Вычисление изменения энтропии в различных процессах. Энтропия. Второе начало термодинамики. Тепловые и холодильные машины. Цикл Карно и его коэффициент полезного действия

Практическое занятие 1, 2. Решение задач по равновесной термодинамике (4часа)

План занятия: Второй закон термодинамики. Формулировки второго закона (начала) термодинамики. Энтропия и её свойства. Расчёт изменения энтропии в различных равновесных процессах. Энтропия в неравновесных процессах. Примеры решения задач.

Понятие энтропии

Энтропия, обозначаемая буквой S, была введена Р. Клаузиусом, при анализе материала по тепловым двигателям, первоначально в виде так называемой "приведенной теплоты"

где Q - количество тепла, которым обменивается система с окружающей средой при совершении обратимого процесса; T - температура.

Из (1) следует, что энтропия измеряется в джоулях на Кельвин (Дж/К). Энтропия является функцией состояния, т. е. ее изменение не зависит от пути, по которому это изменение происходит, а определяется только разностью значений энтропии в конечном и начальном состоянии. Кроме того, энтропия. экстенсивное свойство системы. Это означает, что энтропия всей системы (S) может быть найдена суммированием значений энтропий всех составных частей системы () :

Клаузиусом было доказано, что, несмотря на то, что теплота является функцией перехода и зависит от пути процесса, величина отношения теплоты к абсолютной температуре не зависит от пути процесса, т. е. является функцией состояния. Эта функция состояния и есть энтропия. Из положения о том, что энтропия - функция состояния следует, что бесконечно малое изменение энтропии является полным дифференциалом , а конечное изменение энтропии в результате какого-то процесса может быть найдено как

(3)

Запишем выражение (1) для бесконечно малых величин

https://pandia.ru/text/80/204/images/image008_28.jpg" width="168" height="63">(5)

Формулы (3 −5) − основные формулы для расчета энтропии. Раскрыв смысл, в каждом конкретном случае можно рассчитать dQSΔ.

Следуя рассуждениям Клаузиуса, можно ввести новую всегда положительную величину, являющуюся разностью между TdS и при необратимом изменении. Эта величина определяется соотношением:

Уравнение (6) можно преобразовать

где для обратимых изменений и 0=′Qd0>′Qd для необратимых.

Клаузиус назвал некомпенсированной теплотой. В классической термодинамике данная величина имела скорее качественный характер. Обычно просто указывали, что Qd′0=′Qd для обратимых изменений и для необратимых изменений, и значение 0>′QdQd′ не вычисляли.

Кстати, термин "некомпенсированная теплота" не совсем удачен. Теплота − это энергия, которой система обменивается с внешним миром и, следовательно, которая проходит через поверхность, ограничивающую систему от внешнего мира. А та теплота, которую Клаузиус назвал некомпенсированной, возникает вследствие протекания процессов внутри самой системы.

Следует отметить, что на современном этапе развития физической химии возможна количественная оценка возрастания энтропии при необратимых процессах.

Одна из формулировок второго закона термодинамики следующая: у всякой изолированной системы, находящейся в неравновесном состоянии, энтропия с течением времени возрастает, и ее рост продолжается до тех пор, пока система не достигнет равновесного состояния.

Данный закон также называют законом возрастания энтропии. Математически его можно записать в форме

где знак неравенства относится к неравновесному процессу, а знак равенства - к равновесию.

Из выражения (8) следует, что энтропия изолированной системы может только возрастать, но никогда не может уменьшаться. В состоянии равновесия энтропия максимальна.

Все расчеты изменений энтропии в различных процессах основаны на использовании неравенства Клаузиуса, которое связывает изменение энтропии dSс количеством теплоты, которым система обменивается с окружением при температуре T

Источниками необратимых процессов могут быть: диффузия , расширение системы при существовании разности давлений между ней и окружающей средой, теплопередача при разных температурах, самопроизвольные химические реакции в объеме системы и другие диссипативные процессы, связанные с необратимым превращением работы в теплоту. Неравенство (9) выполняется независимо от причины возникновения необратимого процесса, в итоге наблюдается выделение внутри системы дополнительного количества теплоты. Как уже было упомянуто ранее, Р. Клаузиус назвал эту теплоту, вызванную неравновесными процессами, некомпенсированной теплотой.

Известно, что если процесс осуществляется равновесно и обратимо, то совершаемая работа максимальна. Если процесс осуществляется необратимо, то работа оказывается меньше, чем в обратимом процессе, часть ее как бы теряется. В соответствии с первым законом термодинамики «потерянная» работа должна проявиться в другой форме, например, в форме некомпенсированной теплоты, которая всегда не отрицательна: больше нуля в необратимых, равна нулю в обратимых процессах.

При изотермических процессах неравенство (10) можно записать в виде равенств

Где изменение энтропии, вызванное равновесным теплообменом с окружающей средой (индекс «e» от лат. external. внешний);

рост энтропии вследствие необратимых процессов внутри системы (индекс «i» от лат. internal – внутренний).

Значение энтропии данной системы нельзя измерить непосредственно на опыте, но его можно вычислить по формуле

Эта формула позволяет найти не абсолютную величину энтропии, а разность энтропий в двух состояниях системы, т. е. изменение энтропии при переходе системы из состояния 1 в состояние 2.

В табл. 1 приведены основные соотношения, характеризующие изменение энтропии в различных процессах. Анализ табл. 1 показывает, что для любой системы (изолированной, закрытой или открытой) изменение энтропии за счет внутренних причин не отрицательно, то есть справедливо. 0≥Sdi

Неравновесная термодинамика (термодинамика неравновесных процессов) изучает общие закономерности систем, в которых протекают неравновесные процессы: передача теплоты, диффузия, химические реакции, перенос электрического тока и др.

Классическая термодинамика как наука о взаимном превращении работы и энергии изучает равновесные процессы. Остановимся кратко на особенностях неравновесной термодинамики.

При рассмотрении второго начала термодинамики для открытых систем тоже большое внимание уделяется изменению энтропии. Изменение энтропии открытой системы может происходить либо за счет протекания внутренних необратимых процессов внутри самой системы (), либо за счет процессов обмена системы с внешней средой (). SdiSde

Для систем, рассматриваемых в химии, изменение может быть вызвано, например, протеканием химической реакции внутри системы, а величина. подводом или отводом из системы как теплоты, так и реагентов и продуктов. SdiSde

В термодинамике неравновесных процессов постулируется, что составляющие и являются независимыми, а общее изменение энтропии открытой системы равно их сумме:

Если в системе протекают только термически обратимые изменения, то = 0. При наличии необратимых изменений > 0.

В изолированных системах нет тепло - и массообмена с окружающей средой и величина = 0, тогда уравнение (13) преобразуется к следующему виду:

т. е. к классической формулировке второго начала термодинамики для изолированных систем.

Любой неравновесный процесс в системе: смешение газов, самопроизвольное распрямление сжатой пружины, химическая реакция − ведет к увеличению беспорядочности молекулярного состояния системы. Количественно это выражается в росте термодинамической вероятности состояния системы и в увеличении энтропии.

Важной характеристикой неравновесных процессов является то, что они протекают с конечной скоростью. Их изучение − по сути это область кинетики. Время в неравновесной термодинамике является параметром.

Так, если энтропия возникает за время τ, то нужно говорить о скорости ее возникновения τdSdi. В зарубежной литературе такую величину называют производством энтропии. Величину τdSde называют скоростью обмена энтропией между системой и окружающей средой. С введением данных понятий из уравнения (13) получается уравнение для скорости общего изменения энтропии в системе τddS:

Положительное значение τdSde соответствует увеличению энтропии в результате обмена веществом и/или энергией с внешней средой. Отрицательное значение τdSde говорит о том, что отток энтропии из системы во внешнюю среду превышает приток энтропии извне. Отсюда видно принципиальное различие в термодинамических свойствах открытых и изолированных систем: общая энтропия открытой системы может как возрастать, так и убывать, т. к. величина τdSde может быть как положительной, так и отрицательной.

Неравенство τdSdi> 0 справедливо всегда, но относительно общего возрастания энтропии возможны следующие случаи:

В последнем случае в системе устанавливается стационарное состояние, при котором производство энтропии в системе за счет необратимых внутренних процессов компенсируется оттоком энтропии во внешнюю среду.

Расчет изменения энтропии при изменении температуры

Изменение энтропии системы, температура которой, например, повышается при постоянном объеме от Т1 до Т2, вычисляют путем интегрирования частной производной энтропии по температуре при постоянном объеме

где. изохорная теплоемкость системы, Дж/К. VC

Если в системе в указанном диапазоне значений температуры не происходит каких-либо фазовых превращений, то интегрирование (15) приводит к следующему выражению:

Изменение энтропии при постоянном давлении можно найти интегрированием частной производной энтропии по температуре при постоянном давлении

где. изобарная теплоемкость системы, Дж/К.

При решении уравнений (16) и (18) возможно два случая. Рассмотрим их на примере уравнения (18), т. е. при изобарном изменении температуры.

Случай 1. Теплоемкость вещества в интервале температур от до не зависит от температуры. Тогда после интегрирования (18) имеем

Постоянство теплоемкости чаще всего характерно для идеальных газов, именно в этом случае (если об ином не сказано в условиях задачи) можно рассчитывать изменение энтропии при изобарном нагреве по формуле (19). Согласно классической теории теплоемкости идеальных газов, можно принять, что мольные изохорные теплоемкости для одноатомного и двухатомного идеального газа равны соответственно

https://pandia.ru/text/80/204/images/image030_6.jpg" width="421" height="35">

Однако нужно иметь в виду, что иногда и для идеальных газов наблю-дается зависимость теплоемкости от температуры (это бывает при высоких температурах).

Случай 2. Теплоемкость является некоторой функцией температуры.

Температурную зависимость мольной изобарной теплоемкости принято выражать степенными рядами вида

где − эмпирически найденные коэффициенты. Их значения приводятся в справочной литературе . Обычно в подобном степенном ряду учитывается только три члена: или c, c,b, a′c, b,ac, b,a′ − в зависимости от того, к какому классу относится данное вещество: классу органических веществ или классу неорганических. То, какой именно коэффициент или cс′ необходимо учесть в уравнении (23) следует из таблицы справочных данных, в которой приведены все коэффициенты. Очевидно, что если, например, приведены коэффициенты, то коэффициент c, b,aс′ будет равен нулю.

Подстановка выражения (23) в (18) позволяет после интегрирования получить следующее выражение

По формуле (24) рассчитывается изменение энтропии вещества при изменении его температуры от Т1 до Т2. Это изменение относится к одному молю; в случае нахождения полного изменения энтропии нужно воспользоваться формулой snSΔ=Δ, где n − число молей.

Расчет изменение энтропии при фазовом переходе

При различных фазовых переходах: кристаллизации, плавлении, испарении, сублимации и т. д. меняется степень упорядочения системы, т. е. фазовый переход сопровождается изменением энтропии. Например, при испарении компактная конденсированная фаза превращается в газ, занимающий гораздо больший объем. В этом случае должно происходить существенное возрастание энтропии вещества. Энтропия увеличивается при переходе от кристаллического состояния к жидкости и от жидкости − к газу.

Рассмотрим систему, представляющую собой чистую воду и окружающую среду при нормальной температуре фазового перехода, т. е. при такой температуре, когда две фазы находятся в равновесии при 1 атм. Для процесса плавления льда (равновесие: твердая вода − жидкая вода) такая температура равна 273 К, а для процесса испарения (равновесие: жидкая вода − пар) 373 К. Раз обе фазы в каждом из рассматриваемых фазовых переходов находятся в равновесии, то любой теплообмен между системой и окружающей средой происходит обратимо. При постоянном давлении количество теплоты будет соответствовать энтальпии, поэтому мольную энтропию фазового превращения ф. п.sΔ можно рассчитать по формуле

где − мольная энтальпия фазового превращения; ф. п.hΔ

ф. п.T− температура фазового превращения.

При кристаллизации или конденсации наблюдаются экзотермические фазовые превращения (< 0), характеризующиеся отрицательным значением энтропии. При этом происходит уменьшение беспорядка при переходе от жидкости к твердому телу (процесс кристаллизации) или от пара к жидкости (процесс конденсации). Изменение энтропии при эндотермическом переходе (> 0) положительно, и система становится более разупорядоченной. Плавление и испарение − эндотермические процессы, сопровождающиеся возрастанием энтропии системы. ф. п.hΔ

В табл. 2 приведены значения мольной энтропии фазовых переходов некоторых веществ.

Как видно из табл. 3, в которой приведены стандартные мольные энтропии испарения некоторых жидкостей при температурах кипения, многие жидкости имеют приблизительно одинаковую стандартную энтропию испарения около 85 Дж/(моль. К). Такая эмпирическая закономерность называется правилом Трутона. Правило Трутона можно объяснить, если предположить, что при испарении различных жидкостей и превращении их в газ степень разупорядоченности оказывается практически одной и той же независимо от вещества. Если это верно, то большинство жидких веществ должны иметь близкие значения стандартных мольных энтропий испарения.

Значительные отклонения от правила Трутона наблюдаются у жидкостей, в которых происходит частичная ассоциация молекул. Например, у воды, в которой имеется наличие водородных связей и структурирование жидкости, при испарении происходит большее разупорядочивание системы, чем если бы молекулы были хаотично распределены в объеме жидкой фазы.

Расчет изменения энтропии системы при изменении температуры и наличии фазового превращения

Поскольку энтропия является функцией состояния, то путь перехода из начального состояния в конечное может быть любым. Возможный вариант - обратимое изобарическое изменение температуры до температуры фазового перехода, затем непосредственно фазовый переход, а потом обратимое изобарическое изменение температуры до конечной температуры.

Общее изменение энтропии будет складываться из трех слагаемых. Например, пусть некое условное вещество А переходит изобарически из твердого состояния при температуре в жидкое состояние при температуре. Уже из условия задачи видно, что при какой-то температуре имеет место фазовое превращение (фазовый переход) - плавление. Находим в справочнике эту температуру – обозначим ее в общем виде. Первый вклад в общее изменение энтропии - это нагрев твердой системы от температуры до температуры плавления

При температуре плавления твердое состояние переходит в жидкое, энтропия меняется скачком, т. е. в общее изменение энтропии войдет вклад в виде изменения энтропии при фазовом превращении

И, наконец, последний вклад в общее изменение энтропии внесет изменение энтропии при дальнейшем нагреве уже образовавшейся жидкости

Очевидно,

Расчет энтропии при протекании химических реакций


Примеры решения задач

Пример 1 . Вычислите изменение энтропии 1 кг этиленгликоля при его нагреве от температуры 100 до 300 оС.

По справочнику определяем, что температура фазового перехода этиленгликоль (жидкость)−этиленгликоль (газ) равна 479,4 К. Переводим температуру условия задачи в термодинамическую шкалу − шкалу Кельвина и делаем вывод, что температурный интервал из условия задачи нужно разделить на два интервала. Первый от 373 К до 479,4 К характеризует состояние этиленгликоля в виде жидкости, а второй интервал от 479,4 К до 573 К будет соответствовать газообразному состоянию этиленгликоля.

С учетом сказанного и значений, приведенных в справочнике, получаем

Значение энтропии фазового превращения, т. е. значение энтропии испарения

Пример 2. Чему равна мольная энтропия этиленгликоля при 350 К.

Воспользуемся основной расчетной формулой

причем в качестве нижнего уровня отсчета возьмем абсолютное значение энтропии при 298 К и давлении 1 атм (298) стks (это справочная величина, равная 167,32 Дж/(моль. К)). Известно, что при 298 К и 350 К этиленгликоль находится в жидком состоянии, мольная изобарная теплоемкость его постоянна и равна причем в качестве нижнего уровня отсчета возьмем абсолютное значение энтропии при 298 К и давлении 1 атм (298) стks (это справочная величина, равная 167,32 Дж/(моль⋅К)). Известно, что при 298 К и 350 К этиленгликоль находится в жидком состоянии, мольная изобарная теплоемкость его постоянна и равна https://pandia.ru/text/80/204/images/image047_2.jpg" width="474" height="71">

Пример 3 . Имеется идеальный газ – бензол, его масса 0,4 кг. Он находится в состоянии 1 при температуре 600 К и давлении 2,5 атм. Его перевели в состояние 2, при котором температура равна 298 К, а давление 1 атм. Чему равны изменения мольной и полной энтропии системы при этом переходе.

Из справочника определяем коэффициенты температурной зависимости мольной изобарной теплоемкости

Находим изменение мольной энтропии идеального газа при этой температуре

https://pandia.ru/text/80/204/images/image051_4.jpg" width="266" height="65">

Поскольку расширение обратимое, то общее изменение энтропии Вселенной равно 0, поэтому изменение энтропии окружающей среды равно изменению энтропии газа с обратным знаком:

б) Энтропия. функция состояния, поэтому изменение энтропии системы не зависит от того, как совершался процесс. обратимо или необратимо. Изменение энтропии газа при необратимом расширении против внешнего давления будет таким же, как и при обратимом расширении. Но энтропия окружающей среды будет другой. Ее можно найти, рассчитав с помощью первого закона теплоту, переданную системе:

В этом выводе мы использовали тот факт, что ΔU = 0 (температура постоянна). Работа, совершаемая системой против постоянного внешнего давления 38

равна A = − p(V2−V1), а теплота, принятая окружающей средой, равна работе, совершенной системой, с обратным знаком.

Общее изменение энтропии газа и окружающей среды больше 0:

как и полагается для необратимого процесса.

Пример 5. Рассчитайте изменение энтропии 1000 г воды в результате ее замерзания при −5 оС. Энтальпия плавления льда при 0оС равна 6008 Дж/моль. Теплоемкости льда и воды считать в данном диапазоне температур постоянными и равными 34,7 и 75,3 Дж/(моль⋅К) соответственно. Объясните, почему энтропия при замерзании уменьшается, хотя процесс самопроизвольный.

О Необратимый процесс замерзания воды при температуре −5 С можно представить в виде последовательности обратимых процессов:

1) нагревание воды от −5оС до температуры замерзания (0 °С);

2) замерзание воды при 0 °С;

3) охлаждение льда от 0 до −5 °С:

Изменение энтропии системы в первом и третьем процессах (при изменении температуры) рассчитывается по формуле (18):

https://pandia.ru/text/80/204/images/image058_2.jpg" width="364" height="59">

Поскольку энтропия - функция состояния, общее изменение энтропии равно сумме по этим трем процессам:

Энтропия при замерзании убывает, хотя процесс самопроизвольный. Это связано с тем, что в окружающую среду выделяется теплота и энтропия окружающей среды увеличивается, причем увеличение больше, чем 1181 Дж/К, в результате энтропия Вселенной при замерзании воды возрастает, как и полагается в необратимом процессе.

Пример 6. В одном сосуде вместимостью 0,1 м находится кислород, в другом сосуде вместимостью 0,4 м3 . азот . В обоих сосудах температура равна 290 К и давление равно 1,013.105 Па. Найти изменение энтропии при взаимной диффузии газов из одного сосуда в другой при постоянных давлении и температуре. Считать оба газа идеальными.

Изменение энтропии определяем по формуле (74). Число молей каждого газа находим по уравнению Менделеева-Клапейрона:

https://pandia.ru/text/80/204/images/image062_1.jpg" width="432" height="54 src=">

Пример 7. Энтальпия испарения хлороформа равна 29,4 кДж/моль в нормальной точке кипения (334,88 К). Рассчитайте мольную энтропию испарения при этой температуре.

Изменение энтропии находим по формуле (25):

4. Система переходит из состояния 1 в состояние 2 двумя путями: обратимым (поглощает теплоту Qобр) и необратимым (поглощает теплоту Qнеобр). Каково соотношение между Qобр и Qнеобр? Каково соотношение между ΔSобр и ΔSнеобр?

5. Определите число микросостояний и энтропию кристалла натрия массой 2.3 г при 0 K, если он содержит три атома калия, замещающие атомы натрия в его структуре.

6. Для одного моля вещества AB рассчитайте число микросостояний и энтропию для идеального кристалла при 0 K, а также для кристалла, имеющего единственный дефект: один ион D− заменил один ион B− в узле кристаллической решетки.

7. В каком из следующих случаев а) в процессе, при котором ΔCp = 0 ; б) при обратимом изотермическом фазовом переходе; в) в адиабатическом процессе; г) в процессе при постоянном давлении?

8. Запишите выражение для расчёта изменения энтропии при фазовом переходе. Сформулируйте правило Трутона и укажите область его применения.

9. Почему на практике не используют термин «энтропия образования»? Если ввести такой термин по аналогии с энтальпией образования, то какой знак будет иметь энтропия образования: а) сахара, б) молекулярного кислорода?

10. Оцените изменение энтропии в реакции CO2(г) + 4H2(г) → CH4(г) + 2H2O(ж) при 298 K и парциальных давлениях газообразных веществ, равных 2 атм, если ΔrS o 298 = − 98 кал·моль−1·K−1. Укажите использованные допущения.

11. Найдите изменение энтропии при изотермическом расширении одног моля газа Ван-дер-Ваальса от объёма V до объёма 2V.

12. В области температур от 298 до 1000 K теплоёмкость вещества A описывается следующим уравнением: Cp = a + bT + cT 2 , где a, b и c – постоянные для вещества A. Рассчитайте изменение энтальпии и энтропии вещества при нагревании от 300 до 500 K.

13. Рассчитайте изменение энтропии при нагревании 1.5 моль Ni от 25оС до 1450оС. Мольные теплоёмкости Ni задаются уравнениями: Cp(α-Ni) =16.99 + 29.46 ⋅10−3T , Дж·моль−1·K−1, Cp(β-Ni) = 25.19 + 7.53⋅10−3T , Дж·моль−1·K−1. Температура полиморфного перехода α-Ni в β-Ni составляет 360оС, теплота перехода α→β ΔHo = 0.38 кДж·моль−1.

14. В области температур от 0 до 12 K теплоёмкость серебра хорошо описывается по «закону кубов» Дебая CV = αT 3 , причем известно экспериментальное значение теплоёмкости серебра при 12 K Cp,12. Как рассчитать изменение энтальпии и энтропии серебра при нагревании от 0 до 12 K? Можно ли рассчитать абсолютные значения H12 и S12 для серебра?

16. Запишите уравнение для расчёта энтропии смешения двух идеальных газов при постоянной температуре. Почему эта величина всегда положительна?

17. Рассчитайте изменение энтропии в изолированной системе при добавлении 100 г льда с температурой 0оС к 1000 г воды с температурой 20оС. Теплоёмкость жидкой воды составляет 4.184 Дж·г−1·K−1, теплота плавления льда равна 6.0 кДж·моль−1.

18. Рассчитайте температуру смеси и изменение энтропии в процессе смешения 3 кг воды при 353 K с 6 кг воды при 290 K. Примите, что теплоёмкость воды Cp равна 75.3 Дж·моль−1·K−1 и не зависит от температуры.

19. Лёд массой 1 г при 0оС прибавлен к 10 г воды, температура которой 100оС. Какова конечная температура смеси и чему равно изменение энтропии в этом процессе? Энтальпия плавления льда равна 80 кал·г−1, Cp воды равна 1 кал·г−1·K−1.

20. Энтальпия плавления льда при 273 K равна 1436 кал·моль−1, Cp льда и жидкой воды составляют 8.9 и 18.0 кал·моль−1·K−1 соответственно. Рассчитайте изменение энтропии в неравновесном процессе затвердевания воды при 263 K.

Вычислите изменение энтропии при плавлении трёх молей переохлажденного бензола при 270 K, если при 278.65 K его энтальпия плавления равна 2379.5 кал·моль−1, теплоёмкости жидкого и твёрдого бензола равны соответственно 30.4 и 29.5 кал·моль−1·K−1, а давление постоянно и равно 1 атм.

Литература

1. Шаповалов синергетики: Макроскопический подход М.: Фирма «Испо-Сервис» 2000. Гл.2-3

2. Базаров М.:Высш. шк. 1991. Гл.3

3. Зеленцов «ОООФизикон» 2002 Медиа-диск






Второй закон термодинамики в виде , записанный для равновесных процессов, позволяет вычислить не абсолютное значение энтропии, а только разность энтропий в двух состояниях системы.

. (2.4)

Рассмотрим для 1 моля вещества :

а) Изотермические процессы (T = const ).

При постоянной температуре протекают процессы фазовых превращений веществ: плавление, испарение и другие. При равновесном протекании этих процессов давление сохраняется обычно постоянным, поэтому
и

, (2.5)

где
– энтальпия фазового перехода.

б) Изобарные процессы (р = const ).

Если нагревание происходит при постоянном давлении, то

, (2.6)

где n – число молей вещества. Тогда

. (2.7)

Пример 2.1. Определить изменение энтропии при нагреве 1 моль Al от 25 до 600 0 С, если для него в этом интервале теплоёмкость зависит от температуры следующим образом:

, (Дж/моль К).

Решение. Согласно уравнению (2.7) имеем:

,

(Дж/моль К).

с) Изохорные процессы (V = const ).

Если нагревание происходит при постоянном объёме, то

. (2.8)

. (2.9)

Для 1 моля идеального газа справедливо :

а) При изменении объёма и температуры

, (2.10)

с учетом, что
.

б) При изменении давления и температуры

. (2.11)

Для любого вещества при любой температуре можно определить и абсолютное значение энтропии, если воспользоваться постулатом Планка : энтропия правильно образованного кристалла любого индивидуального вещества при абсолютном нуле равна нулю.

Если вещество при температуре Т находится в газообразном состоянии, то его абсолютная энтропия может быть вычислена по формуле:

2.2.2. Расчёт изменения энтропии в ходе химической реакции.

Расчёт изменения энтропии в ходе химической реакции проводится по формуле:

где
- стандартные энтропии веществ приТ = 298,15 К.

Каждое вещество характеризуется стандартной энтропией
– энтропией 1 моль вещества при 298.15 К и давлении 1 атм. Значения энтропии имеют размерность Дж/(моль К) или кал/(моль К).Стандартные энтропии простых веществ не равны нулю.

2.2.3. Расчёт изменения энтропии в ходе самопроизвольных (необратимых) процессов.

Для необратимых процессов
и уравнение (2.4) не применимо. Энтропия – функция состояния и её изменение не зависит от пути процесса, а определяется конечным и начальным состоянием системы. Изменение энтропии в любом неравновесном процессе можно вычислить, заменяя его некоторой совокупностью равновесных процессов, просходящими между теми же начальными и конечными состояниями, для каждого из которых можно рассчитать значение
. Тогда:

. (2.14)

2.3. Энергия гиббса, энергия гельмгольца. Уравнение гиббса–гельмгольца.

В изолированных системах энтропия только увеличивается и при равновесии достигает максимума. Поэтому она может быть использована в качестве критерия протекания самопроизвольных процессов в таких системах. Однако на практике большинство процессов происходит в неизолированных системах, вследствие чего для них надо выбрать свои критерии направления самопроизвольных процессов и достижения равновесия в этих системах. Такими критериями являются другие термодинамические функции, отличные от энтропии и внутренней энергии. Они подобраны таким образом, что с их помощью можно определить в явной форме все термодинамические параметры изучаемой системы. Все они являются функциями состояния и при переходе системы из одного положения в другое меняются однозначно. При достижении системой равновесного состояния каждая из функций проходит через минимальное значение. Такие свойства обуславливают широкое применение этих функций при аналитическом методе решения различных задач термодинамических исследований.

Следует отметить, что такие функции часто называют характеристическими. Характеристической функцией называется такая функция состояния системы, посредством которой и её производных могут быть выражены в явной форме все термодинамические свойства системы.

Согласно первому закону термодинамики:

A = Q dU . (2.15)

Подставив сюда извесное соотношение Q ≤ TdS, получим

A ≤ TdS dU , (2.16)

где знак равенства относится к обратимым равновесным процессам, а знак неравенства - к необратимым. Проинтегрируем (2.16) при Т = const :

A T T (S 2 – S 1) – (U 2 – U 1) = (U 1 – TS 1) – (U 2 – TS 2). (2.17)

Функция (U TS ) играет большую роль при изучении равновесия в изотермических процессах. Её называют изохорно-изотермическим потенциалом или энергией Гельмгольца и обозначают символом F . При этом для всякого изотермического процесса:

dF = dU TdS , (2.18)

∆F = ∆U T∆S , (2.19)

а максимальная работа в изотермическом процессе

(A Т ) max = ∆F . (2.20)

Функция F определяет направление и предел течения самопроизвольных процессов, протекающих при постоянных температуре и объёме.

Близкой к изохорно-изотермическому потенциалу является функция, определяющая направление и предел самопроизвольного протекания процессов для систем, находящихся при постоянных температуре и давлении. Эта функция называется изобарно-изотер-мическим потенциалом или энергией Гиббса , обозначается символом G и определяется как

G = H TS . (2.21)

G = U TS + pV = F + pV . (2.22)

Пусть р = const, тогда

A T ≤ –∆F = F 1 – F 2 , (2.23)

A T + p (V 2 – V 1) F 1 – F 2 , (2.24)

A T ≤ (F 1 +pV 1) – (F 2 + pV 2) = G 1 – G 2 , (2.25)

где A T – полезная работа (любая работа кроме работы расширения). Тогда

A T ≤ –∆G . (2.26)

При этом для изотермических процессов

, (2.27)

и максимальная работа в изотермическом процессе

, (2.29)

т.е. максимальная полезная работа равна максимальной работе изотермического процесса за вычетом работы против сил внешнего давления. Функции G и F называются термодинамическими потенциалами , потому что в определённых условиях стремятся к минимуму при протекании самопроизвольных процессов.

Пусть
, тогда

. (2.30)

1). Система при T , V = const
, т. е. ΔF ≤ 0. Условие равновесия в изохорно-изотермической системе: dF = 0, ΔF = 0, F = F min .

2). Система при р , T = const . Тогда
Условие равновесия в изобарно-изотерми-ческой системе:dG = 0, ΔG = 0, G = G min .

Вывод: в системах, находящихся при постоянных температуре и объёме, самопроизвольно могут протекать только те процессы, которые сопровождаются уменьшением энергии Гельмгольца F , причем пределом их протекания, т.е. условием равновесия, является достижение некоторого минимального для данных условий значения функции F ; в системах же, находящихся при постоянных температуре и давлении, самопроизвольно могут протекать только те процессы, которые сопровождаются уменьшением энергии Гиббса G , причём пределом их протекания, т.е. условием равновесия, служит достижение некоторого минимального для данных условий значения функции G .

Получим соотношения, которые описывают зависимость
и
от температуры. В общем случае (и для химических реакций):

Функция состояния обладает свойствами полного дифференциала, т.е. если
, то

. (2.33)

С другой стороны:

F = U TS , (2.34)

dF = dU TdS SdT . (2.35)

С учетом того, что

dU = , (2.36)

получаем

. (2.37)

При сравнении уравнений (2.37) и (2.33) видно, что


, (2.38)

. (2.39)

Аналогично для
, получаем:

, (2.40)


, (2.41)

. (2.42)

Подставляя соотношения (2.39) и (2.42) в уравнения (2.31) и (2.32), соответственно, получаем:

, (2.43)

. (2.44)

Последние два равенства и есть искомые зависимости
и
от температуры и их называютуравнениями Гиббса-Гельмгольца .

Первый закон термодинамики утверждает, что, хотя между системой и ее окружением возможна передача энергии, энергия никогда не создается и не исчезает. Таким образом, этот закон накладывает на химические и физические превращения требование сохранения энергии. Одно время полагали, что все химические реакции являются экзотермическими, другими словами, химическая реакция может осуществляться только в том случае, если система теряет энергию. Однако в настоящее время известны многие химические и физические превращения, которые являются эндотермическими. Следовательно, по одному лишь изменению энергии или энтальпии еще нельзя предсказать, будет самопроизвольно осуществляться реакция или нет. Чтобы предсказать, возможно ли самопроизвольное протекание реакции, необходимо ввести еще одну термодинамическую функцию состояния, называемую энтропией. Энтропию принято обозначать буквой S.

Энтропию можно охарактеризовать как меру хаотичности, беспорядка или неупорядоченности в системе. Например, мы уже указывали, что частицы газа в гораздо

Рис. 5.16. Самопроизвольное смешивание двух газов приводит к возрастанию энтропии, но не сопровождается суммарным изменением энергии в системе.

большей мере не упорядочены, чем частицы твердого вещества; следовательно, энтропия газов, как правило, намного больше, чем энтропия твердых веществ.

Но как, зная энтропию, можно предсказать, осуществимо ли самопроизвольно некоторое превращение? Чтобы ответить на этот вопрос, рассмотрим систему, состоящую из двух сосудов, соединенных между собой трубкой с краном (рис. 5.16). Допустим, что в этих сосудах находятся разные газы. Если открыть кран, газы начнут самопроизвольно смешиваться в результате диффузии (см. разд. 3.1). После смешивания газы окажутся в состоянии с большей степенью беспорядка, чем до смешивания. Следовательно, после смешивания они обладают большей энтропией. В этом процессе не происходит изменения энергии. Суммарная энтальпия газов до и после смешивания совершенно одинакова. Однако смешивание приводит к более хаотическому распределению энергии.

Во многих химических реакциях тоже происходит перераспределение энергии. Например, реакции горения представляют собой экзотермические процессы. В результате горения происходит выделение энергии и ее перераспределение в окружающую среду. Таким образом, можно рассматривать энтропию как меру распределенности энергии. Протекание химических реакций всегда сопровождается перераспределением энергии либо от химической системы к ее окружению, либо, наоборот, от окружения к химической системе. Таким образом, в химической реакции всегда происходит изменение энтропии. Именно это изменение энтропии наряду с изменением энтальпии в реакции необходимо учитывать, если требуется предсказать, возможно ли самопроизвольное протекание рассматриваемой химической реакции. Однако, прежде чем мы обсудим соотношение между изменениями энтропии и энтальпии и возможностью самопроизвольного протекания реакции, необходимо познакомиться со вторым законом термодинамики.

Второй закон термодинамики

Этот закон утверждает, что все самопроизвольно протекающие процессы обязательно сопровождаются увеличением суммарной энтропии системы и ее окружения. Второй закон термодинамики, возможно, является одним из наиболее общих положений всей науки в целом. Существует много различных формулировок этого закона. Но главная мысль всех этих формулировок заключается в том, что в любой изолированной системе с течением времени происходит постоянное возрастание степени беспорядка, т.е. энтропии.

Некоторые формулировки второго закона термодинамики

1. Каждая система, предоставленная сама себе, изменяется в среднем в направлении состояния с максимальной вероятностью (Г. Льюис).

2. Состояние с максимальной энтропией является наиболее устойчивым состоянием для изолированной системы (Э. Ферми).

3. При протекании любого реального процесса невозможно обеспечить средства возвращения каждой из участвующих в нем систем в ее исходное состояние (Г. Льюис).

4. Каждый физический или химический процесс в природе протекает таким образом, чтобы увеличивалась сумма энтропий всех тел, которые принимают участие в этом процессе (М. Планк).

5. Невозможна самопроизвольная передача теплоты от более холодного к более горячему телу.

6. Получение информации представляет собой уменьшение энтропии (Г. Льюис).

7. Энтропия - это стрелка времени (А. Эддингтон).

Эту формулировку следует понимать в том смысле, что по изменению энтропии можно судить о последовательности различных самопроизвольных событий. - Прим. перев.

Из второго закона термодинамики следует, что для любых самопроизвольных процессов

где полное (суммарное) изменение энтропии в результате химического или физического превращения определяется выражением

Изменения энтропии в химических реакциях

Энтропия одного моля вещества в его стандартном состоянии при соответствующей температуре называется стандартной молярной энтропией. Стандартная молярная энтропия обозначается символом и имеет размерность В табл. 5.12 указаны стандартные молярные энтропии ряда элементов и соединений при температуре Отметим, что стандартная молярная энтропия газов, как правило, имеет намного большие значения по сравнению с энтропией твердых тел. Энтропия любого фиксированного количества вещества увеличивается в такой последовательности:

Стандартные молярные энтропии иногда называют абсолютными энтропиями. Они не являются изменениями энтропии, сопровождающими образование соединения из входящих в него свободных элементов. Следует также отметить, что стандартные молярные энтропии свободных элементов (в виде простых веществ) не равны нулю.

Третий закон термодинамике утверждает, что энтропия идеального ионного кристалла при температуре абсолютного нуля (0 К) равна нулю.

Таблица 5.12. Стандартные молярные энтропии

Изменение стандартной молярной энтропии в химической реакции определяется уравнением

Вычислим стандартное молярное изменение энтропии для полного сгорания одного моля газообразного водорода при 25°С, пользуясь данными, которые приведены в табл. 5.1.

Уравнение рассматриваемой реакции имеет вид

Применяя уравнение (16), находим

Подстановка в это уравнение значений энтропии при температуре 298 К из табл. 5.12 дает

Следует обратить внимание на то, что изменение энтропии в рассмотренном примере оказывается отрицательным. Этого можно было ожидать, если учесть, что, согласно уравнению рассматриваемой реакции, суммарное количество газообразных реагентов равно 1,5 моль, а суммарное количество газообразных продуктов - только 1 моль. Таким образом, в результате реакции происходит уменьшение общего количества газов. Вместе с тем нам известно, что реакции горения принадлежат к числу экзотермических реакций. Следовательно, результатом их протекания является рассеяние энергии, а это заставляет ожидать возрастания энтропии, а не ее уменьшения. Далее, следует учесть, что горение газообразного водорода при 25°С, вызванное первоначальным инициированием, протекает затем самопроизвольно и с большой интенсивностью. Но разве не должно в таком случае изменение энтропии в данной реакции быть положительным, как того требует второй закон термодинамики? Оказывается - нет или по крайней мере не обязательно должно. Второй закон термодинамики требует, чтобы в результате самопроизвольного процесса возрастала суммарная энтропия системы и ее окружения. Вычисленное выше изменение энтропии характеризует только рассматриваемую химическую систему, состоящую из реагентов и продуктов, которые принимают участие в горении газообразного водорода при 25°С. А как же вычислить изменение энтропии для окружения этой системы?

Изменения энтропии для окружения термодинамической системы

Термодинамические соображения позволяют показать, что изменение энтропии равно отношению энергии, переданной в форме теплоты , к абсолютной температуре Т, при которой происходит эта передача энергии, т.е.

Это изменение энтропии может быть отнесено либо к системе, либо к ее окружению. Однако имеется одно условие. Тепловая энергия q должна передаваться обратимым путем. В термодинамике обратимым процессом называется такой процесс, который проводится бесконечно медленно и осторожно, так чтобы он все время находился практически в состоянии равновесия. В экзотермическом процессе энергия, теряемая системой, равна энергии, которую приобретает окружение системы. И наоборот, в эндотермическом процессе энергия, поглощаемая системой, равна энергии, которую теряет окружение системы. Поэтому можно записать

Ранее мы указывали, что при постоянном давлении энергия, передаваемая в форме теплоты в ходе химической реакции, равна изменению энтальпии . Следовательно,

Воспользуемся теперь уравнением (18) и перепишем уравнение (17) в таком виде:

Мокружсние

Суммарное изменение энтропии при протекании химической реакции

Выше было показано, что суммарное изменение энтропии при протекании самопроизвольного процесса равно сумме изменения энтропии системы и изменения энтропии окружения системы (см. уравнение (15)). Изменение энтропии в системе, где протекает химическая реакция, определяется уравнением (16), а изменение энтропии в окружении системы-уравнением (20). Теперь мы можем вычислить суммарное изменение энтропии, которым сопровождается химическое превращение, и проверить, удовлетворяет ли полученный результат второму закону термодинамики.

Вычислим полное изменение энтропии, которым сопровождается сгорание одного моля газообразного водорода при 25°С. Удовлетворяет ли результат вычисления второму закону термодинамики?

Полное изменение энтропии, которым сопровождается всякий процесс, определяется уравнением (15). Подставив в него выражение (20), получим

Полученное уравнение относится к сгоранию одного моля газообразного водорода при стандартных условиях в соответствии с химическим уравнением, приведенным в предыдущем примере.

Согласно условию задачи, .

Значение было вычислено в предыдущем примере и найдено равным

Стандартная энтальпия сгорания водорода, по данным табл. 5.2, равна

Следовательно,

Отметим, что, хотя изменение энтропии в реакционной системе отрицательно, полное изменение энтропии, которым сопровождается протекание реакции, положительно. Следовательно, результат, полученный нами, удовлетворяет второму закону термодинамики.

ЛЕКЦИЯ 11

Фазовые диаграммы

Фазой называется состояние вещества, характеризующееся тем, что оно занимает определённую область пространства, и в пределах это области параметры и свойства вещества либо остаются постоянными, либо изменяются непрерывно. Эта пространственная область отделена от других частей пространства границей. Масса вещества, содержащегося в одной фазе, с течением времени может меняться. В этом случае говорят о фазовом переходе . Фазовый переход осуществляется через границу раздела фаз. Выделяют следующие наиболее распространённые фазовые переходы:

кипение (переход вещества из жидкости в пар);

конденсация (переход вещества из пара в жидкость);

кристаллизация, затвердение (переход вещества из жидкости в твёрдое состояние);

плавление (переход вещества из твёрдого состояния в жидкость).

Фазы удобно изображать на фазовых диаграммах. Фазовая диаграмма - это плоскость с веденной на ней декартовой системой координат, по осям которой откладываются значения пары основных термодинамических параметров. Эта плоскость разбивается на ряд областей, каждая из которых представляет некоторую фазу. На фазовой диаграмме также представлены основные изолинии (линии постоянства основных термодинамических параметров: изохоры, изобары, изотермы, изоэнтропы, изоэтальпы и линии постоянной сухости.

Наиболее распространёнными являются фазовые диаграммы вида T-S, P-V, H-S, H-lgР. Рассмотрим фазовую T-S диаграмму. На рис. 31 показаны основные фазы и границы раздела фаз:



Ж - жидкость

Ж + Т- жидкость +тело

НК – надкритическая область

Г – область газаВП – влажный пар

bkc – кривая насыщения. Характеризует насыщеноt состояние вещества.

bk – линия насыщенной жидкости. Насыщенная жидкость - это жидкое состояние вещества, характеризующееся тем, что подвод сколь угодно малого количества тепла приводит к интенсивному образованию пара.

kс – линия сухого насыщенного пара . Это газовое состояние вещества, характеризующегося тем, что сколь угодно малое охлаждение приводит к началу процесса конденсации.

abc - линия тройных точек. Тройная точка - это состояние вещества характеризующегося равновесным сосуществованием сразу трёх фаз: твердой, жидкой и газовой. Равновесие фаз характеризуется тем, что между фазами отсутствует фазовый переход. При неизменных внешних условиях равновесие фаз может сосуществовать сколько угодно. Для того, чтобы две фазы находились в состоянии равновесия, необходимо выполнение трёх условий: 1)фазы должны иметь одинаковое давления; 2) фазы должны обладать одинаковыми температура; 3) фазы должны обладать химическим потенциалом.

be – линия начала процесса затвердевания или окончания процесса плавления.

аd - линия окончания процесса затвердевания или начала процесса плавления.

dek – изотерма критической температуры.

P=P кр – критическая изобара.

k – критическая точка . Характеризуется тем, что при температуре, выше критической, невозможно получить жидкость с помощью изотермического сжатия. Критическое давление и температура – это давления и температура ниже критической точки.

Область Г – область газа . Эта область находится при давлении ниже критического, и температуре выше критической. Область газа характеризуется тем, что состояние газа в этой области описывается уравнением состояния идеального газа.

Область ПП - область перегретого пара . Располагается при температуре ниже критической и справа от линии kc. Эта область характеризуется тем, что в ней поведение вещества описывается уравнением Ван- дер- Ваальсом или модифицированным уравнением идеального газа

, (130)

где z- коэффициент сжимаемости (поправочный коэффициент, учитывающий отклонение поведения реального веществ от идеального газа).

Область Ж+П - область влажного пара . Ограничивается кривой насыщения и линией тройных точек. Это двухфазная область, характеризуемая равновесным состоянием насыщенного пара и насыщенной жидкости. Эта область протекания процессов конденсации и кипения.

Область Ж. - область переохлажденной жидкости . Она ограничена сверху критической изотермой, справа - линией насыщенной жидкости, слева - линией начала кристаллизации.

Область Т+Ж - двухфазовая область равновесного сосуществования жидкой фазы и твердой. Эта область протекания процессов затвердевания (кристаллизации) плавления.

Область Т+П - двухфазовая область равновесного сосуществования насыщенного пара и твердого тела. Сверху эта область ограничена линией тройных точек. Тройной точкой называется состояние равновесия сразу трёх агрегатных состояний. Эта область протекания процессов сублимации и десублимации. Сублимацией называют процесс перехода твёрдой фазы в газообразную. Десублимацией называют процесс перехода насыщенного пара в твёрдую фазу.

Область НК – область надкритического состояния вещества. Располагается при давлении и температуре выше критических. Характеризуется тем, что вещество в этом состоянии обладает свойствами и жидкости, и газа.

На рис. 32 показаны линии основных процессов.


Изобары, соответствующие давлениям Р 1 , Р 2 , Р 3 =Р кр и Р 4 , изображены сплошными линиями. При этом между этими давлениями выполняются соотношения Р 1 <Р 2 <Р 3 <Р 4 . Следует отметить, что процессы, что процессы, протекающие в двухфазных областях, изображаются горизонтальными линиями, т.е. эти изобарные процессы одновременно являются изотермическими. Изобара с давлением Р 4 лежит выше критической точки не проходит через область влажного пара, а сразу из области надкритического состояния попадает в область переохлаждённой жидкости. Изобара с давлением Р 1 лежит ниже линии тройных точек, также не проходит через область влажного пара, а из области перегретого пара попадает в область твёрдого состояния вещества посредством процесса десублимации. Изобара с давлением Р 3 касается критической точки. Изобара с давлением Р 2 , проходя через область влажного пара, реализует процесс кипения или конденсации.

Изохоры в v 1 и v 2 (v 1 >v 2) изображённые штриховыми линиями, располагаются в T-S диаграмме более круто, чем изобары. Следует отметить, что в двухфазных областях изохоры не совпадают с изотермами, т.е. не горизонтальны.

Изоэнтальпы h 1 , h 2 и h 3 (h 1 >h 2 >h 3) изображены пунктирными линиями. Можно обратить внимание на то, что с понижением температуры угол наклона изоэнтальпы к оси S возрастает.

Влажный пар

Влажный пар – это состояние вещества, при котором находятся в равновесии насыщенный пар и насыщенная жидкость. Равновесие обусловлено равенством их температур и давлений. Область влажного пара находит наибольшее применение в теплоэнергетических и низкотемпературных устройствах, т.к. в этой области наиболее легко реализовать важные в технических приложениях процессы (изотермический).

Область влажного пара, изображённая в T-S диаграмме, представлена на рис. 33.


Точка «а» характеризует состояние влажного пара, при котором в определенных массовых долях находятся в равновесии насыщенная жидкость и насыщенный пар.

Насыщенный пар находится в состоянии , а состояние насыщенной жидкости характеризуется точкой . Пусть влажный пар а в состоянии точки а занимает некоторый объём , где m- масса влажного пара; v a - удельный объём влажного пара. Этот же объём можно рассматривать как сумму объёмов насыщенной жидкости и насыщенного пара

, (131)

где - объём насыщенной жидкости;

Объём насыщенного пара;

Масса насыщенной жидкости;

Масса насыщенного пара;

Удельный объём насыщенной жидкости в состоянии точки ;

Удельный объём насыщенного пара в состоянии точки .

При этом очевидно соотношение

Деля в последнем выражении обе части равенства на m, получим уравнение, выражающее удельный объём влажного пара через удельные объёмы насыщенной жидкости и насыщенного пара

. (133)

В этом выражении - степень сухости влажного пара, которая показывает массовую долю насыщенного пара во влажном паре. Если x=1, то влажный пар полностью состоит из насыщенного пара. Если x=0, то влажный пар полностью состоит из насыщенной жидкости. Степень сухости может принимать любые значения из интервала от 0 до 1. Совокупность всех точек области влажного пара на T-S диаграмме, обладающие одним значением степени сухости, называются линиями постоянной сухости (см. рис. 33).

Точно такими же рассуждениями, используя свойство аддитивности энтальпии и энтропии, можно получить выражения

, (134)
, (135)

где - удельная энтальпия насыщенной жидкости в состоянии точки ;

Удельная энтальпия насыщенного пара в состоянии точки ;

Удельная энтропия насыщенной жидкости в состоянии точки ;

Удельная энтропия насыщенного пара в состоянии точки .

Выразим из последнего уравнения х

. (136)

Из этой формулы следует, что для увеличения степени сухости, нужно увеличивать энтропию , т.е. подводить теплоту к влажному пару. При этом доля насыщенной жидкости будет сокращаться, а насыщенного пара возрастать. Параметры же насыщенной жидкости и насыщенного пара при этом меняться не будут. Такой процесс называется кипением. Если отводить теплоту от влажного пара, то энтропия будет уменьшаться, а значит степень сухости будет понижаться, т.е. вещество будет переходить из состояния насыщенного пара в состояние насыщенной жидкости. Такой процесс называется конденсацией.

Для того, чтобы 1 кг насыщенной жидкости полностью перевести в состояние сухого насыщенного пара, необходимо подвести некоторое количество тепла, которое называется удельной теплотой парообразования r, .

В изобарном процессе, которым являются кипение или конденсация, подведенная или отведенная теплота равна изменению энтальпии. Поэтому справедливо соотношение

ЛЕКЦИЯ 12

Термодинамический цикл

Термодинамическим циклом называется замкнутый термодинамический процесс, т.е. процесс, в результате осуществления которого система возвращается в исходное состояние. Можно дать другое определение термодинамическому циклу как последовательности термодинамических процессов, выполнение которых приводит систему в исходное состояние. Запишем первый закон термодинамики для замкнутой системы в виде

Поскольку система возвращается в исходное состояние, то . В результате получается обобщённое уравнение термодинамического цикла

где Q 1 - суммарная теплота, подведенная в цикле к системе;

Q 2 - суммарная теплота, отведенная в цикле от системы.

Подставляя (140) в (139), получим

. (141)

В этом выражении отведённая теплота берётся положительной, т.к. знак отводимой теплоты учтён в формуле минусом перед Q 2 .

Уравнение (141)позволяет классифицировать термодинамические циклы на два вида:

1. если , то и цикл называется прямым;

2. если , то и цикл называется обратным.

Прямой цикл

Прямой цикл также называют теплосиловым. Это цикл, в результате осуществления которого система производит, т.е. совершает, работу за счёт подводимого к системе тепла.

Принципиальная схема устройства, реализующего прямой, или теплосиловой, цикл представлена на рис. 34.

На этом рисунке:

ТДС(М) –термодинамическая система (машина) которая совершает цикл;

ГИ – горячий источник с температурой T ГИ. Под ним понимается совокупность тел окружающей среды, которые передают теплоту Q 1 термодинамической системе.

ХИ – холодный источник, или холодильник, с температурой Т ХИ. Это совокупность тел окружающей среды, которым система, совершая цикл, отдает теплоту Q 2 . Для того, чтобы схема, представленная на рис. 34, могла быть реализована, холодный источник должен иметь температуру Т ХИ,меньшую, чем температура горячего источника Т ГИ (Т ХИ <Т ГИ). Кроме того, температура холодного источника должна быть меньше минимальной температуры системы в цикле, а температура горячего источника должна быть больше максимальной температуры системы.


Рис. 35. Рис. 36.

На рис. 35 изображён теплосиловой цикл в Т-S диаграмме. Процесс 1а2 сопровождается подводом тепла Q 1 , т.к. энтропия возрастает. При этом подведённая теплота равна площади под линией 1а2. В процессе 2b1 теплота Q 2 отводится, т.к. энтропия уменьшается, и эта теплота равна площади под линией 2b1. Из рисунка видно, что площадь фигуры m1a2n больше площади m1b2n, поэтому Q 1 >Q 2 , и этот цикл прямой. В итоге разность подведённой и отведённой теплот равна работе цикла, и равна площади цикла.

На рис. 36 изображён теплосиловой цикл в P-V диаграмме. Процесс 1а2 сопровождается совершением работы L 1 a 2 , т.к. объём в этом процессе возрастает. При этом совершённая работа равна площади под линией 1а2. В процессе 2b1 работа L 2 b 1 затрачивается, т.к. объём уменьшается, и эта работа равна площади под линией 2b1. Из рисунка видно, что площадь фигуры m1a2n больше площади m1b2n, поэтому L 1 a 2 >L 2 b 1 , и этот цикл прямой. В итоге, разность совершённой и затраченной работ равна работе цикла и равна площади, ограниченной циклом.

Любой цикл, и прямой и обратный, характеризует коэффициент эффективности который оценивает эффективность процесса преобразования энергии

Т.к., в силу определения прямого цикла, , то КПД всегда меньше единице. Процесс преобразования тепловой энергии в полезную работу в цикле тем эффективнее, чем ближе значение КПД цикла к единице.

Обратные циклы

Обратным называется цикл, в котором подведённая теплота меньше отведённой . В итоге работа обратного цикла является отрицательной, т.е. для его реализации необходимо затратить работу.

Принципиальная схема устройства, реализующего обратный, цикл представлена на рис. 37.


Рис. 38. Рис. 39.

На рис. 38 изображён обратный цикл в Т-S диаграмме. Процесс 1а2 сопровождается подводом тепла Q 1 , т.к. энтропия возрастает. При этом подведённая теплота равна площади под линией 1а2. В процессе 2b1 теплота Q 2 отводится, т.к. энтропия уменьшается, и эта теплота равна площади под линией 2b1. Из рисунка видно, что площадь фигуры m1a2n меньше площади m1b2n, поэтому Q 1

На рис. 39 изображён обратный цикл в P-V диаграмме. Процесс 1а2 сопровождается совершением работы L 1 a 2 , т.к. объём в этом процессе возрастает. При этом совершённая работа равна площади под линией 1а2. В процессе 2b1 работа L 2 b 1 затрачивается, т.к. объём уменьшается, и эта работа равна площади под линией 2b1. Из рисунка видно, что площадь фигуры m1a2n меньше площади m1b2n, поэтому L 1 a 2

Обратные термодинамические циклы делятся на три вида:

1. холодильные циклы;

2. циклы теплового насоса;

3. комбинированные циклы.

Холодильный цикл изображён на рис. 40 под римской цифрой I. Это обратный цикл, в котором работа затрачивается для того, чтобы отвести теплоту Q 1 от охлаждаемого объекта, находящегося при температуре Т ОО ниже температуры окружающей среды Т ОС.


Холодильные циклы реализуются в низкотемпературных установках, в частности, в бытовых холодильниках. В этом случае теплота Q 1 , подводимая к рабочему веществу (фреону), – это теплота, отводимая от продуктов, находящихся в морозильной камере.

Цикл теплового насоса II - это обратный цикл, в котором работа затрачивается для подвода тепла Q 2 к нагреваемому объекту, находящемуся при температуре Т НО выше температуры окружающей среды Т ОС. Это цикл реализуют бытовые кондиционеры, работающие в режиме обогрева помещения. Нагреваемым объектом в этом случае является комнатный воздух. Температура нагреваемого объекта - это комнатная температура. В качестве окружающей среды выступает наружный воздух с низкой температурой. Теплота Q 2 , идущая на нагрев помещения в этом случае и определяемая по выражению (144), больше теплоты, которая подводилась бы при нагреве помещения электрическим нагревателем, в котором в тепловую энергию превращается электрическая энергия L.

Комбинированный цикл III – это обратный цикл, в котором работа затрачивается для отвода тепла Q 1 от охлаждаемого объекта, находящемуся при температуре Т ОО ниже температуры окружающей среды, и одновременному подводу тепла Q 2 к нагреваемому объекту, находящемуся при температуре ТНО выше температуры окружающей среды. Устройством, реализующем комбинированный цикл, является бытовой холодильник, находящийся в жилом помещении. В свою очередь, с наружи этого помещения находится воздух с низкой температурой. В этом случае объектом нагрева, которому подводится теплота Q 2 (отводимая от цикла), является воздух, находящийся в помещении с комнатной температурой. Объектом охлаждения служат продукты, находящиеся в морозильной камере, от которых отводится теплота Q 1 и которая подводится к фреону, циркулирующему в холодильнике.

Коэффициент эффективности холодильного цикла называется холодильным коэффициентом ε. Полезной энергий в этом случае является теплота Q 1 , отводимая от охлаждаемого объекта и подводимая к рабочему веществу, совершающему цикл. Затраченной энергией является подводимая работа L. Поэтому

Из этого выражения видно, что отопительный коэффициент всегда больше единицы, причём цикл теплового насоса тем эффективнее, чем большее значение принимает μ над единицей.

Коэффициент эффективности комбинированного цикла не имеет специального названия и обозначается k. Полезной энергий в этом случае является теплота Q 1 , отводимая от охлаждаемого объекта, и одновременно теплота Q 2 , подводимая к нагреваемому объекту. Затраченной энергией является подводимая работа L. Поэтому

. (147)

Из этого выражения видно, что коэффициент эффективности комбинированного цикла заведомо больше единицы,

ЛЕКЦИЯ 13

Обратимый цикл Карно

Все циклы, и прямые и обратные, делятся на 2 типа: обратимые и необратимые. Обратимым циклом называется цикл, состоящий только из обратимых процессов. Необратимый цикл – это цикл, в котором присутствует хотя бы один необратимый процесс. Для того, чтобы процесс был обратимый он должен быть равновесный, т.е. должен протекать с бесконечной малой скоростью. Это возможно только в том случае, если разность потенциалов взаимодействующие с системой и окружающей средой будут бесконечно малыми. Для термодинамической системы это означает, что при обратимом теплообмене с окружающей средой разность температуры системы и окружающей среды должна быть бесконечно малой величиной, т.е. должно отсутствовать термическое сопротивление между системой и окружающее средой. Обратимое расширение и сжатие возможно в случае бесконечно малой разности давления между системой и окружающей средой. Это возможно только тогда, когда в системе отсутствует трение. Из этого следует, что в термомеханической системе существует два источника необратимости:

1. наличие термического сопротивления между различными частями системы, что приводит к конечной разности температуры при теплообмене;

2. наличие трения в системе (либо между системой и окружающей средой), которое приводит к конечной разности давлений.

Из всех термодинамических циклов обратимый цикл Карно (прямой) выделяют на том основании, что для заданной разности температур между горячим и холодным источниками обратимый цикл Карно имеет максимально возможный КПД.

Обратимый цикл Карно, изображённый на рис. 41 и рис. 42, состоит из двух адиабат и двух изотерм.


Рис. 41. Рис. 42

1-2 – процесс адиабатного расширения. В этом процессе совершается работа L 12 .

2-3 – процесс изотермического сжатия. В этом процессе затрачивается работа L 23 и отводится теплота Q 23 .

3-4 – процесс адиабатного сжатия. В этом процессе затрачивается работа L 34 .

4-1 – процесс изотермического расширения. В этом процессе совершается работа L 41 и подводится теплота Q 41 .

Основными процессами цикла являются процессы 4-1 и 1-2. В них производится работа цикла. Остальные процессы являются вспомогательными и направлены на то, чтобы с наименьшими затратами энергии вернуть систему в исходное состояние 4.

Определим КПД обратимого цикла Карно η ОЦК:

По определению КПД (143)

Подставляя эти выражения в (148) и сокращая на разность энтропий, получим

Исходя из тех же соображений, получим

Это формула показывает, что КПД обратимого цикла Карно не зависит от свойств рабочего тела, совершающего цикл Карно, и определяется только температурами горячего и холодного источников . Этот вывод является формулировкой первой теоремы Карно .

Разность энтропий в двух состояниях вычисляется особенно просто, если обратимый переход из одного состояния в другое происходит при постоянной температуре. Это имеет место, например, при переходах из одного агрегатного состояния в другое, при фазовых переходах. Равновесные фазовые превращения (испарение, плавление, возгонка и т.д.) происходят в условиях постоянства температуры и давления. Эти процессы возможны только при подведении (или отводе) теплоты, затрачиваемой на проведения процесса.

Тогда формула (5) принимает вид

где - скрытая теплота фазового превращения. Формула (16) приложима для вычисления энтропии при обратимом плавлении тел, испарении, возгонке и т.д. При постоянном давлении скрытая теплота превращения равна изменению энтальпии. То есть, например, для фазового превращения - испарения формула (16) примет вид

, (17)

где
- энтальпия испарения, Дж;
- температура кипения, К.

4. Изменение энтропии идеального газа

4.1. Изменение энтропии чистого идеального газа при переходе его из одного состояния в другое

Рассмотрим принципы расчета изменений энтропии чистого идеального газа. Известно, что внутренняя энергия связана с изохорной теплоемкостью соотношением

(18)

Для закрытой системы без химического превращения фундаментальное уравнение Гиббса запишется как

(19)

Выразим в явном виде зависимость
:

. (20)

Или с учетом (18):

(21)

В зависимости от того, какие переменные мы примем за независимые в этом уравнении, у нас получится три разных выражения для расчета изменения энтропии идеального газа при переходе из одного состояния в другое. Примем для простоты, что теплоемкость не зависит от температуры в исследуемом интервале температур (от до), т. е.
. Учтем также, что мольная теплоемкость связана с полной теплоемкостью системы соотношением

, (22)

где - число молей вещества в системе, моль;- мольная изохорная теплоемкость, Дж/(К·моль).

1. Независимые переменные и:

Из уравнения (21) с использованием уравнения (22) и уравнения состояния идеального газа

(23)

получим уравнение

, (24)

которое после интегрирования в пределах от дои отдопримет вид

(25)

2. Независимые переменные и. Выразим в (21) объем через давление и температуру, тогда

(26)

Интегрирование (26) с учетом уравнения (13) дает другую форму выражения энтропии

(27)

3. Независимые переменные и. Аналогичным образом, используя уравнение состояния, выразим температуру через давление и объем.

(28)

Отсюда с учетом (13) после интегрирования:

(29)

4.2. Смешение идеальных газов при постоянных

температуре и давлении

Если молей одного идеального газа, занимающего объем, смешиваются смолями другого идеального газа, занимающего объем, то общий объем системы будет
, причем газы расширяются независимо друг от друга и занимают весь объем, поэтому общее изменение энтропии равно сумме изменений энтропии каждого газа:

(30)

Уравнение (30) можно записать иначе, используя определительное выражение для мольной доли компонента

(31)

Так как мольные доли всегда меньше единицы, то изменение энтропии всегда положительно, то есть идеальные газы всегда смешиваются необратимо.

Если же при тех же условиях смешиваются две порции одного и того же идеального газа, то уравнение (32) неприменимо. Никаких изменений в системе при смешивании не наблюдается, и изменение энтропии должно быть равно нулю. Тем не менее, формула (32) не содержит никаких индивидуальных параметров газа, поэтому, казалось бы, должна быть применима и к смешению одинаковых газов. Это противоречие называют парадоксом Гиббса .



Случайные статьи

Вверх