пошатнули базовые постулаты Клаузиуса, Томсона - Кельвина и Планка, полностью отвергнув одни, и наложив серьёзные ограничения на другие.

Метод Шиллера – Каратеодори

В XX веке благодаря работам Н. Шиллера, К. Каратеодори, Т. Афанасьевой – Эренфест, А. Гухмана и Н.И. Белоконя появилось новое аксиоматическое направление в обосновании второго начала термодинамики. Выяснилось, что принцип существования энтропии может быть обоснован независимо от направления наблюдаемых в природе реальных процессов, т.е. от принципа необратимости, и для определения абсолютной температуры и энтропии не требуется, как заметил Гельмгольц, ни рассмотрения круговых процессов, ни допущения о существовании идеальных газов. В 1909 г. Константин Каратеодори - крупный немецкий математик - опубликовал работу, в которой обосновал принцип существования энтропии не в результате исследования состояний реальных термодинамических систем, а на основе математического рассмотрения выражений обратимого теплообмена как дифференциальных полиномов (форм Пфаффа). Еще ранее, на рубеже веков, к аналогичным построениям пришёл Н.Шиллер, но его работы остались незамеченными, пока на них в 1928 г. не обратила внимания Т. Афанасьева -Эренфест.

Постулат Каратеодори (постулат адиабатической недостижимости).

Вблизи каждого равновесного состояния системы возможны такие её состояния, которые не могут быть достигнуты при помощи обратимого адиабатического процесса.

Теорема Каратеодори утверждает, что если дифференциальный полином Пфаффа обладает тем свойством, что в произвольной близости некоторой точки существуют другие точки, недостижимые посредством последовательных перемещений по пути , то существуют интегрирующие делители этого полинома и уравнения ∑ X i d x i = 0 {\displaystyle \sum X_{i}dx_{i}=0} .

Критически к методу Каратеодори относился М. Планк. Постулат Каратеодори, по его мнению, не относится к числу наглядных и очевидных аксиом: «Содержащиеся в нём высказывание не является общеприменимым к естественным процессам... . Никто ещё и никогда не ставил опытов с целью достижения всех смежных состояний какого-либо определённого состояния адиабатическим путем». Системе Каратеодори Планк противопоставляет свою систему, основанную на постулате: «Образование теплоты посредством трения необратимо», которым по его мнению, исчерпывается содержание второго начала термодинамики. Метод Каратеодори, между тем, получил высокую оценку в работе Т. Афанасьевой -Эренфест «Необратимость, односторонность и второе начало термодинамики» (1928 г.). В своей замечательной статье Афанасьева - Эренфест пришла к ряду важнейших выводов, в частности:

1. Основное содержание второго начала состоит в том, что элементарное количество теплоты δ Q {\displaystyle \delta Q} , которым система обменивается в квазистическом процессе, может быть представлено в виде T d S {\displaystyle TdS} , где T = f (t) {\displaystyle T=f(t)} ─ универсальная функция температуры, называемая абсолютной температурой, а (S) {\displaystyle (S)} ─ функция параметров состояния системы, получившая название энтропии. Очевидно, выражение δ Q = T d S {\displaystyle \delta Q=TdS} имеет смысл принципа существования энтропии .

2. Принципиальное отличие неравновесных процессов от равновесных состоит в том, что в условиях неоднородности температурного поля возможен переход системы к состоянию с другой энтропией без обмена теплотой с окружающей средой. (Этот процесс позднее в трудах Н.И. Белоконя получил название "внутреннего теплообмена" или теплообмена рабочего тела.). Следствием неравновесности процесса в изолированной системе, является его односторонность.

3. Одностороннее изменение энтропии в равной степени мыслимо и как неуклонное её возрастание или как неуклонное убывание. Физические предпосылки – такие как адиабатическая недостижимость и необратимость реальных процессов не выражают никаких требований относительно преимущественного направления течения самопроизвольных процессов.

4. Для согласования полученных выводов с опытными данными для реальных процессов необходимо принять постулат, сфера действия которого определяется границами применимости этих данных. Таким постулатом является принцип возрастания энтропии .

А. Гухман, оценивая работу Каратеодори, считает, что она «отличается формальной логической строгостью и безупречностью в математическом отношении... Вместе с тем в стремлении к наибольшей общности Каратеодори придал своей системе настолько абстрактную и сложную форму, что она оказалась фактически недоступной для большинства физиков того времени». Относительно постулата адиабатической недостижимости Гухман замечает, что как физический принцип он не может быть положен в основу теории, имеющей универсальное значение, так как не обладает свойством самоочевидности. «Всё предельно ясно в отношении простой...системы...Но эта ясность полностью утрачивается в общем случае гетерогенной системы, усложнённой химическими превращениями и испытывающей воздействие внешних полей». Он также говорит и о том, насколько права была Афанасьева - Эренфест, настаивая на необходимости полного отделения проблемы существования энтропии, от всего, что связано с идеей необратимости реальных процессов». Относительно построения основ термодинамики Гухман полагает, что «самостоятельной отдельной проблемы существования энтропии нет. Вопрос сводится к распространению на случай термического взаимодействия круга представлений, разработанных на основе опыта изучения всех других энергетических взаимодействий, и завершающихся установлением единообразного по форме уравнения для элементарного количества воздействия d Q = P d x {\displaystyle dQ=Pdx} Эта экстраполяция подсказывается самим строем идей. Несомненно, имеются достаточные основания принять её в качестве весьма правдоподобной гипотезы и тем самым постулировать существование энтропии .

Н.И. Белоконь в своей монографии «Термодинамика» дал детальный анализ многочисленных попыток обоснования второго начала термодинамики как объединённого принципа существования и возрастания энтропии на основе одного лишь постулата необратимости. Он показал, что попытки такого обоснования не соответствуют современному уровню развития термодинамики и не могут быть оправданы, во - первых, потому, что вывод о существовании энтропии и абсолютной температуры не имеет никакого отношения к необратимости явлений природы (эти функции существуют независимо от возрастания или убывания энтропии изолированных систем), во - вторых, указание о направлении наблюдаемых необратимых явлений снижает уровень общности второго начала термодинамики и, в - третьих, использование постулата Томсона- Планка о невозможности полного превращения тепла в работу противоречит результатам исследований систем с отрицательной абсолютной температурой, в которых может быть осуществлено полное превращение тепла в работу, но невозможно полное превращение работы в тепло. Вслед за Т. Афанасьевой-Эренфест Н.И. Белоконь утверждает, что различие содержания, уровня общности и сферы применения принципов существования и возрастания энтропии совершенно очевидно:

1. Из принципа существования энтропии вытекает ряд важнейших дифференциальных уравнений термодинамики, широко используемых при изучении термодинамических процессов и физических свойств вещества, и его научное значение трудно переоценить.

2. Принцип возрастания энтропии изолированных систем есть утверждение о необратимом течении наблюдаемых в природе явлений. Этот принцип используется в суждениях о наиболее вероятном направлении течения физических процессов и химических реакций, и из него вытекают все неравенства термодинамики.

Относительно обоснования принципа существования энтропии по методу Шиллера ─ Каратеодори Белоконь отмечает, что в построениях принципа существования по этому методу совершенно обязательным является использование теоремы Каратеодори об условиях существования интегрирующих делителей дифференциальных полиномов δ Q = ∑ X i d x i = τ d Z , {\displaystyle \delta Q=\sum X_{i}dx_{i}=\tau dZ,} однако, необходимость использования этой теоремы «должна быть признана очень стеснительной, так как общая теория дифференциальных полиномов рассматриваемого типа (форм Пфаффа) представляет известные трудности и излагается лишь в специальных трудах по высшей математике.» В большинстве курсов термодинамики теорема Каратеодори даётся без доказательства, либо приводится доказательство в нестрогом, упрощённом виде. .

Анализируя построение принципа существования энтропии равновесных систем по схеме К. Каратеодори, Н.И. Белоконь обращает внимание на использовании совершенно необоснованного допущения о возможности одновременного включения температуры t {\displaystyle t} и ─ функции в состав независимых переменных состояния равновесной системы и приходит к выводу о том, что что постулат Каратеодори эквивалентен группе общих условий существования интегрирующих делителей дифференциальных полиномов ∑ X i d x i {\displaystyle \sum X_{i}dx_{i}} , но недостаточен для установления существования первичного интегрирующего делителя τ (t) = T {\displaystyle \tau (t)=T} , т. е. для обоснования принципа существования абсолютной температуры и энтропии . Далее он утверждает: «Совершенно очевидно, что при построении принципа существования абсолютной температуры и энтропии на основе теоремы Каратеодори должен быть использован такой постулат, который был бы эквивалентен теореме о несовместимости адиабаты и изотермы...". В этих корректиpованных построениях становится совершенно излишним постулат Каратеодори, так как этот постулат является частным следствием необходимой теоремы о несовместимости адиабаты и изотермы.»

Метод Н.И. Белоконя

В обосновании по методу Н.И. Белоконя второе начало термодинамики разделено на два принципа (закона):

1. Принцип существования абсолютной температуры и энтропии (второе начало термостатики ).

2. Принцип возрастания энтропии(второе начало термодинамики ).

Каждый из этих принципов получил обоснование на основании независимых постулатов.

  • Постулат второго начала термостатики (Белоконя).

Температура есть единственная функция состояния, определяющая направление самопроизвольного теплообмена, т.е. между телами и элементами тел, не находящимися в тепловом равновесии, невозможен одновременный самопроизвольный (по балансу) переход тепла в противоположных направлениях - от тел более нагретых к телам менее нагретым и обратно. .

Постулат второго начала термостатики является частным выражением причинной связи и однозначности законов природы . Например, если существует причина, в силу которой в данной системе тепло переходит от более нагретого тела к менее нагретому, то эта же причина будет препятствовать переходу тепла в противоположном направлении и наоборот. Этот постулат полностью симметричен в отношении направления необратимых явлений, так как не содержит никаких указаний о наблюдаемом направлении необратимых явлений в нашем мире ─ мире положительных абсолютных температур.

Следствия второго начала термостатики:

Следствие I. Невозможно одновременное (в рамках одной и той же пространственно- временной системы положительных или отрицательных абсолютных температур) осуществление полных превращений тепла в работу и работы в тепло.

Следствие II. (теорема несовместимости адиабаты и изотермы). На изотерме равновесной термодинамической системы, пересекающей две различные адиабаты той же системы, теплообмен не может быть равен нулю.

Следствие III (теорема теплового равновесия тел). В равновесных круговых процессах двух термически сопряженных тел (t I = t I I) {\displaystyle (t_{I}=t_{I}I)} , образующих адиабатически изолированную систему оба тела возвращаются на исходные адиабаты и в исходное состояние одновременно.

На основании следствий постулата второго начала термостатики Н.И. Белоконь предложил построение принципа существования абсолютной температуры и энтропии для обратимых и необратимых процессов δ Q = δ Q ∗ + Q ∗ ∗ T d S {\displaystyle \delta Q=\delta Q^{*}+Q^{**}TdS}

  • Постулат второго начала термодинамики (принципа возрастания энтропии).

Постулат второго начала термодинамики предлагается в форме утверждения, определяющего направление одного из характерных явлений в нашем мире положительных абсолютных температур:

Работа может быть непосредственно и полностью превращена и тепло путем трения или электронагрева.

Следствие I.Тепло не может быть полностью превращено в работу (принцип исключенного Perpetuum mobile II рода):

η < 1 {\displaystyle \eta <1}

.

Следствие II . КПД или холодопроизводительность любой необратимой тепловой машины (двигателя или холодильника,соответственно) при заданных температурах внешних источников всегда меньше КПД или холодопроизводительности обратимых машин работающих между теми же источниками.

Снижение КПД и холодопроизводительности реальных тепловых машин связано с нарушением равновесного течения процессов (неравновесный теплообмен из-за разнсти температур источников тепла и рабочего тела) и необратимого превращения работы в тепло (потери на трение и внутренние сопротивления).

Из этого следствия и следствия I второго начала термостатики непосредственно вытекает невозможность осуществления Perpetuum mobile I и II рода. На основе постулата второго начала термодинамики может быть обосновано математическое выражение второго начала классической термодинамики как объединённый принцип существования и возрастания энтропии:

D S ≥ δ Q ∗ T {\displaystyle dS\geq {\frac {\delta Q^{*}}{T}}}



Случайные статьи

Вверх