Регуляция артериального давления. Повышение артериального давления. Каковы механизмы регуляции артериального давления и почему оно становится выше нормы? Какие причины могут приводить к повышению артериального давления

Для того, чтобы механизмы, регулирующие артериальное давление адекватно реагировали на потребности организма к ним должна поступать информация об этих потребностях.

Эту функцию выполняют хеморецепторы. Хеморецепторы реагируют на недостаток кислорода в крови, избыток углекислого газа и ионов водорода, сдвиг реакции крови (pH крови) в кислую сторону. Хеморецепторы находятся по всей сосудистой системе. Особенно много этих клеток в общей сонной артерии и в аорте.

Недостаток кислорода в крови, избыток углекислого газа и ионов водорода, сдвиг pH крови в кислую сторону возбуждают хеморецепторы. Импульсы от хеморецепторов по нервным волокнам поступают в сосудодвигательный центр головного мозга (СДЦ). СДЦ состоит из нервных клеток (нейронов), которые регулируют тонус сосудов, силу, частоту сердечных сокращений, объём циркулирующей крови, то есть - артериальное давление. Своё влияние на тонус сосудов, силу и частоту сердечных сокращений, объём циркулирующей крови нейроны СДЦ реализуют через нейроны симпатической и парасимпатической вегетативной нервной системы (ВНС), которые непосредственно влияют на тонус сосудов, силу и частоту сердечных сокращений.

СДЦ состоит из прессорных, депрессорных и сенсорных нейронов. Увеличение возбуждения прессорных нейронов увеличивает возбуждение (тонус) нейронов симпатической ВНС и уменьшает тонус парасимпатической ВНС. Это приводит к увеличению тонуса сосудов (спазму сосудов, уменьшению просвета сосудов), к увеличению силы и частоты сердечных сокращений, то есть - к увеличению АД. Депрессорные нейроны уменьшают возбуждение прессорных нейронов и, таким образом, косвенно способствуют расширению сосудов (уменьшению тонуса сосудов), уменьшают силу и частоту сердечных сокращений, то есть - снижению АД.

Сенсорные (чувствительные) нейроны в зависимости от поступившей к ним информации от рецепторов, оказывают возбуждающее действие на прессорные или депрессорные нейроны СДЦ.

Функциональная активность прессорных и депрессорных нейронов регулируется не только сенсорными нейронами СДЦ, но и другими нейронами головного мозга. Опосредовано через гипоталамус нейроны двигательной зоны коры головного мозга оказывают возбуждающее действие на прессорные нейроны.

Нейроны коры головного мозга влияют на СДЦ через нейроны гипоталамической области.

Сильные эмоции: гнев, страх, тревога, волнение, большая радость, горе могут вызывать возбуждение прессорных нейронов СДЦ. Прессорные нейроны возбуждаются самостоятельно, если находятся в состоянии ишемии (состоянии недостаточного поступления к ним кислорода с кровью). При этом АД повышается очень быстро и очень сильно. Волокна симпатической ВНС густо оплетают сосуды, сердце, заканчиваются многочисленными разветвлениями в различных органах и тканях организма, в том числе, и около клеток, которые называются трансдукторами. Эти клетки в ответ на повышение тонуса симпатической ВНС начинают синтезировать и выделять в кровь вещества, влияющие на повышение АД.

Трансдукторами являются:

  • 1. Хромаффинные клетки мозгового слоя надпочечников;
  • 2. Юкст-гломерулярные клетки почек;
  • 3. Нейроны гипоталамических супраоптического и паравентрикулярного ядер.

Хромаффинные клетки мозгового слоя надпочечников.

Эти клетки при увеличении тонуса симпатической ВНС начинают синтезировать и выделять в кровь гормоны: адреналин и норадреналин. Эти гормоны в организме оказывают те же эффекты, что и симпатическая ВНС. В отличие от влияния симпатической ВНС системы эффекты адреналина и норадреналина надпочечников более продолжительные и распространённые.

Юкст-гломерулярные клетки почек.

Эти клетки при увеличении тонуса симпатической ВНС, а также при ишемии почек (состоянии недостаточного поступления к тканям почек кислорода с кровью) начинают синтезировать и выделять в кровь протеолитический фермент ренин.

Ренин в крови расщепляет другой белок ангиотензиноген с образованием белка ангиотензина 1. Другой фермент крови - АПФ (Ангиотензин превращающий фермент) расщепляет ангиотензин 1 с образованием белка ангиотензина 2.

Ангиотензин 2:

  • - оказывает на сосуды очень сильное и продолжительное сосудосуживающее действие. Своё действие на сосуды ангиотензин 2 реализует через ангиотензин-рецепторы (АТ);
  • - стимулирует синтез и выделение в кровь клетками клубочковой зоны надпочечников альдостерона, который задерживает натрий, а, значит, и воду в организме. Это приводит: к увеличению объёма циркулирующей крови, задержка натрия в организме приводит к тому, что натрий проникает в эндотелиальные клетки, покрывающие кровеносные сосуды изнутри, увлекая за собой внутрь клетки воду. Эндотелиальные клетки увеличиваются в объёме. Это приводит к сужению просвета сосуда. Уменьшение просвета сосуда увеличивает его сопротивление. Увеличение сопротивления сосуда увеличивает силу сердечных сокращений. Задержка натрия повышает чувствительность ангиотензин-рецепторов к ангиотензину 2. Это ускоряет и усиливает сосудосуживающее действие агиотензина 2;
  • -стимулирует клетки гипоталамуса на синтез и выделение в кровь антидиуретического гормона вазопрессина и клетками аденогипофиза адренокортикотропного гормона (АКТГ). АКТГ стимулирует синтез клетками пучковой зоны коркового слоя надпочечников глюкокортикоидов. Наибольшим биологическим действием обладает кортизол. Кортизол потенцирует увеличение АД.

Всё это в частности и в совокупности приводит к увеличению АД.Нейроны гипоталамических супраоптического и паравентрикулярного ядер синтезируют антидиуретический гормон вазопрессин. Через свои отростки нейроны выделяют вазопрессин в заднюю долю гипофиза, откуда он поступает в кровь. Вазопрессин оказывает сосудосуживающее действие, задерживает воду в организме.

Это приводит к увеличению объёма циркулирующей крови и к повышению АД. Кроме того, вазопрессин усиливает сосудосуживающее действие адреналина, норадреналина и ангиотензина 2.

Информация об объёме циркулирующей крови и силе сердечных сокращений поступает в СДЦ от барорецепторов и рецепторов низкого давления. Барорецепторы - это разветвления отростков чувствительных нейронов в стенке артериальных сосудов. Барорецепторы преобразуют раздражения от растяжения стенки сосуда в нервный импульс. Барорецепторы находятся по всей сосудистой системе.

Наибольшее их количество в дуге аорты и в каротидном синусе. Барорецепторы возбуждаются от растяжения. Увеличение силы сердечных сокращений увеличивает растяжение стенок артериальных сосудов в местах нахождения барорецепторов. Возбуждение барорецепторов увеличивается прямо пропорционально увеличению силы сердечных сокращений. Импульсация от них поступает к сенсорным нейронам СДЦ. Сенсорные нейроны СДЦ возбуждают депрессорные нейроны СДЦ, которые уменьшают возбуждение прессорных нейронов СДЦ. Это приводит к уменьшению тонуса симпатической ВНС и к повышению тонуса парасимпатической ВНС, что приводит к уменьшению силы и частоты сердечных сокращений, расширению сосудов, то есть - к понижению АД. Наоборот, уменьшение силы сердечных сокращений ниже нормальных показателей уменьшает возбуждение барорецепторов, уменьшает импульсацию от них к сенсорным нейронам СДЦ. В ответ на это сенсорные нейроны СДЦ возбуждают прессорные нейроны СДЦ.

Это приводит к увеличению тонуса симпатической ВНС и к уменьшению тонуса парасимпатической ВНС, что приводит к увеличению силы и частоты сердечных сокращений, сужению сосудов, то есть - к повышению АД. В стенках предсердий и лёгочной артерии находятся рецепторы низкого давления, которые возбуждаются при уменьшении АД в связи с уменьшением объёма циркулирующей крови.

При кровопотере уменьшается объём циркулирующей крови, АД снижается. Возбуждение барорецепторов уменьшается, а возбуждение рецепторов низкого давления увеличивается.

Это приводит к повышению АД. По мере того, как АД приближается к норме возбуждение барорецепторов увеличивается, а возбуждение рецепторов низкого давления уменьшается.

Это предохраняет от увеличения АД больше нормы. При кровопотере восстановление объёма циркулирующей крови достигается переходом крови из депо (селезёнка, печень) в кровяное русло. Примечание: В селезёнке депонировано около 500 мл. крови, а в печени и в сосудах кожи около 1 литра крови.

Объём циркулирующей крови контролируется и поддерживается почками за счёт образования количества мочи. При систолическом АД меньше 80 мм. рт. ст. моча не образуется вовсе, при нормальном АД - нормальное образование мочи, при повышенном АД мочи образуется прямо пропорционально больше (гипертензивный диурез). При этом увеличивается выведение с мочой натрия (гипертензивный натрийурез), а вместе с натрием выводится и вода.

При увеличении объёма циркулирующей крови больше нормы, нагрузка на сердце увеличивается. В ответ на это кардиомициты предсердий отвечают синтезом и выделением в кровь белка - предсердного натрийуретического пептида (ANP), который увеличивает выведение с мочой натрия, а, значит, и воды. Клетки организма могут сами регулировать поступление к ним с кровью кислорода и питательных веществ.

В условиях гипоксии (ишемии, недостаточного поступления кислорода) клетки выделяют вещества (например, аденозин, оксид азота NO, простациклин, углекислый газ, аденозинфосфаты, гистамин, ионы водорода (молочная кислота), ионы калия, магния), которые расширяют прилегающие к ним артериолы, тем самым, увеличивая к себе приток крови, а, соответственно, кислорода и питательных веществ.

В почках, например, при ишемии клетки мозгового слоя почек начинают синтезировать и выделять в кровь кинины и простагландины, которые обладают сосудорасширяющим действием. В результате - артериальные сосуды почек расширяются, кровоснабжение почек увеличивается. Примечание: при избыточном употреблении соли с пищей синтез клетками почек кининов и простагландинов уменьшается.

Кровь устремляется прежде всего туда, где артериолы больше расширены (в место наименьшего сопротивления). Хеморецепторы запускают механизм повышения АД, чтобы ускорить доставку клеткам кислорода и питательных веществ, которых клеткам не хватает. По мере того, как состояние ишемии устранено, клетки перестают выделять вещества, расширяющие прилегающие артериолы, а хеморецепторы прекращают стимулировать повышение АД.

Артериальная гипертензия - это стабильное повышение артериального давления - систолического до величины > 140 мм рт. ст. и/или диастолического до уровня > 90 мм рт. ст. по данным не менее чем двукратных измерений по методу Н. С. Короткова при двух или более последовательных визитах пациента с интервалом не менее 1 недели.

Артериальная гипертензия является важной и актуальной проблемой современного здравоохранения. При артериальной гипертензии значительно возрастает риск сердечно-сосудистых осложнений, она заметно снижает среднюю продолжительность жизни. Высокое артериальное давление всегда ассоциируется с увеличением риска развития мозгового инсульта, ишемической болезни сердца, сердечной и почечной недостаточности.

Различают эссенциальную (первичную) и вторичную артериальную гипертензию. Эссенциальная артериальная гипертензия составляет 90-92% (а по некоторым данным 95%), вторичная - около 8- 10% от всех случаев повышенного артериального давления.

Физиологические механизмы регуляции артериального давления

Артериальное давление формируется и поддерживается на нормальном уровне благодаря взаимодействию двух основных групп факторов:

    гемодинамических;

    нейрогуморальных.

Гемодинамические факторы непосредственно определяют уровень артериального давления, а система нейрогуморальных факторов оказывает регулирующее воздействие на гемодинамические факторы, что позволяет удерживать артериальное давление в пределах нормы.

Гемодинамические факторы, определяющие величину артериального давления

Основными гемодинамическими факторами, определяющими величину артериального давления, являются:

    минутный объем крови, т.е. количество крови, поступающей в сосудистую систему за 1 мин.; минутный объем или сердечный выброс = ударный объем крови х число сокращений сердца за 1 мин.;

    общее периферическое сопротивление или проходимость резистивных сосудов (артериол и прекапилляров);

    упругое напряжение стенок аорты и ее крупных ветвей - общее эластическое сопротивление;

    вязкость крови;

    объем циркулирующей крови.

Нейрогуморальные системы регуляции артериального давления

Регуляторные нейрогуморальные системы включают:

    систему быстрого кратковременного действия;

Система быстрого кратковременного действия

Система быстрого кратковременного действия или адаптационная система обеспечивает быстрый контроль и регуляцию артериального давления. Она включает механизмы немедленной регуляции артериального давления (секунды) и среднесрочные механизмы регуляции (минуты, часы).

Механизмы немедленной регуляции артериального давления

Основными механизмами немедленной регуляции артериального давления являются:

    барорецепторный механизм;

    хеморецепторный механизм;

    ишемическая реакция центральной нервной системы.

Барорецепторный механизм

Барорецепторный механизм регуляции артериального давления функционирует следующим образом. При повышении артериального давления и растяжении стенки артерии возбуждаются барорецепторы, расположенные в области каротидного синуса и дуги аорты, далее информация от этих рецепторов поступает в сосудодвигательный центр головного мозга, откуда исходит импульсация, приводящая к уменьшению влияния симпатической нервной системы на артериолы (они расширяются, снижается общее периферическое сосудистое сопротивление - постнагрузка), вены (происходит венодилатация, уменьшается давление наполнения сердца - преднагрузка). Наряду с этим повышается парасимпатический тонус, что приводит к уменьшению частоты сердечного ритма. В конечном итоге указанные механизмы приводят к снижению артериального давления.

Хеморецепторный механизм

Хеморецепторы, принимающие участие в регуляции артериального давления, расположены в каротидном синусе и аорте. Хеморецепторная система регулируется уровнем артериального давления и величиной парциального напряжения в крови кислорода и углекислого газа. При снижении артериального давления до 80 мм рт. ст. и ниже, а также при падении парциального напряжения кислорода и повышении углекислого газа возбуждаются хеморецепторы, импульсация от них поступает в сосудодвигательный центр с последующим повышением симпатической активности и тонуса артериол, что приводит к повышению артериального давления до нормального уровня.

Ишемическая реакция центральной нервной системы

Этот механизм регуляции артериального давления включается при быстром падении артериального давления до 40 мм рт. ст. и ниже. При такой выраженной артериальной гипотензии развивается ишемия центральной нервной системы и сосудодвигательного центра, из которого усиливается импульсация к симпатическому отделу вегетативной нервной системы, в итоге развивается вазоконстрикция и артериальное давление повышается.

Среднесрочные механизмы регуляции артериального давления

Среднесрочные механизмы регуляции артериального давления развивают свое действие в течение минут - часов и включают:

    ренин-ангиотензиновую систему (циркулирующую и локальную);

    антидиуретический гормон;

    капиллярную фильтрацию.

Ренин-ангиотензиновая система

В регуляции артериального давления активное участие принимают как циркулирующая, так и местная ренин-ангиотензиновая система. Циркулирующая ренин-ангиотензиновая система приводит к повышению артериального давления следующим образом. В юкстагломерулярном аппарате почек продуцируется ренин (его выработка регулируется активностью барорецепторов афферентных артериол и влиянием на плотное пятно концентрации натрия хлорида в восходящей части петли нефрона), под влиянием которого из ангиотензиногена образуется ангиотензин I, превращающийся под влиянием ангиотензинпревращающего фермента в ангиотензин II, который обладает выраженным сосудосуживающим действием и повышает артериальное давление. Вазоконстрикторный эффект ангиотензина II продолжается от нескольких минут до нескольких часов.

Антидиуретический гормон

Изменение секреции гипоталамусом антидиуретического гормона регулирует уровень артериального давления, причем считается, что действие антидиуретического гормона не ограничивается только среднесрочной регуляцией артериального давления, он принимает также участие в механизмах долгосрочной регуляции. Под влиянием антидиуретического гормона возрастает реабсорбция воды в дистальных канальцах почек, увеличивается объем циркулирующей крови, повышается тонус артериол, что приводит к повышению артериального давления.

Капиллярная фильтрация

Капиллярная фильтрация принимает определенное участие в регуляции артериального давления. При повышении артериального давления происходит перемещение жидкости из капилляров в интерстициальное пространство, что приводит к уменьшению объема циркулирующей крови и соответственно к снижению артериального давления.

Длительно действующая система регуляции артериального давления

Для активации длительно действующей (интегральной) системы регуляции артериального давления требуется значительно больше времени (дни, недели) по сравнению с быстродействующей (краткосрочной) системой. Длительно действующая система включает следующие механизмы регуляции артериального давления:

а) прессорный объемно-почечный механизм, функционирующий по схеме:

почки (ренин) → ангиотензин I → ангиотензин II→ клубочковая зона коры надпочечников (альдостерон) → почки (увеличение реабсорбции натрия в почечных канальцах) → задержка натрия → задержка воды → увеличение объема циркулирующей крови → увеличение АД;

б) локальную ренин-ангиотензиновую систему;

в) эндотелиальный прессорный механизм;

г) депрессорные механизмы (система простагландинов, калликреинкининовая система, эндотелиальные вазодилатирующие факторы, натрийуретические пептиды).

ИЗМЕРЕНИЕ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ ПРИ ОБСЛЕДОВАНИИ БОЛЬНОГО С АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИЕЙ

Измерение артериального давления аускультативным методом Короткова является основным методом диагностики артериальной гипертензии. Для получения цифр, соответствующих истинному артериальному давлению, необходимо соблюдать следующие условия и правила измерения артериального давления.

Методика измерения артериального давления

    Условия измерения. Измерение артериального давления должно проводиться в условиях физического и эмоционального покоя. В течение 1 ч до измерения артериального давления не рекомендуется прием кофе, употребление пищи, запрещается курение, не разрешаются физические нагрузки.

    Положение больного. Измерение артериального давления производится в положении пациента сидя, лежа.

    Положение манжеты тонометра. Середина манжеты, наложенной на плечо пациента, должна находиться на уровне сердца. Если манжета расположена ниже уровня сердца, артериальное давление завышается, если выше - занижается. Нижний край манжетки должен находиться на 2.5 см выше локтевого сгиба, между манжетой и поверхностью плеча пациента должен проходить палец. Манжета накладывается на обнаженную руку - при измерении артериального давления через одежду показатели завышаются.

    Положение стетоскопа. Стетоскоп должен плотно прилегать (но без сдавления!) к поверхности плеча в месте наиболее выраженной пульсации плечевой артерии у внутреннего края локтевого сгиба.

    Выбор руки пациента для измерения артериального давления. При первом посещении пациентом врача измерение артериальное давление следует производить на обеих руках. В последующем АД измеряется на руке с более высокими его показателями. В норме разница артериального давления на левой и правой руке составляет 5-10 мм рт. ст. Более высокая разница может быть обусловлена анатомическими особенностями или патологией самой плечевой артерии правой или левой руки. Повторные измерения следует проводить всегда на одной и той же руке.

    У пожилых людей также отмечается ортостатическая гипотензия, поэтому у них целесообразно измерять артериальное давление в положении лежа и стоя.

Самоконтроль артериального давления в амбулаторных условиях

Самоконтроль (измерение артериального давления самим пациентом дома, в амбулаторных условиях) имеет огромное значение и может производиться с помощью ртутных, мембранных, а также электронных тонометров.

Самоконтроль за артериальным давлением позволяет установить «феномен белого халата» (повышение артериального давления регистрируется лишь при посещении врача), сделать заключение о поведении артериального давления в течение суток и принять решение о распределении приемов гипотензивного препарата в течение суток, что может снизить стоимость лечения и повысить его эффективность.

Суточное мониторирование артериального давления

Суточное мониторирование артериального давления - это многократное измерение артериального давления в течение суток, производимое через определенные промежутки времени наиболее часто в амбулаторных условиях (суточное амбулаторное мониторирование артериального давления) или реже - в стационаре с целью получения суточного профиля артериального давления.

В настоящее время суточное мониторирование артериального давления производится, конечно, неинвазивным методом с использованием различных типов носимых автоматических и полуавтоматических мониторных систем-регистраторов.

Установлены следующие преимущества суточного мониторирова ния артериального давления по сравнению с однократным или двукратным его измерением:

    возможность производить частые измерения артериального давления в течение суток и получить более точное представление о суточном ритме артериального давления и его вариабельности;

    возможность измерять артериальное давление в обычной повседневной, привычной для больного обстановке, что позволяет сделать заключение об истинном артериальном давлении, характерном для данного больного;

    устранение эффекта «белого халата»;

Под регуляцией кровообращения понимают его приспособление к изменяющейся функциональной активности и метаболическим потребностям органов и тканей, которое осуществляется по трем основным направлениям:

  • через сосудистую систему организма в каждый момент времени (например, минуту) должно перекачиваться количество крови (МОК), способное обеспечить текущие метаболические потребности всего организма;
  • кровь в аорте и крупных артериальных сосудах должна находиться под давлением, способным обеспечить необходимую для МОК движущую силу и определенную скорость движения крови;
  • МОК, циркулирующий в системных сосудах, должен быть распределен между органами и тканями в соответствии с их текущей функциональной активностью и метаболическими потребностями.

Q (или МОК)= V*S,

где V — линейная скорость тока крови; S — площадь поперечного сечения артериального сосудистого русла.

Как можно увеличить линейную скорость кровотока в системных артериальных сосудах, видно из анализа следующих выражений. Ранее нами приводилось одно из основных выражений гемодинамики:

МОК = (Р 1 — Р 2) / R

где Р 1 — среднее гемодинамическое артериальное давление крови в аорте; Р 2 — давление крови в устье полых вен или в правом предсердии; R — общее сопротивление току крови.

Поскольку в полых венах давление крови близко к нулю, то Р 1 — Р 2 фактически равно среднему гемодинамическому АД в начале аорты. Так какV * S = АД/R , увеличить линейную скорость кровотока в артериальных сосудах при их относительно неизменной площади поперечного сечения можно, повысив АД крови.

Артериальное давление крови зависит главным образом от ОЦК, насосной функции сердца (МОК) и величины ОМС. Таким образом, АД = МОК * ОПС , поэтому увеличение при физической нагрузке объема крови, перекачиваемой сердцем за 1 мин, будет сопровождаться увеличением АД и повышением линейной скорости тока крови в артериальных сосудах. В то же время очень существенное влияние на величину АД и скорость тока крови оказывает величина ОПС, которая может изменяться в широких пределах под действием механизмов регуляции АД крови.

Согласно закону Пуазейля,

гдеL - длина сосуда; η — вязкость крови; π — число, равное 3,14; r - радиус сосуда.

Поскольку числа 8 и π являются постоянными,L у взрослого человека изменяется мало, вязкость крови η также мало изменяющаяся величина за короткий промежуток времени, то величина периферического сопротивления кровотоку определяется прежде всего радиусом резистивных сосудов r . Сопротивление зависит от величины радиуса в 4-й степени, поэтому даже небольшие колебания радиуса этих сосудов сильно сказываются на величинах сопротивления току крови и ее давлении в артериальных сосудах.

Очевидно, что регуляция кровотока в системных артериальных сосудах и тем самым во всей сосудистой системе зависит от величины среднего гемодинамического АД крови. Его повышение является важнейшей движущей силой, ускоряющей ток крови в артериальных сосудах, а снижение — замедляющей ток крови. Таким образом, одна из основных задач механизмов регуляции тока крови в сосудах — регуляция величины АД крови как основной силы, движущей ток крови в сосудах.

Регуляция артериального давления крови

Поддержание нормального уровня давления крови в магистральных артериях является важнейшим условием, необходимым для обеспечения кровотока, адекватного потребностям организма. Регуляция уровня осуществляется сложной многоконтурной функциональной системой, в которой используются принципы регуляции давления по отклонению и (или) по возмущению. Схема такой системы, построенной на основе принципов теории функциональных систем П.К. Анохина, представлена на рис. 1. Как и в любой другой функциональной системе регуляции параметров внутренней среды организма, в ней можно выделить регулируемый показатель, которым является уровень давления крови в аорте, крупных артериальных сосудах и полостях сердца.

Рис. 1. Схема функциональной системы регуляции АД крови: 1-3 — импульсация от экстеро-, интеро-, проприорецепторов

Непосредственная оценка уровня давления крови осуществляется барорецепторами аорты, артерий и сердца. Эти рецепторы являются механорецепторами, образованы окончаниями афферентных нервных волокон и реагируют на степень растяжения давлением крови стенки сосудов и сердца изменением числа нервных импульсов. Чем выше давление, тем большая частота нервных импульсов генерируется в нервных окончаниях, образующих барорецепторы. От рецепторов по афферентным нервным волокнам IX и X пар черепных нервов потоки сигналов о текущей величине давления крови передаются в нервные центры, регулирующие кровообращение. В них поступает информация от хеморецепторов, контролирующих напряжение газов крови, от рецепторов мыщц, суставов, сухожилий, а также от экстерорецепторов. Активность нейронов центров, регулирующих давление крови и кровоток, зависит также от влияния на них высших отделов головного мозга.

Одной из важных функций этих центров является формирование задаваемого для регуляции уровня(set point ) артериального давления крови. На основе сравнения информации о величине текущего давления, поступающей в центры, с его заданным уровнем для регуляции, нервные центры формируют поток сигналов, передающихся к эффекторным органам. Изменяя их функциональную активность, можно непосредственно влиять на уровень артериального кровяного давления, приспосабливая его величину к текущим потребностям организма.

К эффекторным органам относятся: сердце, через влияние на которого (ударный объем, ЧСС, МОК), можно воздействовать на уровень АД; гладкие миоциты сосудистой стенки, через влияние на тонус которых можно изменять сопротивление сосудов кровотоку, артериальное давление и ток крови в органах и тканях; почки, через влияние на процессы выделения и реабсорбции воды в которых можно изменять объем циркулирующей крови (ОЦК) и се давление; депо крови, красный костный мозг, сосуды микроциркуляторного русла, в которых через депонирование, образование и разрушение эритроцитов, процессы фильтрации и реабсорбции можно воздействовать на ОЦК, ее вязкость и давление. Через влияние на эти эффекторные органы и ткани механизмы нейрогуморальной регуляции организма (МНГР) могут изменять давление крови в соответствии с заданным в ЦНС уровнем, приспосабливая его к потребностям организма.

Функциональная система регуляции кровообращения располагает различными механизмами влияния на функции эффекторных органов и тканей. Среди них механизмы автономной нервной системы, гормоны надпочечников, используя которые, можно изменить работу сердца, просвет (сопротивление) сосудов и оказать влияние на артериальное давление крови мгновенно (за секунды). В функциональной системе для регуляции кровообращения широко применяются сигнальные молекулы (гормоны, сосудоактивные вещества эндотелия и другой природы). Для их высвобождения и реализации влияния на клетки-мишени (гладкие миоциты, эпителий почечных канальцев, кроветворные клетки и др.) необходимы десятки минут, а для изменения ОЦК и ее вязкости может потребоваться более продолжительное время. Поэтому но скорости реализации влияния на уровень АД выделяют механизмы быстрого реагирования, среднесрочного реагирования, медленного реагирования и длительного влияния на артериальное давление крови.

Механизмы быстрого реагирования

Механизмы быстрого реагирования и быстрого влияния на изменение АД реализуются через рефлекторные механизмы автономной нервной системы (АНС). Принципы строения нейронных путей рефлексов АНС рассмотрены в главе, посвященной автономной нервной системе.

Рефлекторные реакции на изменения уровня АД могут за секунды изменить величину давления крови и тем самым изменить скорость кровотока в сосудах, транскапиллярный обмен. Механизмы быстрого реагирования и рефлекторной регуляции АД крови включаются при резком изменении АД крови, изменении газового состава крови, ишемии головного мозга, психоэмоциональном возбуждении.

Любой рефлекс инициируется посылкой сигналов рецепторов в центры рефлекса. Места скопления рецепторов, реагирующих на один тип воздействий, принято называть рефлексогенными зонами . Уже кратко упоминалось, что рецепторы, воспринимающие изменения величины кровяного давления, называют барорецепторами или механореце пторами растяжения. Они реагируют на колебания АД крови, вызывающие большее или меньшее растяжение стенок сосудов, изменением разности потенциалов на рецепторной мембране. Основное количество барорецепторов сосредоточено в рефлексогенных зонах крупных сосудов и сердца. Важнейшими из них для регуляции давления крови являются зоны дуги аорты и каротидного синуса (место разветвления общей сонной артерии на внутреннюю и наружную сонные артерии). В этих рефлексогенных зонах сосредоточены не только барорецепторы, но и хеморецепторы, воспринимающие изменение напряжения С0 2 (рС0 2) и 0 2 (рО 2 ,) в артериальной крови.

Афферентные нервные импульсы, возникающие в рецепторных нервных окончаниях, проводятся в продолговатый мозг. От рецепторов дуги аорты они идут по левому депрессорному нерву, который у человека проходит в стволе блуждающего нерва (правый депрессорный нерв проводит импульсацию от рецепторов, расположенных в начале плечеголовного артериального ствола). Афферентные импульсы от рецепторов каротидного синуса проводятся в составе веточки синокаротидного нерва, называемой также нервом Геринга (в составе языко глоточного нерва).

Барорецепторы сосудов реагируют изменением частоты генерации нервных импульсов на нормальные колебания уровня АД крови. Во время диастолы при понижении давления (до 60-80 мм рт. ст.) число генерируемых нервных импульсов снижается, а при каждой систоле желудочков, когда давление крови в аорте и артериях повышается (до 120-140 мм рт. ст.), частота импульсов, посылаемых этими рецепторами в продолговатый мозг, увеличивается. Учащение афферентной импульсации прогрессивно нарастает, если давление крови возрастает выше нормального. Афферентные импульсы от барорецепторов поступают к нейронам денрессорного отдела центра кровообращения продолговатого мозга и повышают их активность. Между нейронами депрессорного и прессорного отделов этого центра имеются реципрокные отношения, поэтому при повышении активности нейронов денрессорного отдела тормозится активность нейронов прессорного отдела сосудодвигательного центра.

Нейроны прессорного отдела посылают аксоны к иреганглионарным нейронам симпатической нервной системы спинного мозга, которые через ганглионарные нейроны иннервируют сосуды. В результате снижения притока нервных импульсов к преганглионарным нейронам их тонус уменьшается и частота нервных импульсов, посылаемых ими к ганглионарным нейронам и далее к сосудам, уменьшается. Количество норадреналина, высвобождаемого из постганглионарных нервных волокон, уменьшается, сосуды расширяются и АД снижается (рис. 2).

Параллельно с инициацией рефлекторного расширения артериальных сосудов на повышение давления крови развивается быстрое рефлекторное торможение насосной функциисердца. Оно возникает вследствие посылки усиленного потока сигналов от барорецепторов по афферентным волокнам блуждающего нерва к нейронам ядра нерва. При этом активность последних возрастает, увеличивается ноток эфферентных сигналов, посылаемых по волокнам блуждающего нерва к клеткам водителя ритма сердца и миокарду предсердий. Частота и сила сокращений сердца уменьшаются, что ведет к уменьшению МОК и способствует снижению повысившегося АД крови. Таким образом, барорецепторы следят не только за изменением артериального давления крови, их сигналы используются для рефляции давления при его отклонении от нормального уровня. Эти рецепторы и возникающие с них рефлексы иногда называют «обуздывателями кровяного давления».

Рис. 2. Влияние симпатическом нервной системы на просвет артериальных сосудов мышечного типа и АД крови при ее низком (слева) и высоком (справа) тонусе

Иная направленность рефлекторной реакции возникает в ответ на снижение АД крови. Она проявляется сужением сосудов и усилением работы сердца, которые способствуют повышению АД крови.

Рефлекторное сужение сосудов и усиление работы сердца наблюдаются при повышении активности хеморецепторов, расположенных в аортальном и каротидном тельцах. Эти рецепторы активны уже при нормальном напряжении в артериальной крои рСО 2 и рО 2 ,. От них постоянно идет поток афферентных сигналов к нейронам прессорного отдела сосудодвигательного центра и к нейронам дыхательного центра продолговатого мозга. Активность рецепторов 0 2 возрастает при снижении рО 2 , в плазме артериальной крови, а активность рецепторов СО 2 , возрастает при увеличении рСО 2 и снижении рН. Это сопровождается увеличением посылки сигналов в продолговатый мозг, повышением активности нейронов прессорного отдела и активности преганглионарных нейронов симпатического отдела АНС в спинном мозге, которые посылают эфферентные сигналы большей частоты к сосудам и сердцу. Сосуды суживаются, сердце увеличивает частоту и силу сокращений, что ведет к повышению АД крови.

Описанные рефлекторные реакции кровообращения называют собственными , так как их рецепторное и эффекторное звено принадлежит к структурам сердечно-сосудистой системы. Если рефлекторные влияния на кровообращение осуществляются с рефлексогенной зоны, находящейся вне сердца и сосудов, то такие рефлексы называют сопряженными. Рефлекс Гольца проявляется тем, что при задержке дыхания в положении глубокого вдоха и повышении давления в брюшной полости происходит снижение частоты сокращений сердца. Если такое урежение превышает 6 сокращений в минуту, то это свидетельствует о повышенной возбудимости нейронов ядер блуждающего нерва. Воздействия на рецепторы кожи могут вызвать как торможение, так и активацию сердечной деятельности. Например, при раздражении холодовых рецепторов кожи в области живота происходит снижение частоты сокращений сердца.

При психоэмоциональном возбуждении за счет возбуждающих нисходящих влияний активируются нейроны прессорного отдела сосудодвигательного центра, что ведет к активации нейронов симпатической нервной системы и повышению АД. Подобная реакция развивается и при ишемии ЦНС.

Нервно-рефлекторное влияние на АД крови достигается воздействием норадреналина и адреналина посредством стимуляции адрсиорецепторов и внутриклеточных механизмов гладких миоцитов сосудов и миоцитов сердца.

Центры регуляции кровообращения располагаются в спинном, продолговатом мозге, гипоталамусе и коре мозга. Влияние на уровень АД крови и работу сердца могут оказывать многие другие структуры ЦНС. Эти влияния реализуются преимущественно через их связи с центрами продолговатого и спинного мозга.

К центрам спинного мозга относятся преганглионарные нейроны симпатического отдела АНС (боковые рога С8 — L3 сегментов), которые посылают аксоны к ганглионарным нейронам, расположенным в превертебральных и паравертебральных ганглиях и непосредственно иннервирующим гладкие миоциты сосудов, а также преганглионарные нейроны боковых рогов (Th1-Th3), которые регулируют работу сердца через модуляцию активности ганглионарных нейронов преимущественно шейных узлов).

Нейроны симпатической нервной системы боковых рогов спинного мозга являются эффекторными. Через них центры регуляции кровообращения продолговатого мозга и более высоких уровней ЦНС (гипоталамус, ядро шва, варолиев мост, околоводопроводнос серое вещество среднего мозга) оказывают влияние на тонус сосудов и работу сердца. В то же время экспериментальные и клинические наблюдения свидетельствуют о том, что эти нейроны рефлекторно регулируют кровоток в отдельных областях сосудистого русла, а также самостоятельно обеспечивают регуляцию уровня АД при нарушении связи спинного мозга с головным.

Возможность регуляции артериального давления крови нейронами симпатической нервной системы спинного мозга основана на том, что их тонус определяется не только притоком сигналов с вышележащих отделов ЦНС, но и притоком к ним нервных импульсов от механо-, хемо-, термо- и болевых рецепторов сосудов, внутренних органов, кожи, опорно-двигательного аппарата. При изменении притока к этим нейронам афферентных нервных импульсов их тонус также изменяется, что проявляется рефлекторным сужением или расширением сосудов и повышением или снижением АД. Такие рефлекторные влияния на просвет сосудов со стороны спинальных центров регуляции кровообращения обеспечивают относительно быстрое рефлекторное повышение или восстановление АД крови после его снижения в условиях разрыва связей спинного мозга с головным.

В продолговатом мозге находится сосудодвигательный центр, открытый Ф.В. Овсянниковым. Он является частью сердечно-сосудистого, или кардиоваскулярного, центра ЦНС. В частности, в ретикулярной формации продолговатого мозга вместе с нейронами, контролирующими тонус сосудов, расположены нейроны центра регуляции сердечной деятельности. Сосудодвигательный центр представлен двумя отделами: прессорным, активация нейронов которого вызывает сужение сосудов и увеличение АД крови, и депрессорным, активация нейронов которого приводит к снижению АД.

Как видно из рис. 3, нейроны прессорного и деирессорного отделов получают различные афферентные сигналы и по- разному связаны с эффекторными нейронами. Нейроны прессорного отдела получают афферентные сигналы по волокнам IX и X черепных нервов от хеморецепторов сосудов, сигналы от хеморецепторов продолговатого мозга, от нейронов дыхательного центра, нейронов гипоталамуса, а также от нейронов коры большого мозга.

Аксоны нейронов прессорного отдела образуют возбуждающие синапсы на телах преганглионарных симпатических нейронов гораколюмбального отдела спинного мозга. При повышении активности нейроны прессорного отдела посылают возросший поток эфферентных нервных импульсов к нейронамсимпатического отдела спинного мозга, повышая их активность и тем самым активность ганглионарных нейрнов, осуществляющих иннервацию сердца и сосудов (рис. 4).

Рис. 3. Схематичесное представление структуры и связей центров рефлекторной регуляции кровообращения (А. Шмидт, 2005)

Преганглонарные нейроны спинальных центров даже в условиях покоя обладают тонической активностью и постоянно посылают сигналы к ганглионарным нейронам, которые, в свою очередь, посылают к сосудам редкие (частота 1-3 Гц) нервные импульсы. Одной из причин генерации этих нервных импульсов является поступление к нейронам спинальных центров нисходящих сигналов от части нейронов прессорногоотдела, обладающих спонтанной, пейсмекероподобной активностью. Таким образом, спонтанная активность нейронов прессорного отдела, преганглиоиарных спинальных центров регуляции кровообращения и ганплионарных нейронов являются в условиях покоя источником тонической активности симпатических нервов, оказывающих на сосуды вазоконстрикторное действие.

Рис. 4. Реагирование барорецепторов, нейронов кардиоваскулярного центра на изменения артериального давления крови и рефлекторные влияния на работу сердца и просвет сосудов (Шмидт, 2005)

Повышение активности преганглионарных нейронов, вызванное усилением притока сигналов прессорного отдела, оказывает стимулирующее влияние на работу сердца, тонус артериальных и венозных сосудов. Кроме того, активированные нейроны прессорного отдела способны тормозить активность нейронов депрессорного отдела.

Отдельные пулы нейронов прессорного отдела могут оказывать более сильное действие на определенные области сосудистого русла. Так, возбуждение одних из них ведет к большему сужению сосудов почек, возбуждение других — к существенному сужению сосудов желудочно-кишечного тракта и меньшему сужению сосудов скелетных мышц. Ингибирование активности нейронов прессорного отдела ведет к понижению давления крови вследствие устранения вазоконстриктор- ного влияния, подавления или потери рефлекторного стимулирующего влияния симпатической нервной системы на работу сердца при раздражении хемо- и барорецепторов.

Нейроны депрессорного отдела сосудодвигательного центра продолговатого мозга получают афферентные сигналы по волокнам IX и X черепных нервов от барорецепторов аорты, сосудов, сердца, а также от нейронов гипоталамического центра регуляции кровообращения, от нейронов лимбической системы, коры большого мозга. При повышении их активности они тормозят активность нейронов прессорного отдела и могут через тормозные синапсы понижать или устранять активность преганглионарных нейронов симпатического отдела спинного мозга.

Между депрессорным и прессорным отделами существуют реципрокные взаимоотношения. Если под влиянием афферентных сигналов депрессорный отдел возбуждается, то это приводит к торможению активности прессорного отдела и последний посылает меньшую частоту эфферентных нервных импульсов к нейронам спинного мозга, вызывая меньшее сужение сосудов. Снижение активности спинальных нейронов может привести к прекращению посылки ими эфферентных нервных импульсов к сосудам, вызывая расширение сосудов до просвета, определяемого уровнем базального тонуса гладких миоцитов их стенки. При расширении сосудов кровоток через них увеличивается, уменьшается величина ОПС и давление крови снижается.

В гипоталамусе также имеются группы нейронов, активация которых вызывает изменение работы сердца, реакции сосудов и влияет на АД крови. Эти влияния могут быть реализованы гипоталамическими центрами через изменение тонуса АНС. Напомним, что увеличение активности нейронных центров переднего гипоталамуса сопровождается повышением тонуса парасимпатического отдела АНС, снижением насосной функции сердца и АД крови. Увеличение нейронной активности в области заднего гипоталамуса сопровождается повышением тонуса симпатического отдела АНС, усилением работы сердца и повышением АД крови.

Гипоталамические центры регуляции кровообращения имеют ведущее значение в механизмах интеграции функций сердечно-сосудистой системы и других вегетативных функций организма. Известно, что сердечно-сосудистая система является одной из важнейших в механизмах терморегуляции, а се активное использование в процессах терморегуляции инциируется гипоталамическими центрами регуляции температуры тела (см. «Терморегуляция»). Система кровообращения активно реагирует на изменение в крови уровня глюкозы, осмотического давления крови, к которым высокочувствительны нейроны гипоталамуса. В ответ на снижение уровня глюкозы в крови повышается тонус симпатической нервной системы, а при повышении осмотического давления крови в гипоталамусе образуется возопрессин — гормон, оказывающий суживающее действие на сосуды. Гипоталамус влияет на кровообращение посредством других гормонов, секреция которых контролируется симпатическим отделом АНС (адреналин, норадреналин) и гипоталамическими либеринами и статинами (кортикостероиды, половые гормоны).

Структуры лимбической системы , являющиеся частью эмоциогенных областей мозга, через связи с гипоталамическими центрами регуляции кровообращения могут оказывать выраженное влияние на работу сердца, тонус сосудов и АД крови. Пример такого влияния — хорошо известное увеличение ЧСС, УО и АД крови при волнении, недовольстве, гневе, эмоциональных реакциях другого происхождения.

Кора больших полушарий также оказывает влияние на работу сердца, тонус сосудов и АД крови через связи с гипоталамусом и нейронами сердечно-сосудистого центра продолговатого мозга. Кора большого мозга может влиять на кровообращение путем участия в регуляции выброса в кровь гормонов надпочечников. Локальное раздражение двигательной зоны коры вызывает увеличение кровотока в мышцах, в которых инициируется сокращение. Важное значение играют рефлекторные механизмы. Известно, что за счет образования условных сосудодвигатсльиых рефлексов изменения кровообращения могут наблюдаться в предстартовом состоянии, еще до начала сокращения мышц, когда повышается насосная функция сердца, увеличивается АД крови и возрастает интенсивность кровотока в мышцах. Такие изменения кровообращения подготавливают организм к выполнению физической и эмоциональной нагрузки.

Механизмы среднесрочного реагирования

Механизмы среднесрочного реагирования на изменение давления крови начинают действовать через десятки минут и часы.

Среди механизмов среднесрочного реагирования важная роль принадлежит механизмам почки. Так, при продолжительном снижении АД и тем самым снижении кровотока через почку клетки ее юкстагломсрулярного аппарата реагируют выбросом в кровь фермента ренина, под действием которого из α 2 ,- глобулина плазмы крови образуется ангиотензин I (AT I), а из него под влияем ангиотензинпревращающего фермента (АПФ) образуется AT II. AT II вызывает сокращение гладкомыщечных клеток стенки сосудов и оказывает сильное сосудосуживающее влияние на артерии и вены, увеличивает возврат венозной крови к сердцу, УО и повышает АД крови. Повышение уровня ренина в крови наблюдается также при повышении тонуса симпатического отдела АНС и снижении уровня ионов Na в крови.

К механизмам среднесрочного реагирования на изменение АД крови относится изменение транскапиллярного обмена водой между кровью и тканями. При длительном увеличении АД возрастает фильтрация воды из крови в ткани. Из-за выхода жидкости из сосудистого русла ОЦК уменьшается, что способствует снижению кровяного давления. Обратные явления могут развиться при понижении АД крови. Следствием избыточной фильтрации воды в ткани при повышении АД крови может быть развитие отека тканей, наблюдаемое у больных артериальной гипертензией.

В число среднесрочных механизмов регуляции АД крови включают механизмы, связанные с реакцией гладких миоцитов сосудистой стенки на длительное повышение АД. При продолжительном повышении АД наблюдается стресс-релаксация сосудов — расслабление гладких миоцитов, способствующее расширению сосудов, снижению периферического сопротивления току крови и уменьшению АД крови.

Механизмы медленного реагирования

Механизмы медленного реагирования на изменение давления крови и нарушение его регуляции начинают действовать через дни и месяцы после его изменения. Важнейшими из них являются почечные механизмы регуляции АД, реализуемые через изменение ОЦК. Изменение ОЦК достигается посредством влияния сигнальных молекул ренин-ангиотензин Н-альдостероновой системы, натрийуретического пептида (НУП) и антидиуретического гормона (АДГ) на процессы фильтрации и реабсорбции ионов Na+, фильтрации и реабсорбции воды и выведения мочи.

При высоком АД крови выделение жидкости с мочой возрастает. Это приводит к постепенному снижению количества жидкости в организме, уменьшению ОЦК, снижению венозного возврата крови к сердцу, уменьшению УО, МОК и величины АД. Главную роль в регуляции почечного диуреза (объема выделяемой мочи) играют АДГ, альдоетерон и НУП. При увеличении содержания в крови АДГ и альдостерона почки увеличивают задержку в организме воды и натрия, способствуя повышению АД крови. Под влиянием НУП увеличивается выведение натрия и воды с мочой, возрастает диурез, уменьшается ОЦК, что сопровождается понижением АД крови.

Уровень в крови АДГ и его образование в гипоталамусе зависят от ОЦК. величины АД крови, ее осмотического давления и уровня в крови AT II. Так, уровень АДГ в крови возрастает при уменьшении ОЦК, снижении АД, повышении осмотического давления крови, повышении в крови уровня AT II. Кроме того, на высвобождение в кровь АДГ гипофизом влияет приток в сосудодвигательный центр продолговатого мозга и гипоталамус афферентных нервных импульсов от барорецепторов, рецепторов растяжения предсердий и крупных вен. При увеличении притока сигналов в ответ на растяжение предсердий и крупных вен кровью наблюдается снижение высвобождения АДГ в кровь, уменьшение реабсорбции воды в почках, увеличение диуреза и снижение ОЦК.

Уровень альдостерона в крови контролируется действием на клетки гломерулярного слоя надпочечников AT II, АКТГ, ионов Na+ и К+ . Альдоетерон стимулирует синтез белка — переносчика натрия и увеличивает реабсорбцию натрия в почечных канальцах. Альдоетерон тем самым снижает выведение воды почками, способствует увеличению ОЦК и повышению АД крови, увеличению АД крови за счет повышения чувствительности гладких миоцитов сосудов к действию сосудосуживающих веществ (адреналин, ангиотензин).

Основное количество НУП образуется в миокарде предсердий (в связи с чем его называют также атриопептидом). Его выброс в кровь увеличивается при возрастании растяжения предсердий, например в условиях увеличения ОЦК и венозного возврата. Натрийуретический пептид способствует снижению АД крови путем уменьшения реабсорбции ионов Na+ в почечных канальцах, увеличения выведения ионов Na+ и воды с мочой и понижения ОЦК. Кроме того, НУП оказывает расширяющее действие на сосуды, блокируя кальциевые каналы гладких миоцитов сосудистой стенки, снижая активность ренин-ангиотеизиновой системы и образование эндотелинов. Эти эффекты НУП сопровождаются снижением величины сопротивления току крови и ведут к понижению АД крови.

Артериальное давление регулируется краткосроч­ными, среднесрочными и долгосрочными приспо-собительными реакциями, осуществляющимися сложными нервными, гуморальными и почечными механизмами.

А. Краткосрочная регуляция. Немедленные реакции, обеспечивающие непрерывную регуля­цию АД, опосредованы главным образом рефлек­сами вегетативной нервной системы. Изменения АД воспринимаются как в ЦНС (гипоталамус и ствол мозга), так и на периферии специализиро­ванными сенсорами (барорецепторами). Сниже­ние АД повышает симпатический тонус, увеличи­вает секрецию адреналина надпочечниками и подавляет активность блуждающего нерва. В ре­зультате возникает вазоконстрикция сосудов большого круга кровообращения, увеличивается ЧСС и сократимость сердца, что сопровождается повышением АД. Артериальная гипертензия, на­оборот, угнетает симпатическую импульсацию и повышает тонус блуждающего нерва.

Периферические барорецепторы расположены в области бифуркащш общей сонной артерии и в дуге аорты. Рост АД увеличивает частоту им-пульсации барорецепторов, что угнетает симпати­ческую вазоконстрикцию и повышает тонус блуж­дающего нерва (барорецепторный рефлекс). Снижение АД приводит к уменьшению частоты импульсации барорецепторов, что вызывает вазо­констрикцию и снижает тонус блуждающего нерва. Каротидные барорецепторы посылают афферент­ные импульсы к вазомоторным центрам в продол­говатом мозге по нерву Геринга (ветвь языкогло­точного нерва). От барорецепторов дуги аорты афферентные импульсы поступают по блуждаю­щему нерву. Физиологическое значение каротидных барорецепторов больше, чем аортальных, потому что именно они обеспечивают стабильность АД при резких функциональных сдвигах (например, при изменении положения тела). Каротидные бароре­цепторы лучше приспособлены к восприятию АДср в пределах от 80 до 160 мм рт. ст.

К резким из­менениям АД адаптация развивается в течение

1-2 дней; поэтому данный рефлекс неэффективен с точки зрения долгосрочной регуляции. Все инга­ляционные анестетики подавляют физиологичес­кий барорецепторный рефлекс, самые слабые инги­биторы - изофлюран и десфлюран. Стимуляция сердечно-легочных рецепторов растяжения, распо­ложенных в предсердиях и в легочных сосудах, так­же способна вызывать вазодилатацию.

Б. Среднесрочная регуляция. Артериальная гипотензия, сохраняющаяся в течение нескольких минут, в сочетании с повышенной симпатической импульсацией приводит к активации системы "ре-нин-ангиотензин-альдостерон" (гл. 31), увеличе­нию секреции антидиуретического гормона (АДГ, синоним - аргинин-вазопрессин) и изменению транскапиллярного обмена жидкости (гл. 28). ah-гиотензин II и АДГ - мощные артериолярные ва-зоконстрикторы. Их немедленный эффект заклю­чается в увеличении ОПСС. Для секреции АДГ в количестве, достаточном для обеспечения вазо-констрикции, требуется большее снижение АД, чем для появления соответствующего эффекта ангио-тензина П.

Устойчивые изменения АД влияют на обмен жидкости в тканях за счет изменения давления в капиллярах. Артериальная гипертензия вызыва­ет перемещение жидкости из кровеносных сосудов в интерстиций, артериальная гипотензия - в об­ратном направлении. Компенсаторные изменения ОЦК способствуют уменьшению колебаний АД, особенно при дисфункции почек.

В. Долгосрочная регуляция. Влияние медлен­нодействующих почечных механизмов регуляции проявляется в тех случаях, когда устойчивое изме­нение АД сохраняется в течение нескольких часов. Нормализация АД почками осуществляется за счет изменения содержания натрия и воды в орга­низме. Артериальная гипотензия чревата задерж­кой натрия (и воды), в то время как при артериаль­ной гипертензии увеличивается экскреция натрия.

Дополнительный блок информации:

Функциональные параметры кровообращения постоянно улавливаются рецепторами, расположен-ными в различных отделах сердечно-сосудистой системы . Афферентные импульсы от этих рецеп-торов поступают в сосудодвигательные центры про-долговатого мозга . Эти центры посылают сигналы по эфферентным волокнам к эффекто-рам - сердцу и сосудам. Основные механизмы общей сердечно-сосуди-стой регуляции направлены на поддержание в сосудистой системе давления, необходи-мого для нормального кровотока. Это осуществля-ется путем сочетанных изменений общего периферического сопротивления и сердечного выброса.

АД = МОК х ОПСС

МОК - минутный объем кровообращения

МОК = УОК (ударный объем) х ЧСС

УОК зависит от венозного возврата и сократимости миокарда

ОПСС - общее периферическое сопротивление сосудов

ОПСС зависит от вязкости крови и радиуса сосудов.

В зависимости от скорости развития адаптивных процессов все механизмы регуляции гемодинамики можно разделить на три группы:

1) механизмы кратковременного действия;

2) механизмы проме-жуточного (по времени) действия;

3) механизмы длительного действия.

Регуляторные механизмы кратковременного действия

К этим механизмам относятся преимущественно сосудодвигательные реакции нервного происхождения :

Эти импульсы оказывают тормозное влияние на симпатические центры и воз-буждающее на парасимпатические. В результате снижается тонус сосудов, а также частота и сила сокращений сердца. И то, и другое приводит к понижению артериального давления. При падении давления импульсация от барорецеп-торов уменьшается, и развиваются обратные про-цессы, приводящие в конечном счете к повышению давления.

2) хеморецепторные рефлексы;

Почечная система контроля за объемом жидкости

Повышение кровяного давленияимеет несколько основных следствий:

1) возрастает выведение жид-кости почками;

2) в результате увеличенного вы-ведения жидкости снижается объем внеклеточной жидкости и, следовательно,

3) уменьшается объем крови;

4) уменьшение объема крови приводит к снижению артериального давления.

При падении артериального давленияпроисходят обратные процессы: почечная экскреция уменьша-ется, объем крови возрастает, венозный возврат и сердечный выброс увеличиваются и артериальное давление вновь повышается.

Эффекты вазопрессина. Вазопрессин, или анти-диуретический гормон (АДГ), в средних и высоких дозах оказывает сосудосуживающее дей-ствие, наиболее выраженное на уровне артериол. Однако главным эффектом этого гормона является регуляция реабсорбции водыв дистальных канальцах почек. Влияя на выделение воды, вазопрессин влияет на артериальное давление.

Эффекты альдостерона . Альдостерон - гормон коркового вещества надпочечников влияет на работу почек. Альдостерон, влияя на почечные канальца, задерживает в организме натрий и, как следствие, воду. Чрезмерная продукция альдостерона приводит к значительной; задержке воды и солей и к гипертензии. При пониженной же выработке альдостерона наблюда-ется гипотензия .

Таким образом, против нарушений артериального давления и объема крови постоянно действуют три «линии обороны», каждая в свое время (по началу и продолжитель-ности). При кратковременных колеба-ниях давления и объема крови включаются сосу-дистые реакции, при длительных же сдвигах пре-обладают компенсаторные изменения объема кро-ви. В последнем случае сначала меняется содержа-ние в крови воды и электролитов, а при необходи-мости (в различные сроки) происходят и сдви-ги в содержании белков плазмы и клеточных элементов.

Вопросы для самостоятельной внеаудиторной работы студентов:

1. Характеристика артериального давления как пластичной константы организма.

2. Факторы, определяющие уровень кровяного давления.

3. Характеристика рецепторного аппарата, центров и исполнительных механизмов функциональной системы регуляции артериального давления: механизмы кратковременной, промежуточной, долговременной регуляции артериального давления.

  • Проанализируйте функциональную систему поддержания артериального давления крови. Перерисуйте схему, на схеме ФУС красным цветом выделите центр регуляции и прямые связи, синим - рецепторы и обратные связи.

Рис.8. Схема функциональной системы поддержания артериального давления на оптимальном для метаболизма уровне.

  • Письменно составьте таблицу по анализу механизмов регуляции артериального давления:
  1. Лекционный материал.
  2. Логинов А.В. Физиология с основами анатомии человека. - М, 1983. - С. 192 - 198.
  3. Нормальная физиология (Курс физиологии функциональных систем) / Под ред. К.В.Судакова. - М., 1999. - С.175-200.


Случайные статьи

Вверх