Замедленный свет. Скорость света в среде. Что такое скорость света

Скоростью света называют расстояние, которое свет проходит за единицу времени. Эта величина зависит от того, в каком веществе распространяется свет.

В вакууме скорость света равна 299 792 458 м/с. Это наивысшая скорость, которая может быть достигнута. При решении задач, не требующих особой точности, эту величину принимают равной 300 000 000 м/с. Предполагается, что со скоростью света в вакууме распространяются все виды электромагнитного излучения: радиоволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение, гамма-излучение. Обозначают её буквой с .

Как определили скорость света

В античные времена учёные считали, что скорость света бесконечна. Позднее в учёной среде начались дискуссии по этому вопросу. Кеплер, Декарт и Ферма были согласны с мнением античных учёных. А Галилей и Гук полагали, что, хотя скорость света очень велика, всё-таки она имеет конечное значение.

Галилео Галилей

Одним из первых скорость света попытался измерить итальянский учёный Галилео Галилей. Во время эксперимента он и его помощник находились на разных холмах. Галилей открывал заслонку на своём фонаре. В тот момент, когда помощник видел этот свет, он должен был проделать те же действия со своим фонарём. Время, за которое свет проходил путь от Галилея до помощника и обратно, оказалось таким коротким, что Галилей понял, что скорость света очень велика, и на таком коротком расстоянии измерить её невозможно, так как свет распространяется практически мгновенно. А зафиксированное им время показывает всего лишь быстроту реакции человека.

Впервые скорость света удалось определить в 1676 г. датскому астроному Олафу Рёмеру с помощью астрономических расстояний. Наблюдая с помощью телескопа затмения спутника Юпитера Ио, он обнаружил, что по мере удаления Земли от Юпитера каждое последующее затмение наступает позже, чем было рассчитано. Максимальное запаздывание, когда Земля переходит на другую сторону от Солнца и удаляется от Юпитера на расстояние, равное диаметру земной орбиты, составляет 22 часа. Хотя в то время точный диаметр Земли не был известен, учёный разделил его приблизительную величину на 22 часа и получил значение около 220 000 км/с.

Олаф Рёмер

Результат, полученный Рёмером, вызвал недоверие у учёных. Но в 1849 г. французский физик Арман Ипполит Луи Физо измерил скорость света методом вращающегося затвора. В его опыте свет от источника проходил между зубьями вращающегося колеса и направлялся на зеркало. Отражённый от него, он возвращался назад. Скорость вращения колеса увеличивалась. Когда она достигала какого-то определённого значения, отражённый от зеркала луч задерживался переместившимся зубцом, и наблюдатель в этот момент ничего не видел.

Опыт Физо

Физо вычислил скорость света следующим образом. Свет проходит путь L от колеса до зеркала за время, равное t 1 = 2L/c . Время, за которое колесо делает поворот на ½ прорези, равно t 2 = T/2N , где Т - период вращения колеса, N - количество зубцов. Частота вращения v = 1/T . Момент, когда наблюдатель не видит света, наступает при t 1 = t 2 . Отсюда получаем формулу для определения скорости света:

с = 4LNv

Проведя вычисления по этой формуле, Физо определил, что с = 313 000 000 м/с. Этот результат был гораздо точнее.

Арман Ипполит Луи Физо

В 1838 г. французский физик и астроном Доминик Франсуа Жан Араго́ предложил использовать для вычисления скорости света метод вращающихся зеркал. Эту идею осуществил на практике французский физик, механик и астроном Жан Берна́р Лео́н Фуко́, получивший в 1862 г. значение скорости света (298 000 000±500 000) м/с.

Доминик Франсуа Жан Араго

В 1891 г. результат американского астронома Са́ймона Нью́кома оказался на порядок точнее результата Фуко. В результате его вычислений с = (99 810 000±50 000) м/с.

Исследования американского физика Альберта Абрахама Майкельсона, использовавшего установку с вращающимся восьмигранным зеркалом, позволили ещё точнее определить скорость света. В 1926 г. учёный измерил время, за которое свет проходил расстояние между вершинами двух гор, равное 35,4 км, и получил с = (299 796 000±4 000) м/с.

Наиболее точное измерение было проведено в 1975 г. В этом же году Генеральная конференция по мерам и весам рекомендовала считать скорость света, равной 299 792 458 ± 1,2 м/с.

От чего зависит скорость света

Скорость света в вакууме не зависит ни от системы отсчёта, ни от положения наблюдателя. Она остаётся постоянной величиной, равной 299 792 458 ± 1,2 м/с. Но в различных прозрачных средах эта скорость будет ниже его скорости в вакууме. Любая прозрачная среда имеет оптическую плотность. И чем она выше, тем с меньшей скоростью распространяется в ней свет. Так, например, скорость света в воздухе выше его скорости в воде, а в чистом оптическом стекле меньше, чем в воде.

Если свет переходит из менее плотной среды в более плотную, его скорость уменьшается. А если переход происходит из более плотной среды в менее плотную, то скорость, наоборот, увеличивается. Этим объясняется, почему световой луч отклоняется на границе перехода двух сред.

Ограничение скорости на большинстве автострад от 90 до 110 километров. Хотя в вакууме космического пространства нет дорожных указателей, но и там есть ограничение скорости - это 1080000000 километров в час.

Самая большая скорость в природе

Это самая большая скорость света в природе. Ученые обычно приводят скорость света в километрах в секунду - 300 000 километров в секунду. Свет состоит из фотонов. Именно они могут летать с такой сумасшедшей скоростью.

Своеобразные частицы – фотоны

Ученые называют фотоны частицами. Но это очень своеобразные частицы. У них нет массы покоя, то есть, в обычном смысле у них нет веса. Трудно себе представить что – то такое реальное, что было бы чистой энергией и не содержало бы ни крупицы вещества. Фотоны и есть такая реальность. сравнить предельную скорость фотонов с теми скоростями, которые мы привыкли считать большими.

Космический корабль, летящий со скоростью света, для стороннего наблюдателя не имел бы линейных размеров. Возьмем, например, ракету «Пионер», построенную для полетов за пределами Солнечной системы. Так вот, покидая пределы Солнечной системы, «Пионер» имел скорость 60 километров в секунду. Неплохо! Расстояние от Нью-Йорка до Сан-Франциско он мог бы покрыть за полторы минуты. Но в сравнении со скоростью фотона в 300 000 километров в секунду, скорость «Пионера» выглядит просто черепашьей. Или посмотрим, с какой скоростью перемещается в пространстве Солнце.

Материалы по теме:

Почему светят звезды?

Зато время, что вы читаете это предложение, Солнце, Земля и прочие восемь планет нашей Солнечной системы несутся вокруг Млечного Пути, как карусельные лошадки, со скоростью 230 километров в секунду (при этом сами-то мы совершенно не замечаем, что летим с такой невероятной скоростью). Но и эта огромная скорость очень мала по сравнению со скоростью света и составляет около одного ее процента.

Скорость света и предметы

Если разогнать обычный предмет до около световой скорости, с ним начнут происходить необыкновенные приключения. При достижении телом таких скоростей наблюдатель отметит изменение линейных размеров и массы предмета. Даже время начнет меняться. Космический корабль, летящий со скоростью 90 процентов скорости света, уменьшится в размерах приблизительно наполовину. При увеличении скорости он будет уменьшаться все сильнее и сильнее, пока при достижении скорости света он совершенно не потеряет свои линейные размеры.

Свет – одно из ключевых понятий оптической физики. Свет представляет собой электромагнитное излучение, доступное человеческому глазу.

Долгие десятилетия лучшие умы бились над проблемой определения, с какой скоростью движется свет и чему она равна, а также всех сопутствующих ему расчетов. В 1676 в кругу физиков произошла революция. Датский астроном, по имени Оле Ремер, опроверг утверждение, что свет распространяется по вселенной с неограниченной скоростью.

В 1676 году Оле Ремер определил, что скорость света в вакууме составляет 299792458 м/с .

Для удобства эту цифру принялись округлять. Номиналом, равным 300000 м/c, пользуются до сих пор.

Данное правило в обычных для нас условиях касается всех объектов без исключения, в том числе рентгеновских лучей, световых и гравитационных волн осязаемого для наших глаз спектра.

Современные физики, изучающие оптику, доказали, что значение скорости света имеет несколько характеристик:

  • постоянство;
  • недостижимость;
  • конечность.

Скорость света в разных средах

Следует помнить, что физическая константа напрямую зависит от окружающей её среды, в особенности от показателя преломления. В связи с этим точная величина способна меняться, ведь она обусловлена частотами.

Формула вычисления скорости света записывается как с = 3 * 10^8 м/с .

Вас заинтересует

Скорость света в воде разнится с тем же показателем в вакууме. Чтобы узнать её величину, необходимо число 299 792 458 поделить на 1.33. В итоге получится цифра 225407 км/с — это и есть скорость распространения света в воде.

Скорость распространения света в воздухе в км составляет 1 079 252 848,8 (или 299700 км/сек) . Для её нахождения необходимо скорость света в вакууме поделить на коэффициент преломления воздуха. Ответ может быть выведен как в км в час, так и метрах в секунду.

Скорость света – максимально возможная величина?

Многие школьники и студенты задаются вопросом: какая скорость больше скорости света? Есть ли такая вообще? Ответ однозначен: нет!

Скорость распространения света в вакууме считается недосягаемой величиной. Ученые не пришли к единому мнению, что же может происходить с атомами, достигающими этого предела.

Помимо прочего, исследователи выявили, что частица, обладающая массой, может приблизиться к скорости светового луча. Но она не может догнать ее и тем более превысить. Максимальная скорость света пока остается неизменна.

Самый приближенный числовой показатель был достигнут при исследовании космических лучей. Их разгоняли в специально оборудованных ускорителях частиц, беря в расчет длину волны.

Почему же эта цифра так важна? Дело в том, что вакуум обволакивает все космическое пространство. Зная, как свет ведет себя в вакууме, мы можем представить, какова предельная скорость передвижения в нашей Вселенной.

По какой причине невозможно двигаться быстрее света?

Так из-за чего же константа СРС не может быть преодолена в обычных условиях? Исходя из теории, можно смело утверждать, что в ситуации превышения будет нарушен фундаментальный закон построения мира, если говорить конкретно — закон причинности. Согласно этому закону, следствие не в силах опередить свою причину.

Рассмотрим этот парадокс на конкретном примере: не может случиться так, что олень сначала упадет замертво, а уже после произойдёт выстрел охотника, застреливший его. Так вот и при повышении СРС разворачиваемые действия должны начинаться в обратной последовательности. В итоге время должно пойти вспять, а это противоречит всем устоявшимся законам физики.

Эйнштейн и вакуум: конечные результаты расчета

В настоящее время большинство людей на планете знают, что максимально допустимой величиной передвижения материальных объектов и различных сигналов является скорость света в вакууме. А кто же первым додумался до этого?

Мысль о невозможности превысить значение скорости света выразил великий физик Альберт Эйнштейн. Он оформил свои наблюдения и назвал их теорией относительности.

Величайшая теория Эйнштейна до сих пор незыблема. Она останется таковой до момента, пока не будут предъявлены реальные доказательства того, что передать сигнал возможно на скорости, превышающей СРС в вакууме. Этот момент может никогда не наступить.

Однако уже было проведено несколько исследований, предвещающих разлад с некоторыми пунктами самой известной теории Эйнштейна. Измерение сверхсветовых скоростей уже возможно при заданных условиях. Примечательно то, что теория относительности не нарушается полностью.

Скорость света — самая необычная величина измерения, которая известна на сегодняшний момент. Первым человеком, который попытался объяснить феномен распространения света, был Альберт Эйнштейн. Именно он вывел всем известную формулу E = mc ² , где E — это полная энергия тела, m — масса, а c — скорость света в вакууме.

Формула была впервые опубликована в журнале Annalen der Physik в 1905 году. Примерно в то же время Эйнштейн выдвинул теорию о том, что будет происходить с телом, перемещающимся с абсолютной скоростью. Исходят из того, что скорость света — величина неизменная, он пришёл к выводу, что должны изменяться пространство и время.

Таким образом, при световой скорости предмет будет бесконечно сжиматься, его масса бесконечно увеличиваться, а время практически остановится.

В 1977 году удалось вычислить скорость света, была названа цифра в 299 792 458 ± 1,2 метров в секунду. Для более грубых расчетов всегда принимается значение в 300 000 км/с. Именно от этой величины и отталкиваются все остальные космические измерения. Так появилось понятие «светового года» и «парсека» (3,26 световых лет).

Ни двигаться со скоростью света, ни, тем более, преодолеть её — невозможно. По крайней мере, на данном этапе развития человечества. С другой стороны, писатели-фантасты уже порядка 100 лет пытаются решить эту проблему на страницах своих романов. Возможно, однажды фантастика станет реальностью, ведь еще в XIX веке Жюль Верн предсказал появление вертолёта, самолёта и электрического стула, а тогда это была чистая фантастика!

Свет во все времена занимал немаловажное место в выживании людей и создании ими развитой цивилизации, которую мы видим на сегодняшний день. Скорость света на протяжении всей истории развития человечества будоражила умы сначала философов и естествоиспытателей, а потом ученых и физиков. Это основополагающая константа существования нашей Вселенной.

Многие ученые в разные времена стремились выяснить, чему равняется распространения света в разнообразных средах. Наибольшее значение для науки имело вычисление значения, которое имеет скорость света в вакууме. Данная статья поможет вам разобраться в этом вопросе и узнать много интересного о том, как ведет себя свет в вакууме.

Свет и вопрос скорости

Свет в современной физике играет ключевую роль, ведь, как выяснилось, преодолеть значение его скорости на данном этапе развития нашей цивилизации невозможно. Много лет потребовалось для того, чтобы измерить, чему равна скорость света. До этого ученые провели немало исследований, пытаясь дать ответ на самые важный вопрос «чему равна скорость распространения в вакууме света?».
На данный момент времени ученые доказали, что скорость распространения света (СРС) обладает следующими характеристиками:

  • она постоянна;
  • она неизменна;
  • она недостижима;
  • она конечна.

Обратите внимание! Скорость света на текущий момент развития науки является абсолютно недостижимой величиной. У физиков существуют только некоторые предположения, что происходит с объектом, который гипотетически достигает значения скорости распространения светового потока в вакууме.

Скорость светового потока

Почему же так важно, с какой быстротой продвигается свет в вакууме? Ответ прост. Ведь вакуум находится в космосе. Поэтому узнав, какой цифровой показатель имеет скорость света в вакууме, мы сможем понять, с какой максимально возможной быстротой можно перемещаться по просторам Солнечной системы и за ее пределами.
Элементарными частичками, которые переносят свет в нашей Вселенной, являются фотоны. А быстрота, с которой продвигается свет в вакууме, считается абсолютной величиной.

Обратите внимание! Под СРС подразумевается быстрота продвижения электромагнитных волн. Интересно, что свет одномоментно являет собой элементарные частицы (фотоны) и волну. Это следует из корпускулярно-волновой теории. Согласно ней при определенных ситуациях свет ведет себя подобно частице, а при других – подобно волне.

На данный момент времени распространение света в космосе (вакууме) считается фундаментальной постоянной, которая не зависит от выбора используемой инерциальной системы отсчета. Данное значение относится к физическим фундаментальным постоянным. При этом значение СРС характеризует в целом основные свойства геометрии пространства-времени.
Современные представления характеризуют СРС как константу, которая является предельной допустимым значением для движения частиц, а также распространения их взаимодействия. В физике эта величина обозначается латинской буквой «с».

История изучения вопроса

В древние времена, как ни удивительно, еще античные мыслители задавались вопросом распространения света в нашей вселенной. Тогда считалось, что это бесконечная величина. Первую оценку физическому явлению скорости света дал Олаф Ремер лишь в 1676 г. Согласно его расчетам распространение света составляло примерно 220 тысяч км/с.

Обратите внимание! Олаф Ремер дал приблизительное значение, но, как в последствии выяснилось, не очень отдаленное от реального.

Правильное значение скоростного показателя, с которым продвигается свет в вакууме, было определенно только через полвека после Олафа Ремера. Это смог сделать французский физик А.И.Л. Физо, проведя особый эксперимент.

Эксперимент Физо

Он смог измерить это физическое явление путем измерения времени, за которое луч прошел определенный и точно измеренный участок.
Опыт имел следующий вид:

  • источник S испускал световой поток;
  • он отражался от зеркала (3);
  • после этого световой поток прерывался при помощи зубчатого диска (2);
  • затем оно проходил базу, расстояние которого равнялось 8 км;
  • после этого световой поток отражался зеркалом (1) и отправлялся в обратный путь к диску.

В ходе эксперимента световой поток попадал в промежутки между зубцами диска, и его можно было наблюдать через окуляр (4). Физо определял время прохождения луча по скорости вращения диска. В результате этого эксперимента он получил значение с = 313300 км/с.
Но это не конец исследований, которые были посвящены данному вопросу. Конечная формула расчета физической константы появилась благодаря многим ученым, включая и Альберта Эйнштейна.

Эйнштейн и вакуум: конечные результаты расчета

Сегодня каждый человек на Земле знает, что предельно допустимой величиной перемещения материальных объектов, а также любых сигналов, считается именно скорость света в вакууме. Точное значение этого показателя — почти 300 тыс. км/с. Если быть точным, то скорость распространения в вакууме света составляет 299 792 458 м/с.
Теорию о том, что невозможно превысить данное значение, выдвинул известный физик прошлого Альберт Эйнштейн в своей специальной теории относительности или СТО.

Обратите внимание! Теория относительности Эйнштейна считается незыблемой до момента появления реальных доказательств того, что передача сигнала возможна на скоростях, превышающих СРС в вакууме.

Теория относительности Эйнштейна

Но сегодня некоторые исследователи открыли явления, которые могут служить предпосылкой к тому, что СТО Эйнштейна может быть изменена. При некоторых специально заданных условиях имеется возможность отслеживать появление сверхсветовых скоростей. Интересно то, что при этом нарушение теории относительности не происходит.

Почему нельзя двигаться быстрее света

На сегодняшний день в данном вопросе существуют некоторые «подводные камни». Например, почему при обычных условиях константа СРС не может быть преодолена? По принятой теории в этой ситуации будет нарушаться фундаментальный принцип строения нашего мира, а именно — закон причинности. Он утверждает, что следствие по определению не способно опережать свою причину. Образно говоря, не может быть такого, что сначала медведь упадет замертво, а только потом раздастся выстрел охотника, застрелившего его. А вот если СРС превысить, то события должны начать происходить в обратной последовательности. В результате время начнет свой обратный бег.

Так чему все же равна скорость распространения светового луча?

После многочисленных исследований, которые приводились с целью определения точного значения, чему равно СРС, были получены конкретные цифры. На сегодняшний день с = 1 079 252 848,8 километров/час или 299 792 458 м/c. а в планковских единицах данный параметр определяется как единица. Это означает, что энергия света за 1 единицу планковского времени проходит 1 планковскую единицу длины.

Обратите внимание! Эти цифры справедливы только для условий, которые имеются в вакууме.

Формула значения постоянной

Но в физике для более простого способа решения задач используется округленное значение — 300 000 000 м/c.
Это правило в нормальных условиях касается всех объектов, а также рентгеновских лучей, гравитационных и световых волн видимого для нас спектра. Кроме этого ученые доказали, что частицы, обладающие массой, могут приближаться к скорости светового луча. Но они не в состоянии достичь ее или превысить.

Обратите внимание! Максимальная скорость, приближенная к световой, была получена при исследовании космических лучей, разгоняемых в специальных ускорителях.

Стоит отметить, что эта физическая константа зависит от того, в какой среде она измеряется, а именно от показателя преломления. Поэтому ее реальный показатель может разниться в зависимости от частот.

Как посчитать значение фундаментальной константы

На сегодняшний день существуют различные методы определения СРС. Это могут быть:

  • астрономические способы;
  • усовершенствованный метод Физо. Здесь зубчатое колесо заменяют на современный модулятор.

Обратите внимание! Ученые доказали, что показатели СРС в воздухе и в вакууме практически совпадают. А воде он меньше примерно на 25%.

Для расчета величины распространения светового луча используют следующую формулу.

Формула для расчета скорости света

Эта формула подходит для расчета в вакууме.

Заключение

Свет в нашем мире очень важен и тот момент, когда ученые смогут доказать возможность существования сверхсветовых скоростей сможет полностью изменить наш привычный мир. Что это открытие будет значить для людей даже сложно оценить. Но однозначно, это будет невероятный прорыв!

Как подобрать и установить датчики объема для автоматического управления светом
Самодельные регулируемые транзисторные блоки питания: сборка, применение на практике



Случайные статьи

Вверх