Какие процессы характерны для первой фазы мейоза. Мейоз. Стадии мейоза

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл . Ниже приводится краткая характеристика фаз цикла.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G 1 , синтетического — S, постсинтетического, или премитотического, — G 2 .

Пресинтетический период (2n 2c , где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c ) — репликация ДНК.

Постсинтетический период (2n 4c ) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Профаза (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

Метафаза (2n 4c ) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

1 — профаза; 2 — метафаза; 3 — анафаза; 4 — телофаза.

Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

— это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c ) образуются две гаплоидные (1n 2c ).

Интерфаза 1 (в начале — 2n 2c , в конце — 2n 4c ) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом . Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).

1 — лептотена; 2 — зиготена; 3 — пахитена; 4 — диплотена; 5 — диакинез; 6 — метафаза 1; 7 — анафаза 1; 8 — телофаза 1;
9 — профаза 2; 10 — метафаза 2; 11 — анафаза 2; 12 — телофаза 2.

Метафаза 1 (2n 4c ) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза 1 (2n 4c ) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе мейотическое деление (мейоз 2) называется эквационным .

Интерфаза 2 , или интеркинез (1n 2c ), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c ) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Амитоз

Амитоз — прямое деление интерфазного ядра путем перетяжки без образования хромосом, вне митотического цикла. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл.

Клеточный цикл

Клеточный цикл — жизнь клетки от момента ее появления до деления или смерти. Обязательным компонентом клеточного цикла является митотический цикл, который включает в себя период подготовки к делению и собственно митоз. Кроме этого, в жизненном цикле имеются периоды покоя, во время которых клетка выполняет свойственные ей функции и избирает дальнейшую судьбу: гибель или возврат в митотический цикл.

    Перейти к лекции №12 «Фотосинтез. Хемосинтез»

    Перейти к лекции №14 «Размножение организмов»

а) транскрипция;

б) редукционное деление;

в) денатурация;

г) кроссинговер;

д) конъюгация;

е) трансляция.

5. В результате редукционного деления в овогенезе образуются:

а) одно редукционное тельце;

б) овогогии;

в) овоцит I порядка;

г)два редукционных тельца;

д) овоцит I I порядка.

Вариант 5

1. В результате первого деления мейоза из одной материнской клетки образуются:

a) две дочерние клетки с уменьшенным вдвое набором хромосом;

б) четыре дочерние клетки с уменьшенным вдвое числом хромосом;

в) две дочерние клетки с увеличенным вдвое числом хромосом;

г) четыре дочерние клетки с числом хромосом, равным материнской клетке.

Для первой фазы мейоза характерен процесс

а) конъюгации;

б)трансляции;

в)редупликации;

г) транскрипции.

Биологическое значение мейоза у животных заключается в

а) предотвращении удвоения числа хромосом в новом поколении;

б) образовании мужских и женских половых гамет;

в) создании новых генных комбинаций;

г) создании новых хромосомных комбинаций;

д) увеличении числа клеток в организме;

е) кратном увеличении набора хромосом.

Яйцеклетка в отличие от сперматозоида характеризуется

а) гаплоидным набором хромосом;

б) диплоидным набором хромосом;

в) большим запасом питательных веществ;

г) более крупными размерами;

5) неподвижностью;

д) активным движением.

5 Хромосомный набор метафазы 1 мейоза равен:

б) 2n4с 4 хр;

в) 4n4с 4хр;

г) 1nб4с4хр.

ОТВЕТЫ НА ВХОДНОЙ ТЕСТОВЫЙ КОНТРОЛЬ

1 вар. 1-а,б, 2- а,г.; 2-в; 3-г; 4-а; 5-а.

2 вар. 1- 1-б,в,г,д,е 2- а,ж,з. 2-в, 3-а, 4-а, 5-а.

3 вар. 1- а,б,в,г, 2-а,б,в; 2- в, 3-а, 4- а,в,г.; 5-г

4 вар. 1- а,г,д, 2-б,в,е; 2-а; 3-б,4- б,г,д. 5-а,в.

5 вар . 1-а,2-а,3-а,б,в. 4-в,г,д, 5-г

ПРИЛОЖЕНИЕ № 3 СИТУАЦИОННЫЕ ЗАДАЧИ.

ОБУЧАЮЩИЕ ЗАДАЧИ:

1.2 . Секвенирование генома человека в рамках международной программы «Геном человека» заложило основу нового направления - предективной медицины (генетическое тестирование генов предрасположенности). Она дает возможности не только достоверно поставить диагноз, но м если позволяют современные технологии осуществить лечение и профилактику наследственных заболеваний. Это особенно актуально в доэмбриональном периоде онтогенеза, когда молодые люди проходят обследование, еще до рождения детей.

Например, проведение тестирования гена CFT, мутация в котором приводит к развитию болезни муковисцедоз. Ген включает 1245 триплетов, в результате одной из миссенс –мутаций в 455 триплете происходит замена Ц на А. Определите последовательность аминокислот в норме (на участке 451-461) и при патологии.

ДНК в норме на участке триплетов 451-461

ДНК: ЦЦТ ГТЦ ААЦ ААЦ ЦГЦ ЦАА ЦГА ЦЦТ АГГ ТГА

ала- вал- ала - гли- сер- тре

измененная ДНК: ЦЦТ ГТЦ ААЦ ААЦ ЦГЦ ЦАА ЦГА ЦЦТ АГГ ТГА

иРНК: ГГА ЦАГ УУГ УУГ ГЦГ ГУУ ГЦУ ГГА УЦЦ АЦУ

полипептид гли - глн- лей - лей- сер - вал- ала - гли- сер- тре

ТРЕНИРУЮЩИЕ ЗАДАЧИ

1.3. В центр по планированию беременности « Брак и семья» обратилась супружеская пара, по поводу бесплодия. В браке они прожили 5 лет. Какие объективные причины могут вызвать бесплодие?

АЛГОРИТМ РЕШЕНИЯ.

Причины, вызывающие бесплодие, могут быть следующими:

1) нарушение сперматогенеза;

2) нарушение овогенеза;

3) нарушение строения и функции матки и маточных труб;

4) эндокринные расстройства (гипотириодизм, диабет), нарушения строения и функций надпочечников и гипофиза;

5) острые инфекции (паротит);

6) хронические инфекции (туберкулёз);

7) недостаточность витаминов А, В, С;

8) хроническая почечная недостаточность;

9) воздействие солей тяжелых металлов и радиоактивных веществ, нарушающих сперматогенез;

10) лечебные препараты, применяющиеся для лечения лейкозов и псориаза (милеран, метатрексат).

1.4. 21-летняя беременная женщина, будучи на осмотре в консультации, спросила о возможности рождения ею двойни. Ее вопрос был связан с тем, что двойни рождались ее матерью, бабушкой и даже прабабушкой. Как бы вы ответили на этот вопрос? Считаете ли вы целесообразным в виде дополнительной информации выяснить, рождались ли в ее семье идентичные однояйцевые или разнояйцевые близнецы? Имеет ли значение информация о рождении близнецов у родственников по линии отца?

АЛГОРИТМ РЕШЕНИЯ.

Нет сомнения в том, что наследственность оказывает влияние на рождение полизиготных близнецов. Нет уверенности в том, что от наследственности зависит частота монозиготных близнецов. В случае рождения полизиготных близнецов дети различаются как по своим физическим, так и по умственным способностям. Дети монозиготных близнецов имеют идентичные физические и умственные характеристики. Установлено, что генотип отца не способен изменить частоту рождения двоен.

КОНТРОЛИРУЮЩИЕ ЗАДАЧИ

1.5. На микрофотографии представлена яйцеклетка, в цитоплазме которой содержится незначительное количество равномерно расположенных желточных включений. Яйцеклетка окружена двумя структурами: блестящей оболочкой и лучистым венцом. Назовите тип яйцеклетки, для кого он характерен? Чем образован лучистый венец и блестящая оболочка яйцеклетки? Какие функции они выполняют? Как отличаются по химическому составу части яйцеклетки? Какое значение имеет ооплазматическая сегрегация для развития эмбриона?

АЛГОРИТМ РЕШЕНИЯ.

Такой тип яйцеклетки- алецитальный, характерен для млекопитающих и человека. Блестящая оболочка является продуктом как самого ооцита, так и питающих его фолликулярных клеток. Ее важной особенностью является наличие особых белков – гликопротеинов ZP1, ZP2 и ZP3, ответственных за видовую специфичность оплодотворения. Кроме этого ей принадлежит значительная роль в защите яйцеклетке и транспорте питательных веществ.

Лучистый венец или вторичная оболочка яйцеклетки, состоит из нескольких слоев фолликулярных клеток, расположенных вокруг яйцеклетки. Она контактирует с яйцеклеткой своими тонкими цитоплазматическими отростками, проникающими через отверстия в блестящей оболочке. Фолликулярные клетки, образующие лучистый венец играют важную роль в направленном движении яйцеклетки по маточным трубам.

Ооплазматическая сегрегация, приводящая к тому, что состав цитоплазмы в разных участках яйца становится различным. Так, гликоген и РНК концентрируется на одном из полюсов, витамин С располагается по экватору.

1.6. У 18-летнего мужчины обнаружен двусторонний крипторхизм (неопущенные в мошонку оба яичка). Какое значение для молодого человека может иметь эта врождённая аномалия? Какие советы необходимо дать пациенту?

АЛГОРИТМ РЕШЕНИЯ

Врач должен объяснить пациенту, что оба яичка необходимо опустить в мошонку хирургическим путем. Эта операция необходима по следующим причинам:

1) в яичках ребенка, находящихся в паховом канале или полости брюшины, после 5 лет развиваются дегенеративные изменения в семенных канальцах. так как температура в мошонке на 2-3 градуса ниже внутрибрюшинной, в связи с этим необратимо нарушается сперматогенез и появляется угроза бесплодия;

2) если яички не располагаются в мошонке до периода половой зрелости, сперматозоиды не образуются. хотя клетки Лейдига активно синтезируют тестостерон;

3) если яички остаются внутрибрюшинно до 30-35 летнего возраста, фиброзная соединительная ткань замещает интерстициальные клетки- гландулоциты чем объясняется снижение синтеза мужского полового гормона;

4) клеточные элементы неопустившихся яичек нередко могут явиться источником злокачественных опухолей.

1.7. К специалисту –андрологу обратился мужчина, в возрасте 36 лет. Пациента волновал вопрос: « Может ли вирусный паротит (свинка), которым он переболел в детском возрасте и который осложнился острым воспалением яичка (орхитом), явиться причиной бесполодия?»

АЛГОРИТМ РЕШЕНИЯ.

Воспалительные изменения в яичках вызывают развитие атрофии извитых канальцев яичка и регрессию сперматогенеза. Причиной же стерильности паротит может быть редко, так как при этой инфекции чаще всего поражается только одна из желез.

1.8 . Секвенирование двух самых маленьких хромосом человека 21 и 22 определило их размер, количество генов и их расположение. Размер ДНК в 21 хромосоме 33.8 Мб, в ней содержаться 225 генов, размер ДНК 22 хромосомы 33,4 Мб, в ней содержаться 545 генов. Учитывая этот факт, объясните почему трисомия по 22 хромосоме часто не совместима с жизнью. Какое заболевание развивается при трисомии по 21 хромосоме. Укажите возможные причины и механизмы, приводящие к развитию этого патологического состояния.

АЛГОРИТМ РЕШЕНИЯ.

Очевидно, что в 22 хромосоме несмотря на ее маленький размер содержится в 2 раза больше генов, чем в 21. Трисомия по 22 хромосоме приведет к развитию аномалий несовместимых с жизнью. Трисомия по 21 хромосоме приводит к формированию синдрома Дауна. Среди возможных причин, приводящих к неправильному расхождению хромосом в мейозе может быть возраст матери. Возможно по мере старения организма истощается пул ооцитов и хромосомы в « перезрелых» ооцитах возрастных женщин более подвержены нерасхождению. Предполагается, что возрастные гормональные изменения могут ускорять процесс мейотического созревания ооцитов и быть причиной аномальной сегрегации хромосом. Не исключено также, что с возрастом женщины нарушается образование веретена деления или изменяется продолжительность клеточного цикла.

Глоссарий.

Акросома - органоид сперматозоида расположенный на переднем конце головки сперматозоида, развивающийся из комплекса Гольджи путем конденсации гранул акросомного вещества.

Активация яйца - побуждение яйца к развитию, что происходит при оплодотворении его сперматозоидом или под действием других стимулов.

Анимальный полюс - часть телолецитальной яйцеклетки, в которой находится активная цитоплазма, не перегруженная желточными включениями. Последние сосредоточены на противоположном – вегетативном- полюсе.

Бивалент пара гомологичных хромосом, которые соединяются (коньюгируют) между собой в мейозе.

Вегетативный полюс- часть цитоплазмы яйцеклетки в которой сосредоточено большое количество желтка.

Гаметогенез - развитие половых клеток (сперматозоидов и яйцеклеток).

Гаметы – мужские и женские половые клетки имеющие гаплоидный набор хромосом.

Гонады - половые железы- органы образующие половые клетки и половые гормоны у животных и человека.

Деление редукционное (мейоз 1) –процесс деления созревающих половых клеток, в результате которого происходит уменьшение вдвое (редукция) числа хромосом.

Зигота – клетка, возникающая при слиянии двух гамет. Это оплодотвореная яйцеклетка.

Кортикальная реакция- цепь изменений в кортикальном слое цитоплазмы яйцеклетки при ее оплодотворении (разрушение кортикальных гранул, утолщение желточной оболочки и ее преобразование в оболочку оплодотворения, изменение мембранного потенциала, блокирование полиспермии).

Крипторхизм- неопущение яичка в мошонку. При этой аномалии развития яички остаются стерильными, так как из-за высокой температуры в брюшной полости сперматогенез приостанавливается.

Кроссинговер – взаимный обмен гомологичными участками конъюгирующих хромосом.

Мейоз – процесс деления созревающих половых клеток, в результате которого происходит уменьшение (редукция) числа хромосом.

Моносомия – отсутствие в хромосомном наборе клеток диплоидного организма одной из гомологичных хромосом.

Оболочка оплодотворения - утолщенная и как бы затвердевшая первичная оболочка яйцеклетки.

Оболочка яйцеклектки первичная – желточная оболочка, вырабатываемая самой яйцеклеткой. Она имеет вид тонкой пленки, связанной с цитоплазмой яйцеклетки.

Овогенез - развитие женской половой клетки.

Овуляция - процесс выбрасывания (выхода) яйцеклетки из граафового пузырька яичника, после чего она поступает в яйцевод.

Оплодотворение - процесс слияния мужской и женской половых клеток с образованием зиготы.

Оогонии – незрелые женские половые клетки, обладающие способностью к митотическому размножению.

Ооцит - незрелая женская половая клетка животных в периоды роста и созревания оогенеза.

Пронуклеус- ядерное вещество сперматозоида или ядро яйцеклетки, которые в процессе оплодотворения до образования синкариона переходят из плотного в более рыхлое состояние, приобретая при этом сходство с обычным клеточным ядром.

Полиплоидия – наследственное изменение, заключающееся в кратном увеличении числа наборов хромосом в клетках организма.

Размножение – присущее всем организмам свойство воспроизведения себе подобных, обеспечивающее непрерывность и преемственность жизни.

Размножение бесполое - размножение живых организмов, при котором одна родительская особь дает начало двум или большему числу особей потомства, идентичных по наследственным признакам родительской особи.

Размножение половое – способы размножения, при которых новый организм развивается обычно из зиготы, образующейся в результате слияния женских и мужских половых клеток – гамет.

Серый серп- часть яйцеклетки в виде серого полумесяца на стороне противоположной месту проникновения сперматозоида.

Синкарион – 1) ядро зиготы, образующееся в процессе слияния мужского и женского пронуклеусов.

Сперматиды – гаплоидные мужские половые клетки, образующиеся в течение 4-го (последнего) периода сперматогенеза.

Сперматогенез – превращение диплоидных первичных клеток у животных и многих растительных организмов в гаплоидные дифференцированные мужские половые клетки – сперматозоиды.

Сперматогонии – диплоидные мужские половые клетки первого периода сперматогенеза.

Сперматозоид – спермий – зрелая гаплоидная мужская половая клетка животных и многих растительных организмов.

Сперматоцит – мужская половая клетка в период роста и созревания (2-й и 3-й периоды сперматогенеза).

Хиазма – точка соединения конъюгирующих гомологичных хромосом в профазе первого деления мейоза.

Хромосомы – самовоспроизводящиеся структуры клеточного ядра, являющиеся носителями генов, определяющих наследственные свойства клеток и организмов.

Яички – наружные органы мужской половой системы овальной или бобовидной формы.

Яичники – женские половые железы, выполняющие генеративную (образование яйцевых клеток) и эндокринную (выработка овариальных гормонов) функции).

Яйцеклетка – женская половая клетка, специализированная к выполнению генеративной функции.


При большом увеличении микроскопа рассмотреть срез семенника крысы. Найти в семенных канальцах клетки в разных зонах развития. Зарисовать сегмент семенного канальца и обозначить сперматогонии, сперматоциты I порядка, II порядка, сперматиды. Подписать хромосомный комплекс каждой клетки.

ПРАКТИЧЕСКОЕ ЗАДАНИЕ 2.

При большом увеличении микроскопа рассмотреть постоянный препарат сперматозоидов морской свинки. Обратить внимание на размер сперматозоидов Рассмотреть головку, найти в ней акросому, ядро. Зарисовать 1-2 сперматозоида, сделать обозначение.

При малом увеличении микроскопа рассмотреть препарат среза яичника кошки. Найти фолликулы на разных стадиях зрелости. Зарисовать препарат и обозначить первичный фолликул, фолликул средней зрелости (растущий), зрелый фолликул (граафов пузырек). В граафовом пузырьке рассмотреть и обозначить фолликуярный слой, полость фолликула, яйценосный бугорок, овоцит I порядка.

ПРАКТИЧЕСКОЕ ЗАДАНИЕ 7.

Изучить по таблице строение сперматозоида и яйцеклетки млекопитающих и перенести ее в альбом. Зарисовать схему строения сперматозоида, обозначить головку, ядро, акросому, шейку, проксимальную, дистальную центриоли, хвост. Зарисовать схему строения яйцеклетки. Обозначить ее блестящую оболочку, ядро, ядрышко, желточные зерна.


Входной тестовый контроль

3 Уменьшение числа хромосом вдвое, образование клеток с гаплоидным набором хромосом происходит в процессе

2)дробления

3)оплодотворения

4 Значение митоза состоит в увеличении числа

1) хромосом в дочерних клетках по сравнению с материнской

2)клеток с набором хромосом, равным материнской клетке

3)молекул ДНК в дочерних клетках по сравнению с материнской

4)клеток с уменьшенным вдвое набором хромосом

5 В конце интерфазы каждая хромосома состоит из молекул ДНК

4)четырех

6 Конъюгация и обмен участками гомологичных хромосом происходит в

1)профазе I мейоза

2)профазе митоза

3)метафазе II мейоза

4)профазе II мейоза

7 Растворение ядерной оболочки и ядрышек в процессе митоза происходит в

1) профазе

2)интерфазе

3)телофазе

4)метафазе

8 в мейозе удвоение ДНК и образование двух хроматид происходит в

1) профазе первого деления

2) профазе второго деления

3)интерфазе перед первым делением

4)интерфазе перед вторым делением

10 Расхождение гомологичных хромосом происходит в

1) анафазе мейоза 1

2) метафазе мейоза 1

3) метафазе мейоза 2

4) анафазе мейоза 2

11 Расхождение хроматид к полюсам клетки происходит в

1) телофазе

2) анафазе

3) профазе

4) метафазе

12 В процессе мейоза у животных образуются гаметы с набором хромосом

1) диплоидным

2) гаплоидным

3) равным материнскому

4) удвоенным

14 у животных в процессе митоза, в отличие от мейоза, образуются клетки

1) соматические

2) с половинным набором хрмомосом

3) половые

4) споровые

Ответ:_____________________

Ответ:_____________________

Ответ:_____________________

18 Половые клетки животных в отличие от соматических

Ответ:_____________________

Ответ:_____________________

20 Выберите правильный ответ. В результате второго деления созревания сперматогенеза клетки называются:

1). Сперматогонии

2). Сперматоциты I порядка

3). Сперматиды

4). Сперматоциты I I порядка

21. Выберите правильные ответы. Прозрачная оболочка состоит из:

1). Гликозаминогликанов

2). Протеогликанов

3). Фолликулярных клеток

4). Пигментных включений

5). Желточных гранул

23. Выберите правильный ответ. Акросома содержит:

1). Гормоны

2). Ферменты

3. Ллипиды

25 Выберите правильный ответ. Яйцеклетка не содержит:

1). Митохондрий

2). Эндоплазматической сети

3). Комплекса Гольджи

4). Центриолей

26. Выберите правильный ответ. Первичная оболочка яйцеклетки является производной:

1). Фолликулярных клеток

2). Ооцита

3). Блестящей оболочки

4). Продуктами желез яйцеводов

5). Соединительной тканью

27. Выберите правильные ответы. Овогенез состоит из стадий:

1). Размножения

3). Созревания

4). Формирования.

92. При сперматогенезе в зоне роста располагаются клетки, которые называются:

a) сперматогониями;

b) сперматоцитами 1 порядка;

c) сперматоцитами 2 порядка;

d) сперматидами.

97. Пары хромосом выстраиваются в экваториальной плоскости клетки во время первого мейотического деления:

a) в профазу 1;

b) в метафазу 1;

c) в анафазу 1;

d) в телофазу 1.

98. Из всех фаз мейоза наиболее длительная:

a) профаза 1;

b) анафаза 1;

c) профаза 2;

d) телофаза 2.

99. Конъюгация и обмен участками гомологичных хромосом происходит:

a) в профазе митоза;


Это важный процесс в эволюционном плане, который позволяет создавать организмам разнообразные популяции в ответ на изменения окружающей среды. Без понимания значимости мейоза невозможно дальнейшее изучение таких разделов биологии как селекция, генетика, экология.

Что такое мейоз

Этот способ деления характерен для образования гамет у животных, растений и грибов. В результате мейоза образуются клетки, обладающие гаплоидным набором хромосом, также называемых половыми клетками.

В отличие от другого варианта умножения клеток - митоза, при котором количество хромосом дочерних особей характерно материнской, при мейозе происходит уменьшение количества хромосом вдвое. Это происходит в два этапа - мейоз 1 и мейоз 2. Первая часть процесса сходна с митозом - перед ней происходит удвоение ДНК, увеличение количества хромосом. Далее следует редукционное деление. В результате образуются клетки с гаплоидным (а не диплоидным) набором хромосом.

Основные понятия

Для того чтобы понять, что такое мейоз, необходимо вспомнить определения некоторых понятий, чтобы не возвращаться к ним впоследствии.

  • Хромосома - структура в ядре клетки, имеющая нуклеопротеидную природу и сосредоточившая большую часть наследственной информации.
  • Соматические и половые клетки - клетки организма, имеющие разный набор хромосом. В норме (исключая полиплоиды) соматические клетки диплоидны (2n), а половые гаплоидны (n). При слиянии двух половых клеток образуется полноценная соматическая клетка.
  • Центромера - участок хромосомы, отвечающий за экспрессию генов и связывающий хроматиды между собой.
  • Теломера - концевые участки хромосом, выполняют защитную функцию.
  • Митоз - способ деления соматических клеток, создающий в процессе идентичные им копии.
  • Эухроматин и гетерохроматин - участки хроматина в ядре. Первый сохраняет деспирализованное состояние, второй спирализован.

Стадии процесса

Мейоз клетки состоит из двух последовательных делений.

Первое деление. В период профазы 1 можно рассмотреть хромосомы даже в световой микроскоп. Строение двойной хромосомы составляют две хроматиды и центромеры. Происходит спирализация и, как следствие, укорочение хроматид в хромосоме. Мейоз начинается с метафазы 1. Гомологичные хромосомы располагаются в экваториальной плоскости клетки. Это называется выстраиванием тетрад (бивалентов) хроматида к хроматиде. В этот момент происходят процессы конъюгации и кроссинговера, они описаны ниже. При этих действиях часто теломеры перекрещиваются и накладываются друг на друга. Начинает распадаться оболочка ядра, пропадает ядрышко и становятся видны нити веретена деления. В период анафазы 1 целые хромосомы, состоящие из двух хроматид, отходят к полюсам, причем случайным образом.

В результате первого деления в стадии телофазы 1 образуются две клетки с одинарным набором ДНК (в отличие от митоза, дочерние клетки которого диплоидны). Интерфаза непродолжительна, так как не требует удвоения ДНК.

Во втором делении в стадии метафазы 2 к экваториальной части клетки отходит уже одна хромосома (из двух хроматид), образуя метафазную пластинку. Центромера каждой хромосомы делится, хроматиды расходятся к полюсам. На стадии телофазы этого деления образуются две клетки, содержащей по гаплоидному набору хромосом. Наступает уже нормальная интерфаза.

Конъюгация и кроссинговер

Конъюгация - процесс слияния гомологичных хромосом, а кроссинговер - обмен соответствующими участками гомологичных хромосом (начинается в профазе первого деления, заканчивается в метафазе 1 или в анафазе 1 при расхождении хромосом). Это два смежных процесса, которые участвуют в дополнительной рекомбинации генетического материала. Таким образом, хромосомы в гаплоидных клетках не аналогичны таковым в материнской, а существуют уже с заменами.

Разнообразие гамет

Гаметы, образованные в процессе мейоза, не гомологичны друг другу. Хромосомы расходятся в дочерние клетки независимо друг от друга, поэтому могут принести разнообразные аллели будущему потомству. Рассмотрим простейшую классическую задачу: определим типы гамет, образованные у родительского организма по двум простым признакам. Пусть у нас будет темноглазый и темноволосый родитель, гетерозиготный по этим признакам. Формула аллелей, характеризующая его, будет выглядеть как AaBb. Половые клетки будут иметь следующий вид: AB, Ab, aB, ab. То есть четыре типа. Естественно, количество аллелей в живом организме со множеством признаков будет многократно выше, значит и вариантов разнообразия гамет будет во много раз больше. Эти процессы усиливаются конъюгацией и кроссинговером, протекающими в процессе деления.

Существуют ошибки в репликации и расхождениях хромосом. Это приводит к образованию дефектных гамет. В норме такие клетки должны подвергнуться апоптозу (клеточной смерти), но иногда они сливаются с другой половой клеткой, образуя новый организм. Например, таким образом формируется болезнь Дауна у человека, связанная с одной дополнительной хромосомой.

Следует упомянуть, что образовавшиеся половые клетки в разных организмах претерпевают дальнейшее развитие. Например, у человека из одной родительской клетки образуются четыре равноценных сперматозоида - как в классическом мейозе, что такое яйцеклетка - выяснить несколько сложнее. Из четырех потенциально одинаковых клеток образуется одна яйцеклетка и три редукционных тельца.

Мейоз: биологическое значение

Почему в процессе мейоза количество хромосом в клетке уменьшается, понятно: если бы этого механизма не было, то при слиянии двух половых клеток происходило бы постоянное увеличение хромосомного набора. Благодаря редукционному делению, в процессе размножения из слияния двух гамет выходит полноценная диплоидная клетка. Таким образом, сохраняется постоянство вида, стабильность его хромосомного набора.

Половина ДНК дочернего организма будет содержать материнскую, а половина отцовскую генетическую информацию.

Механизмы мейоза лежат в основе стерильности межвидовых гибридов. Из-за того, что в клетках таких организмов находятся хромосомы от двух видов, в процессе метафазы 1 они не могут вступить в конъюгацию и процесс образования половых клеток нарушается. Плодовитые гибриды возможны только между близкими видами. В случае полиплоидных организмов (например, многие сельскохозяйственные растения) в клетках, обладающих четным набором хромосом (октоплоиды, тетраплоиды) хромосомы расходятся как и при классическом мейозе. В случае триплоидов хроматиды образуются неравномерно, велик риск получить дефектные гаметы. Эти растения размножают вегетативно.

Таким образом, понимание, что такое мейоз - фундаментальный вопрос биологии. Процессы полового размножения, накопления случайных мутаций, а также передача их потомству лежит в основе наследственной изменчивости и неопределенного отбора. Современная селекция сформирована на основе этих механизмов.

Варианты мейоза

Рассмотренный вариант деления в мейозе характерен главным образом для многоклеточных. У простейших механизм выглядит несколько иначе. В процессе него протекает одно мейотическое деление, фаза кроссинговера соответственно, тоже смещается. Такой механизм считается более примитивным. Он послужил основой делению гаплоидных клеток современных животных, растений, грибов, протекающему в две фазы и обеспечивающему лучшую рекомбинацию генетического материала.

Отличия мейоза от митоза

Подытоживая различия между этими двумя типами деления, нужно отметить плоидность дочерних клеток. Если при митозе количество ДНК, хромосом в обоих поколениях одна и та же - диплоидная, то в мейозе образуются гаплоидные клетки. При этом в результате первого процесса образуются две, а в результате второго - четыре клетки. В митозе отсутствует кроссинговер. Разнится и биологическое значение этих делений. Если цель мейоза - образование половых клеток и их последующее сливание у разных организмов, т. е. рекомбинация генетического материала в поколениях, то цель митоза - поддержание стабильности тканей, целостности организма.

Сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза» , продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение гомологичных хромосом) и обмен генетической информацией . В анафазе I центроме­ры , скрепляющие хроматиды, не делятся , а к полюсам отходит одна из гомологмейоза митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая , в ней ДНК не синтезируется . Клетки (галиты ), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называют зиготой .

Митоз и его фазы

Митоз, или непрямое деление , наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой . Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды , скрепленные общей центромерой , увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы , состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления . В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Таблица - Сравнение митоза и мейоза

Фаза Митоз Мейоз
1 деление 2 деление
Интерфаза

Набор хромосом 2n.

Идет интенсивный синтез белков, АТФ и других органических веществ.

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток. Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.
Профаза Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления. Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) - кроссинговер . Затем хромосомы расходятся. Короткая; те же процессы, что и в митозе, но при n хромосом.
Метафаза Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору. Происходят процессы, аналогичные тем, что и в митозе.
Анафаза Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам. Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой. Происходит то же, что и в митозе, но при n хромосом.
Телофаза Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки. Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда. Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Таблица сравнения митоза и мейоза.

Половое размножение животных, растений и грибов связано с формированием специализированных половых клеток.
Мейоз - особый тип деления клеток, в результате которого образуются половые клетки.
В отличии от митоза , при котором сохраняется число хромосом, получаемых дочерними клетками, при мейозе число хромосом в дочерних клетках уменьшается вдвое.
Процесс мейоза состоит из двух последовательных клеточных делений - мейоза I (первое деление) и мейоза II (второе деление).
Удвоение ДНК и хромосом происходит только перед мейозом I .
В результате первого деления мейоза, называемого редукционным , образуются клетки с уменьшенным вдвое числом хромосом. Второе деление мейоза заканчивается образованием половых клеток. Таким образом, все соматические клетки организма содержат двойной, диплоидный (2n) , набор хромосом, где каждая хромосома имеет парную, гомологичную хромосому. Зрелые половые клетки имеют лишь одинарный, гаплоидный (n) , набор хромосом и соответственно вдвое меньшее количество ДНК.

Фазы мейоза

Во время профазы I мейоза двойные хромосомы хорошо видны в световой микроскоп. Каждая хромосомы состоит из двух хромотид, которые связаны вместе одной центромерой. В процессе спирализации двойные хромосомы укорачиваются. Гомологичные хромосомы тесно соединяются друг с другом продольно (хроматида к хроматиде), или, как говорят, конъюгируют . При этом хроматиды нередко перекрещиваются или перекручиваются одна вокруг другой. Затем гомологичные двойные хромосомы начинают как бы отталкиваться друг от друга. В местах перекреста хроматид происходят поперечные разрыва и обмены их участками. Это явление называют перекрестом хромосом. Одновременно, как и при митозе, распадется ядерная оболочка, исчезает ядрышко, образуются нити веретена. Отличие профазы I мейоза от профазы митоза состоит в конъюгации гомологичных хромосом и взаимном обмене участками в процессе перекреста хромосом.
Характерный признак метафазы I - расположение в экваториальной плоскости клетки гомологичных хромосом, лежащих парами. Вслед за этим наступает анафаза I , во время которой целые гомологичные хромосомы, каждая состоящая из двух хроматид, отходят к противоположным полюсам клетки. Очень важно подчеркнуть одну особенность расхождения хромосом на этой стадии мейоза: гомологичные хромосомы каждой пары расходятся в стороны случайным образом, независимо от хромосом других пар. У каждого полюса оказывается вдвое меньше хромосом, чем было в клетке при начале деления. Затем наступает телофаза I , во время которой образуются две клетки с уменьшенным вдвое числом хромосом.
Интерфаза короткая, так как синтеза ДНК не происходит. Далее следует второе мейотическое деление (мейоз II ). Оно отличается от митоза только тем, что количество хромосом в метафазе II вдвое меньше, чем количество хромосом в метафазе митоза у того же организма. Поскольку каждая хромосома состоит из двух хроматид, то в метафазе II центромеры хромосом делятся, и к полюсам расходятся хроматиды, которые становятся дочерними хромосомами. Только теперь наступает настоящая интерфаза. Из каждой исходной клетки возникают четыре клетки с гаплоидным набором хромосом.

Разнообразие гамет

Рассмотри мейоз клетки, имеющей три пары хромосом (2n = 6 ). В этом случае после двух мейотических делений образуются четыре клетки с гаплоидным набором хромосом (n = 3 ). Поскольку хромосомы каждой пары расходятся в дочерние клетки независимо от хромосом других пар, равновероятно образование восьми тиров гамет с различным сочетанием хромосом, присутствовавших в исходной материнской клетке.
Еще большее разнообразие гамет обеспечивается конъюгацией и перекрестом гомологичных хромосом в профазе мейоза, что имеет очень большое общебиологическое значение.

Биологическое значение мейоза

Если бы в процессе мейоза не происходило уменьшения числа хромосом, то в каждом следующем поколении при слиянии ядер яйцеклетки и сперматозоида число хромосом увеличивалось бы бесконечно. Благодаря мейозу зрелые половые клетки получают гаплоидное (n) число хромосом, при оплодотворении же восстанавливается свойственное данному виду диплоидное (2n) число. При мейозе гомологичные хромосомы попадают в разные половые клетки, а при оплодотворении парность гомологичных хромосом восстанавливается. Следовательно, обеспечивается постоянных для каждого вида полных диплоидный набор хромосом и постоянное количество ДНК.
Происходящие в мейозе перекрест хромосом, обмен участками, а также независимое расхождение каждой пары гомологичных хромосом определяют закономерности наследственной передачи признака от родителей потомству. Из каждой пары двух гомологичных хромосом (материнской и отцовской), входивших в хромосомный набор диплоидных организмов, в гаплоидном наборе яйцеклетки или сперматозоида содержится лишь одна хромосома. Она может быть:

  • отцовской хромосомой;
  • материнской хромосомой;
  • отцовской с участком материнской;
  • материнской с участком отцовской.
Эти процессы возникновения большого количества качественно различных половых клеток способствуют наследственной изменчивости .
В отдельных случаях вследствие нарушения процесса мейоза, при нерасхождении гомологичных хромосом, половые клетки могут не иметь гомологичной хромосомы или, наоборот, иметь обе гомологичные хромосомы. Это приводит к тяжелым нарушениям в развитии организма или к его гибели.

Случайные статьи

Вверх